51
|
Laha JK, Gulati U, Saima, Schulte T, Breugst M. pH-Controlled Intramolecular Decarboxylative Cyclization of Biarylacetic Acids: Implication on Umpolung Reactivity of Aroyl Radicals. J Org Chem 2022; 87:6638-6656. [PMID: 35484866 DOI: 10.1021/acs.joc.2c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple approach for the intramolecular aroylation of electron-rich arenes under mild conditions has been developed. A pH-controlled polarity umpolung strategy can be used to synthesize different fluorenones, which are important building blocks for biological applications. Unlike previous acylation reactions involving nucleophilic aroyl radicals, this approach likely relies on in situ generated electrophilic aroyl radicals. Detailed mechanistic and computational investigations provide detailed insights into the reaction mechanism and support the hypothesis of a pH-mediated umpolung.
Collapse
Affiliation(s)
- Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Upma Gulati
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Saima
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Tim Schulte
- Department für Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
| | - Martin Breugst
- Department für Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
52
|
Zhang H, Wang Z, Wang Z, Chu Y, Wang S, Hui XP. Visible-Light-Mediated Formal Carbene Insertion Reaction: Enantioselective Synthesis of 1,4-Dicarbonyl Compounds Containing All-Carbon Quaternary Stereocenter. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zheyuan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zirui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shuncheng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
53
|
Chen P, Fan JH, Yu WQ, Xiong BQ, Liu Y, Tang KW, Xie J. Alkylation/Ipso-cyclization of Active Alkynes Leading to 3-Alkylated Aza- and Oxa-spiro[4,5]-trienones. J Org Chem 2022; 87:5643-5659. [PMID: 35416658 DOI: 10.1021/acs.joc.1c03118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the preparation of 3-alkylated spiro[4.5]trienones via alkylation/ipso-cyclization of activated alkynes with 4-alkyl-DHPs under transition-metal-free conditions is proposed. This alkylation successively undergoes the generation of alkyl radicals, addition of alkyl radicals to the alkynes, and intramolecular ipso-cyclization. The mechanism studies suggest that the alkylation/ipso-cyclization involves a radical process. This ipso-cyclization procedure shows a series of advantages, such as accessibility, mild conditions, high efficiency, greater safety, and an environmentally friendly method.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
54
|
Nielsen CDT, Linfoot JD, Williams AF, Spivey AC. Recent progress in asymmetric synergistic catalysis - the judicious combination of selected chiral aminocatalysts with achiral metal catalysts. Org Biomol Chem 2022; 20:2764-2778. [PMID: 35298581 PMCID: PMC9082520 DOI: 10.1039/d2ob00025c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review we survey recent synergistic applications of a chiral organocatalyst with an achiral metal to perform stereoselective transformations of synthetic utility (since 2016). The transformations are classified by the modes of reactivity deployed, focussing on organocatalytic activation of carbonyl substrates as chiral nucleophiles via the α-position (e.g., as enamines) and as chiral electrophiles via the β-position (e.g., as iminium ions) combined with complementary activation of their reaction partners by an achiral metal co-catalyst (e.g., Pd or Cu-based). Corresponding radical reactions are also presented in which photocatalysis mediated by achiral metal complexes replaces the metal co-catalyst. Certain privileged structures are revealed and opportunities to develop this exciting field are highlighted. A critical survey of recent synergistic applications of a chiral organocatalyst with an achiral metal to perform stereoselective transformations of synthetic utility.![]()
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Joshua D Linfoot
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Alexander F Williams
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| | - Alan C Spivey
- Imperial College London, White City Campus, Molecular Sciences Research Hub (MSRH), 82 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
55
|
Yumura T, Nanjo T, Takemoto Y. Boronic Acid‐Mediated Photocatalysis Enables the Intramolecular Hydroacylation of Olefins Using Carboxylic Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taichi Yumura
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
56
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
57
|
Liu J, Lu LQ, Luo Y, Zhao W, Sun PC, Jin W, Qi X, Cheng Y, Xiao WJ. Photoredox-Enabled Chromium-Catalyzed Alkene Diacylations. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Liu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yixin Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wei Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Peng-Chao Sun
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
58
|
Yao W, Bergamino EAB, Ngai MY. Asymmetric Photocatalysis Enabled by Chiral Organocatalysts. ChemCatChem 2022; 14:e202101292. [PMID: 36204304 PMCID: PMC9531867 DOI: 10.1002/cctc.202101292] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 01/12/2023]
Abstract
Visible-light photocatalysis has advanced as a versatile tool in organic synthesis. However, attaining precise stereocontrol in photocatalytic reactions has been a longstanding challenge due to undesired photochemical background reactions and the involvement of highly reactive radicals or radical ion intermediates generated under photocatalytic conditions. To address this problem and expand the synthetic utility of photocatalytic reactions, a number of innovative strategies, including mono- and dual-catalytic approaches, have recently emerged. Of these, exploiting chiral organocatalysis, such as enamine catalysis, iminium-ion catalysis, Brønsted acid/base catalysis, and N-heterocyclic carbene catalysis, to induce chirality transfer of photocatalytic reactions has been widely explored. This Review aims to provide a current, comprehensive overview of asymmetric photocatalytic reactions enabled by chiral organocatalysts published through June 2021. The substrate scope, advantages, limitations, and proposed reaction mechanisms of each reaction are discussed. This review should serve as a reference for the development of visible-light-induced asymmetric photocatalysis and promote the improvement of the chemical reactivity and stereoselectivity of these reactions.
