51
|
Barbero H, Masson E. Design and recognition of cucurbituril-secured platinum-bound oligopeptides. Chem Sci 2021; 12:9962-9968. [PMID: 34349966 PMCID: PMC8317623 DOI: 10.1039/d1sc02637b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Platinum terpyridyl complexes, stacked on top of one another and secured as dimers with cucurbit[8]uril (CB[8]) in