Collapse
Affiliation(s)
- Wang Yao
- Department of Chemistry, the State University of New York at Stony Brook, Stony Brook, New York, 11794
| | | | - Ming-Yu Ngai
- Department of Chemistry, the State University of New York at Stony Brook, Stony Brook, New York, 11794
- Institute of Chemical Biology and Drug Discovery, the State University of New York at Stony Brook, Stony Brook, New York 11794
| |
Collapse
|
59
|
Jiang HM, Qin JH, Sun Q, Zhang D, Jiang JP, Ouyang XH, Song RJ, Li JH. Copper-promoted cross-coupling of nitroarenes with 4-alkyl-1,4-dihydropyridines using a peroxide-driven radical reductive strategy. Org Chem Front 2022. [DOI: 10.1039/d2qo00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct radical-mediated reductive coupling of nitroarenes with 4-alkyl-1,4-dihydropyridines to build the C(sp3)–N bond using 4-alkyl-1,4-dihydropyridines as internal reducing agents and alkyl sources is presented.
Collapse
Affiliation(s)
- Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Dong Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Peng Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
60
|
Kemmochi M, Miyamoto Y, Sumida Y, Ohmiya H. Direct Photoexcitation of Borate Enabling Minisci Reaction. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marin Kemmochi
- Division of Pharmaceutical Science Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Yusuke Miyamoto
- Division of Pharmaceutical Science Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Yuto Sumida
- Division of Pharmaceutical Science Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Science Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
61
|
Wang D, Ackermann L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem Sci 2022; 13:7256-7263. [PMID: 35799820 PMCID: PMC9214884 DOI: 10.1039/d2sc02277j] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis. A wealth of ketones with high levels of structural complexity was rapidly obtained via direct functionalization of C(sp2)/C(sp3)–H bonds in a modular manner. Furthermore, a regioselective late-stage modification of natural products showcased the practical utility of the strategy, generally featuring high resource economy and ample substrate scope. Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis.![]()
Collapse
Affiliation(s)
- Dingyi Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Germany
| |
Collapse
|
62
|
Lam CC, Goodman JM. Computational insights on the origin of enantioselectivity in reactions with diarylprolinol silyl ether catalysts via a radical pathway. Org Chem Front 2022. [DOI: 10.1039/d2qo00354f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereoselective reaction of 1,4-dicarbonyls with diarylprolinol silyl ether catalysts was studied with force field and density functional theory calculations.
Collapse
Affiliation(s)
- Ching Ching Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jonathan M. Goodman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
63
|
Jin S, Sui X, Haug GC, Nguyen VD, Dang HT, Arman HD, Larionov OV. N-Heterocyclic Carbene-Photocatalyzed Tricomponent Regioselective 1,2-Diacylation of Alkenes Illuminates the Mechanistic Details of the Electron Donor–Acceptor Complex-Mediated Radical Relay Processes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengfei Jin
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Xianwei Sui
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Graham C. Haug
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Viet D. Nguyen
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hang T. Dang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Oleg V. Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
64
|
Cheng YY, Yu JX, Lei T, Hou HY, Chen B, Tung CH, Wu LZ. Direct 1,2-Dicarbonylation of Alkenes towards 1,4-Diketones via Photocatalysis. Angew Chem Int Ed Engl 2021; 60:26822-26828. [PMID: 34586701 DOI: 10.1002/anie.202112370] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 12/17/2022]
Abstract
1,4-Dicarbonyl compounds are intriguing motifs and versatile precursors in numerous pharmaceutical molecules and bioactive natural compounds. Direct incorporation of two carbonyl groups into a double bond at both ends is straightforward, but also challenging. Represented herein is the first example of 1,2-dicarbonylation of alkenes by photocatalysis. Key to success is that N(n-Bu)4 + not only associates with the alkyl anion to avoid protonation, but also activates the α-keto acid to undergo electrophilic addition. The α-keto acid is employed both for acyl generation and electrophilic addition. By tuning the reductive and electrophilic ability of the acyl precursor, unsymmetric 1,4-dicarbonylation is achieved for the first time. This metal-free, redox-neutral and regioselective 1,2-dicarbonylation of alkenes is executed by a photocatalyst for versatile substrates under extremely mild conditions and shows great potential in biomolecular and drug molecular derivatization.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong-Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
65
|
Cheng Y, Yu J, Lei T, Hou H, Chen B, Tung C, Wu L. Direct 1,2‐Dicarbonylation of Alkenes towards 1,4‐Diketones via Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan‐Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ji‐Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hong‐Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
66
|
Uchikura T, Fujii T, Moriyama K, Akiyama T. Visible-light driven, metal-free hydroalkylation of alkenes mediated by electron donor-acceptor complex using benzothiazolines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588
| | - Tatsuya Fujii
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588
| | - Kaworuko Moriyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588
| |
Collapse
|
67
|
Pearl ES, Fellner DMJ, Söhnel T, Furkert DP, Brimble MA. A Highly Efficient
N
‐Mesityl Thiazolylidene for the Aliphatic Stetter Reaction: Stereoelectronic Quantification for Comparison of N‐Heterocyclic Carbene Organocatalysts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Esperanza S. Pearl
- School of Chemical Sciences The University of Auckland 23 Symonds St Auckland 1010 New Zealand
| | - Daniel M. J. Fellner
- School of Chemical Sciences The University of Auckland 23 Symonds St Auckland 1010 New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences The University of Auckland 23 Symonds St Auckland 1010 New Zealand
| | - Daniel P. Furkert
- School of Chemical Sciences The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery 3 Symonds St Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery 3 Symonds St Auckland 1010 New Zealand
| |
Collapse
|
68
|
Jin S, Haug GC, Trevino R, Nguyen VD, Arman HD, Larionov OV. Photoinduced C(sp 3)-H sulfination empowers the direct and chemoselective introduction of the sulfonyl group. Chem Sci 2021; 12:13914-13921. [PMID: 34760178 PMCID: PMC8549786 DOI: 10.1039/d1sc04245a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Direct installation of the sulfinate group by the functionalization of unreactive aliphatic C-H bonds can provide access to most classes of organosulfur compounds, because of the central position of sulfinates as sulfonyl group linchpins. Despite the importance of the sulfonyl group in synthesis, medicine, and materials science, a direct C(sp3)-H sulfination reaction that can convert abundant aliphatic C-H bonds to sulfinates has remained elusive, due to the reactivity of sulfinates that are incompatible with typical oxidation-driven C-H functionalization approaches. We report herein a photoinduced C(sp3)-H sulfination reaction that is mediated by sodium metabisulfite and enables access to a variety of sulfinates. The reaction proceeds with high chemoselectivity and moderate to good regioselectivity, affording only monosulfination products and can be used for a solvent-controlled regiodivergent distal C(sp3)-H functionalization.
Collapse
Affiliation(s)
- Shengfei Jin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Viet D Nguyen
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
69
|
Shen GB, Xie L, Wang YX, Gong TY, Wang BY, Hu YH, Fu YH, Yan M. Quantitative Estimation of the Hydrogen-Atom-Donating Ability of 4-Substituted Hantzsch Ester Radical Cations. ACS OMEGA 2021; 6:23621-23629. [PMID: 34549160 PMCID: PMC8444320 DOI: 10.1021/acsomega.1c03872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/19/2021] [Indexed: 05/22/2023]
Abstract
The purpose of this study is to investigate thermodynamic and kinetic properties on the hydrogen-atom-donating ability of 4-substituted Hantzsch ester radical cations (XRH•+), which are excellent NADH coenzyme models. Gibbs free energy changes and activation free energies of 17 XRH•+ releasing H• [denoted as ΔG HD o(XRH•+) and ΔG HD ≠(XRH•+)] were calculated using density functional theory (DFT) and compared with that of Hantzsch ester (HEH2) and NADH. ΔG HD o(XRH•+) range from 19.35 to 31.25 kcal/mol, significantly lower than that of common antioxidants (such as ascorbic acid, BHT, the NADH coenzyme, and so forth). ΔG HD ≠(XRH•+) range from 29.81 to 39.00 kcal/mol, indicating that XRH•+ spontaneously releasing H• are extremely slow unless catalysts or active intermediate radicals exist. According to the computed data, it can be inferred that the Gibbs free energies and activation free energies of the core 1,4-dihydropyridine radical cation structure (DPH•+) releasing H• [ΔG HD o(DPH•+) and ΔG HD ≠(DPH•+)] should be 19-32 kcal/mol and 29-39 kcal/mol in acetonitrile, respectively. The correlations between the thermodynamic driving force [ΔG HD o(XRH•+)] and the activation free energy [ΔG HD ≠(XRH•+)] are also explored. Gibbs free energy is the important and decisive parameter, and ΔG HD ≠(XRH•+) increases in company with the increase of ΔG HD o(XRH•+), but no simple linear correlations are found. Even though all XRH•+ are judged as excellent antioxidants from the thermodynamic view, the computed data indicate that whether XRH•+ is an excellent antioxidant in reaction is decided by the R substituents in 4-position. XRH•+ with nonaromatic substituents tend to release R• instead of H• to quench radicals. XRH•+ with aromatic substituents tend to release H• and be used as antioxidants, but not all aromatic substituted Hantzsch esters are excellent antioxidants.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Li Xie
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yun-Xia Wang
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Teng-Yang Gong
- School of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| | - Bin-Yu Wang
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yu-He Hu
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P. R. China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong 276800, P. R. China
| |
Collapse
|
70
|
Xiong T, Zhang Q. Recent advances in the direct construction of enantioenriched stereocenters through addition of radicals to internal alkenes. Chem Soc Rev 2021; 50:8857-8873. [PMID: 34279014 DOI: 10.1039/d1cs00208b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of new synthetic methods involving radical intermediates to control the absolute configuration of newly formed stereocenters has seen unprecedented growth in the past few decades. Despite significant advances in this topic, catalytic asymmetric direct construction of stereocenters through addition of radicals to internal alkenes is of special interest due to its potential to simultaneously build (more than) two consecutive stereogenic centers. Methodologies such as chiral Lewis acid catalysis, organocatalysis, and transition metal catalysis have been successfully leveraged to exert enantiocontrol in this challenging domain. This tutorial review highlights the recent significant progress in the realm of rapidly and conveniently building enantioenriched stereocenters via addition of radicals to internal alkenes, with an emphasis on mechanistic scenarios governing the absolute stereochemistry and unmet challenges in this emerging and promising field.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China.
| | | |
Collapse
|
71
|
Dong X, Li QY, Yoon TP. Enantioselective Synthesis of γ-Oxycarbonyl Motifs by Conjugate Addition of Photogenerated α-Alkoxy Radicals. Org Lett 2021; 23:5703-5708. [PMID: 34296877 DOI: 10.1021/acs.orglett.1c01790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enantioselective catalytic Giese addition of photogenerated α-alkoxy radicals to acyl pyrazolidinones can be accomplished using a tandem Sc(III) Lewis acid/photoredox catalyst system. Surprisingly, the excited-state oxidation potential was not the only important variable, and the optimal photocatalyst was not the strongest oxidant screened. Our results show that both the oxidation and reduction potentials of the photocatalyst can be important for the reaction outcome, highlighting the importance of holistic considerations in designing photochemical reactions.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Qi Yukki Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
72
|
|
73
|
Correia JTM, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Recent Advances on Photoinduced Cascade Strategies for the Synthesis of N-Heterocycles. CHEM REC 2021; 21:2666-2687. [PMID: 34288377 DOI: 10.1002/tcr.202100160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
Over the last decade, visible-light photocatalysis has proved to be a powerful tool for the construction of N-heterocyclic frameworks, important constituents of natural products, insecticides, pharmacologically relevant therapeutic agents and catalysts. This account highlights recent developments and established methods towards the photocatalytic cascades for preparation of different classes of N-heterocycles, giving emphasis on our contribution to the field.
Collapse
Affiliation(s)
- José Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Marilia S Santos
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Gustavo P da Silva
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| | - Márcio W Paixão
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, Brazil -, 13565-905
| |
Collapse
|
74
|
Lipp A, Badir SO, Dykstra R, Gutierrez O, Molander GA. Catalyst-Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donor-Acceptor Complex Photoactivation. Adv Synth Catal 2021; 363:3507-3520. [PMID: 35273472 PMCID: PMC8903066 DOI: 10.1002/adsc.202100469] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 08/06/2023]
Abstract
A catalyst- and additive-free decarbonylative trifluoromethylthiolation of aldehyde feedstocks has been developed. This operationally simple, scalable, and open-to-air transformation is driven by the selective photoexcitation of electron donor-acceptor (EDA) complexes, stemming from the association of 1,4-dihydropyridines (donor) with N-(trifluoromethylthio)phthalimide (acceptor), to trigger intermolecular single-electron transfer events under ambient- and visible light-promoted conditions. Extension to other electron acceptors enables the synthesis of thiocyanates and thioesters, as well as the difunctionalization of [1.1.1] propellane. The mechanistic intricacies of this photochemical paradigm are elucidated through a combination of experimental efforts and high-level quantum mechanical calculations [dispersion-corrected (U)DFT, DLPNO-CCSD(T), and TD-DFT]. This comprehensive study highlights the necessity for EDA complexation for efficient alkyl radical generation. Computation of subsequent ground state pathways reveals that SH2 addition of the alkyl radical to the intermediate radical EDA complex is extremely exergonic and results in a charge transfer event from the dihydropyridine donor to the N-(trifluoromethylthio)phthalimide acceptor of the EDA complex. Experimental and computational results further suggest that product formation also occurs via SH2 reaction of alkyl radicals with 1,2-bis(trifluoromethyl)disulfane, generated in-situ through combination of thiyl radicals.
Collapse
Affiliation(s)
- Alexander Lipp
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ryan Dykstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
75
|
Luo X, Wang P. Ynonylation of Acyl Radicals by Electroinduced Homolysis of 4-Acyl-1,4-dihydropyridines. Org Lett 2021; 23:4960-4965. [PMID: 34155886 DOI: 10.1021/acs.orglett.1c01243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein we report the conversion of 4-acyl-1,4-dihydropyridines (DHPs) into ynones under electrochemical conditions. The reaction proceeds via the homolysis of acyl-DHP under electron activation. The resulting acyl radicals react with hypervalent iodine(III) reagents to form the target ynones or ynamides in acceptable yields. This mild reaction condition allows wider functionality tolerance that includes halides, carboxylates, or alkenes. The synthetic utility of this methodology is further demonstrated by the late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
76
|
Visible-light-driven external-photocatalyst-free alkylative carboxylation of alkenes with CO2. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1004-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Li X, He S, Song Q. Rapid incorporation of a difluoroacetate radical into para-quinone methides via radical 1,6-conjugate addition. Chem Commun (Camb) 2021; 57:6035-6038. [PMID: 34037000 DOI: 10.1039/d1cc02149d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is a newly designed strategy that rapidly introduces ethyl difluoroacetate radicals through a dialkylzincs induced radical 1,6-conjugate addition pathway. Besides achieving high yields and excellent functional group compatibility, this protocol allowed the incorporation of a gem-difluoromethylene motif to be accomplished within minutes.
Collapse
Affiliation(s)
- Xin Li
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China.
| | - Songtao He
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361021, Fujian, China. and State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
78
|
Jiang P, Liu L, Tan J, Du H. Visible-light-promoted photocatalyst-free alkylation and acylation of benzothiazoles. Org Biomol Chem 2021; 19:4487-4491. [PMID: 33960996 DOI: 10.1039/d1ob00734c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein we report a protocol for the visible-light-mediated alkylation/acylation reaction of benzothiazoles. Alkyl/acyl substituted Hantzsch esters are easily prepared and rationally used as radical precursors. In the presence of BF3·Et2O and Na2S2O8, various benzothiazole derivatives were readily obtained in good yields. Our user-friendly protocol can proceed by simple irradiation with blue LEDs (λ = 465 nm) and without the assistance of external photocatalysts. The reaction is also characterized by mild conditions and scalability, thus offering an alternative and efficient tool for the synthesis of 2-functionalized benzothiazoles.
Collapse
Affiliation(s)
- Pengxing Jiang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Li Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Hongguang Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
79
|
Wang L, Jiang M, Shi MQ. Copper-catalyzed synthesis of CN-containing chroman-4-ones via intramolecular radical cascade acyl-cyanation reaction. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
80
|
Kammer LM, Badir SO, Hu RM, Molander GA. Photoactive electron donor-acceptor complex platform for Ni-mediated C(sp 3)-C(sp 2) bond formation. Chem Sci 2021; 12:5450-5457. [PMID: 34168786 PMCID: PMC8179655 DOI: 10.1039/d1sc00943e] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
A dual photochemical/nickel-mediated decarboxylative strategy for the assembly of C(sp3)-C(sp2) linkages is disclosed. Under light irradiation at 390 nm, commercially available and inexpensive Hantzsch ester (HE) functions as a potent organic photoreductant to deliver catalytically active Ni(0) species through single-electron transfer (SET) manifolds. As part of its dual role, the Hantzsch ester effects a decarboxylative-based radical generation through electron donor-acceptor (EDA) complex activation. This homogeneous, net-reductive platform bypasses the need for exogenous photocatalysts, stoichiometric metal reductants, and additives. Under this cross-electrophile paradigm, the coupling of diverse C(sp3)-centered radical architectures (including primary, secondary, stabilized benzylic, α-oxy, and α-amino systems) with (hetero)aryl bromides has been accomplished. The protocol proceeds under mild reaction conditions in the presence of sensitive functional groups and pharmaceutically relevant cores.
Collapse
Affiliation(s)
- Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Ren-Ming Hu
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
81
|
Eosin Y as a direct hydrogen-atom transfer photocatalyst for the C3-H acylation of quinoxalin-2(1H)-ones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
82
|
Le Saux E, Ma D, Bonilla P, Holden CM, Lustosa D, Melchiorre P. A General Organocatalytic System for Enantioselective Radical Conjugate Additions to Enals. Angew Chem Int Ed Engl 2021; 60:5357-5362. [PMID: 33283919 PMCID: PMC7986922 DOI: 10.1002/anie.202014876] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/04/2020] [Indexed: 11/28/2022]
Abstract
Herein, we report a general iminium ion-based catalytic method for the enantioselective conjugate addition of carbon-centered radicals to aliphatic and aromatic enals. The process uses an organic photoredox catalyst, which absorbs blue light to generate radicals from stable precursors, in combination with a chiral amine catalyst, which secures a consistently high level of stereoselectivity. The generality of this catalytic platform is demonstrated by the stereoselective interception of a wide variety of radicals, including non-stabilized primary ones which are generally difficult to engage in asymmetric processes. The system also served to develop organocatalytic cascade reactions that combine an iminium-ion-based radical trap with an enamine-mediated step, affording stereochemically dense chiral products in one-step.
Collapse
Affiliation(s)
- Emilien Le Saux
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Dengke Ma
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Pablo Bonilla
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Catherine M. Holden
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Danilo Lustosa
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Paolo Melchiorre
- ICREA-Passeig Lluís Companys 2308010BarcelonaSpain
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| |
Collapse
|
83
|
Xu J, Ding A, Zhang Y, Guo H. Photochemical Synthesis of 1,4-Dicarbonyl Bifluorene Compounds via Oxidative Radical Coupling Using TEMPO as the Oxygen Atom Donor. J Org Chem 2021; 86:3656-3666. [PMID: 33513019 DOI: 10.1021/acs.joc.0c02781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A visible-light-induced metal-free synthesis of 1,4-dicarbonyl compounds from alkyne-containing aryl iodides via photochemical C-I bond cleavage, intramolecular cyclization, oxidation, and intermolecular radical coupling sequence is reported. TEMPO was employed as the oxygen atom donor in this transformation. This protocol provided a new strategy for the synthesis of 1,4-dicarbonyl bifluorene compounds.
Collapse
Affiliation(s)
- Jincheng Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Aishun Ding
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
84
|
Ren SC, Lv WX, Yang X, Yan JL, Xu J, Wang FX, Hao L, Chai H, Jin Z, Chi YR. Carbene-Catalyzed Alkylation of Carboxylic Esters via Direct Photoexcitation of Acyl Azolium Intermediates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00165] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shi-Chao Ren
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wen-Xin Lv
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jia-Lei Yan
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Xu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Fang-Xin Wang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Lin Hao
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Huifang Chai
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
85
|
Le Saux E, Ma D, Bonilla P, Holden CM, Lustosa D, Melchiorre P. A General Organocatalytic System for Enantioselective Radical Conjugate Additions to Enals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014876] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emilien Le Saux
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Dengke Ma
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Pablo Bonilla
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Catherine M. Holden
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Danilo Lustosa
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICREA- Passeig Lluís Companys 23 08010 Barcelona Spain
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
86
|
Schiel F, Peinsipp C, Kornigg S, Böse D. A 3D‐Printed Open Access Photoreactor Designed for Versatile Applications in Photoredox‐ and Photoelectrochemical Synthesis**. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Florian Schiel
- Boehringer Ingelheim RCV GmbH & Co KG Dr.-Boehringer-Gasse 5–11 1121 Vienna Austria
- Institute of Organic Chemistry Faculty of Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Christoph Peinsipp
- Boehringer Ingelheim RCV GmbH & Co KG Dr.-Boehringer-Gasse 5–11 1121 Vienna Austria
| | - Stefan Kornigg
- Boehringer Ingelheim RCV GmbH & Co KG Dr.-Boehringer-Gasse 5–11 1121 Vienna Austria
| | - Dietrich Böse
- Boehringer Ingelheim RCV GmbH & Co KG Dr.-Boehringer-Gasse 5–11 1121 Vienna Austria
- Current address: Merck Healthcare KGaA Frankfurter Strasse 250 64293 Darmstadt Germany
| |
Collapse
|
87
|
Zhou W, Voituriez A. Gold(I)-Catalyzed Synthesis of Highly Substituted 1,4-Dicarbonyl Derivatives via Sulfonium [3,3]-Sigmatropic Rearrangement. Org Lett 2021; 23:247-252. [PMID: 33337159 DOI: 10.1021/acs.orglett.0c04023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient and straightforward gold-catalyzed protocol for the synthesis of 2-substituted 4-oxo-4-arylbutanal derivatives from commercially available or easily accessible alkynes and vinylsulfoxide substrates has been developed. Extension of the methodology to the use of 1-cycloalkenyl sulfoxides allowed the facile synthesis of five-, six-, and seven-membered-ring cycloalkyl-1-one backbone. Subsequently, the tetrahydrocycloalkyl[b]pyrrole derivatives, which are found in many active pharmaceutical ingredients, were isolated in good yields. Mechanistic investigation highlighted a [3,3]-sigmatropic rearrangement of a sulfonium intermediate in this process.
Collapse
Affiliation(s)
- Weiping Zhou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
88
|
Lang Y, Li CJ, Zeng H. Photo-induced transition-metal and external photosensitizer-free organic reactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00359c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoreactions have become powerful synthetic tools with a broad scope of applications. This review mainly focuses on photoreactions in the absence of transition-metals and photosensitizers, and highlights the mechanisms of such reactions.
Collapse
Affiliation(s)
- Yatao Lang
- The State Key Laboratory of Applied Organic Chemistry
- and the College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis
- McGill University
- Montreal
- Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry
- and the College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
89
|
Liu Y, Luo W, Xia T, Fang Y, Du C, Jin X, Li Y, Zhang L, Lei W, Wu H. Merging radical-polar crossover/cycloisomerization processes: access to polyfunctional furans enabled by metallaphotoredox catalysis. Org Chem Front 2021. [DOI: 10.1039/d0qo01472a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metallaphotoredox catalysis for furan synthesis: The cyclisation of yne-enones proceeds smoothly via consecutive reductive radical-polar crossover and cycloisomerization processes enabled by cooperative photoredox-neutral and copper catalysis.
Collapse
Affiliation(s)
- Yongjun Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Wenping Luo
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Tingting Xia
- School of Materials and Chemical Engineering
- Ningbo University of Technology
- Ningbo 315211
- China
| | - Yewen Fang
- School of Materials and Chemical Engineering
- Ningbo University of Technology
- Ningbo 315211
- China
- Key Laboratory of Organofluorine Chemistry
| | - Chan Du
- School of Materials and Chemical Engineering
- Ningbo University of Technology
- Ningbo 315211
- China
| | - Xiaoping Jin
- Department of Pharmaceutical Engineering
- Zhejiang Pharmaceutical College
- Ningbo 315100
- China
| | - Yan Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Li Zhang
- Department of Pharmaceutical Engineering
- Zhejiang Pharmaceutical College
- Ningbo 315100
- China
| | - Wan Lei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules
- Hubei University
- Wuhan 430062
- China
| | - Hao Wu
- School of Materials and Chemical Engineering
- Ningbo University of Technology
- Ningbo 315211
- China
| |
Collapse
|
90
|
Huang H, Bellotti P, Daniliuc CG, Glorius F. Radical Carbonyl Propargylation by Dual Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huan‐Ming Huang
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Peter Bellotti
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
91
|
Zhang HH, Yu S, Zhao JJ. Enantioselective Radical Functionalization of Imines and Iminium Intermediates via Visible-Light Photoredox Catalysis. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/a-1343-6541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractVisible-light photoredox catalysis has recently emerged as a powerful tool for the development of new and valuable chemical transformations under mild conditions. Visible-light promoted enantioselective radical transformations of imines and iminium intermediates provide new opportunities for the asymmetric synthesis of amines and the asymmetric β-functionalization of unsaturated carbonyl compounds. In this review, recent advances on the catalytic asymmetric radical functionalization of imines and iminium intermediates are summarized.1 Introduction2 Enantioselective Radical Functionalization of Imines2.1 Asymmetric Reduction2.2 Asymmetric Cyclization2.3 Asymmetric Addition2.4 Asymmetric Radical–Radical Coupling 3 Enantioselective Radical Functionalization of Iminium Ions3.1 Asymmetric Radical Alkylation3.2 Asymmetric Radical Acylation4 Conclusion
Collapse
|
92
|
Abstract
Photochemical transformations of molecular building blocks have become an important and widely recognized research field in the past decade. Detailed and deep understanding of novel photochemical catalysts and reaction concepts with visible light as the energy source has enabled a broad application portfolio for synthetic organic chemistry. In parallel, continuous-flow chemistry and microreaction technology have become the basis for thinking and doing chemistry in a novel fashion with clear focus on improved process control for higher conversion and selectivity. As can be seen by the large number of scientific publications on flow photochemistry in the recent past, both research topics have found each other as exceptionally well-suited counterparts with high synergy by combining chemistry and technology. This review will give an overview on selected reaction classes, which represent important photochemical transformations in synthetic organic chemistry, and which benefit from mild and defined process conditions by the transfer from batch to continuous-flow mode.
Collapse
Affiliation(s)
- Thomas H. Rehm
- Division Energy & Chemical Technology/Flow Chemistry GroupFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| |
Collapse
|
93
|
Huang HM, Bellotti P, Daniliuc CG, Glorius F. Radical Carbonyl Propargylation by Dual Catalysis. Angew Chem Int Ed Engl 2020; 60:2464-2471. [PMID: 33022838 DOI: 10.1002/anie.202011996] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Indexed: 12/26/2022]
Abstract
Carbonyl propargylation has been established as a valuable tool in the realm of carbon-carbon bond forming reactions. The 1,3-enyne moiety has been recognized as an alternative pronucleophile in the above transformation through an ionic mechanism. Herein, we report for the first time, the radical carbonyl propargylation through dual chromium/photoredox catalysis. A library of valuable homopropargylic alcohols bearing all-carbon quaternary centers could be obtained by a catalytic radical three-component coupling of 1,3-enynes, aldehydes and suitable radical precursors (41 examples). This redox-neutral multi-component reaction occurs under very mild conditions and shows high functional group tolerance. Remarkably, bench-stable, non-toxic, and inexpensive CrCl3 could be employed as a chromium source. Preliminary mechanistic investigations suggest a radical-polar crossover mechanism, which offers a complementary and novel approach towards the preparation of valuable synthetic architectures from simple chemicals.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
94
|
Zhang D, Tang ZL, Ouyang XH, Song RJ, Li JH. Copper-catalyzed oxidative decarboxylative alkylation of cinnamic acids with 4-alkyl-1,4-dihydropyridines. Chem Commun (Camb) 2020; 56:14055-14058. [PMID: 33103675 DOI: 10.1039/d0cc06401g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have developed a new oxidative decarboxylation of cinnamic acids with 4-alkyl-1,4-dihydropyridines to construct C(sp3)-C(sp2) bonds in the presence of copper catalyst and dicumyl peroxide (DCP). A variety of internal alkenes have been obtained with mild conditions, broad substrate scope and excellent functional group tolerance. This method has significant potential for application by using inexpensive and stable cinnamic acids instead of alkenyl halides and nitro-olefins.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zi-Liang Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
95
|
|
96
|
Kim I, Park S, Hong S. Functionalization of Pyridinium Derivatives with 1,4-Dihydropyridines Enabled by Photoinduced Charge Transfer. Org Lett 2020; 22:8730-8734. [DOI: 10.1021/acs.orglett.0c03347] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Inwon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seongjin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| |
Collapse
|
97
|
Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angew Chem Int Ed Engl 2020; 59:18646-18654. [PMID: 32621297 DOI: 10.1002/anie.202006720] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/18/2022]
Abstract
We report a new visible-light-mediated carbonylative amidation of aryl, heteroaryl, and alkyl halides. A tandem catalytic cycle of [Ir(ppy)2 (dtb-bpy)]+ generates a potent iridium photoreductant through a second catalytic cycle in the presence of DIPEA, which productively engages aryl bromides, iodides, and even chlorides as well as primary, secondary, and tertiary alkyl iodides. The versatile in situ generated catalyst is compatible with aliphatic and aromatic amines, shows high functional-group tolerance, and enables the late-stage amidation of complex natural products.
Collapse
Affiliation(s)
- José A Forni
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nenad Micic
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Timothy U Connell
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Geethika Weragoda
- CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia.,CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| |
Collapse
|
98
|
Qiu D, Lian C, Mao J, Fagnoni M, Protti S. Dyedauxiliary Groups, an Emerging Approach in Organic Chemistry. The Case of Arylazo Sulfones. J Org Chem 2020; 85:12813-12822. [PMID: 32956584 PMCID: PMC8011925 DOI: 10.1021/acs.joc.0c01895] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The number of research papers that report photocatalyst-free protocols is currently increasing. Among the different approaches proposed, the conversion of a strong C-X bond of a stable substrate into a photolabile reactive moiety has been recently proposed. In this Synopsis, we introduce the so-dubbed dyedauxiliary group strategy by focusing on arylazo sulfones that are bench stable and visible-light responsive derivatives of anilines that have been exploited as precursors of a wide range of intermediates, including carbon-centered radicals as well as aryl cations.
Collapse
Affiliation(s)
- Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Chang Lian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jinshan Mao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
99
|
Uchikura T, Toda M, Mouri T, Fujii T, Moriyama K, Ibáñez I, Akiyama T. Radical Hydroalkylation and Hydroacylation of Alkenes by the Use of Benzothiazoline under Thermal Conditions. J Org Chem 2020; 85:12715-12723. [PMID: 32900192 DOI: 10.1021/acs.joc.0c01872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydroalkylation and hydroacylation of electron-deficient alkenes proceeded smoothly by using benzothiazoline derivatives as radical-transfer reagents under thermal conditions without light irradiation or any additive. Both benzyl and benzoyl moieties were transferred efficiently.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Mitsuhiro Toda
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Toshiki Mouri
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tatsuya Fujii
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kaworuko Moriyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Ignacio Ibáñez
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
100
|
Liu Q, Wang R, Song H, Liu Y, Wang Q. Synthesis of 1,4‐Dicarbonyl Compounds by Visible‐Light‐Mediated Cross‐Coupling Reactions of α‐Chlorocarbonyls and Enol Acetates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Rui‐Guo Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Hong‐Jian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Yu‐Xiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Qing‐Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin Tianjin 300071 People's Republic of China
| |
Collapse
|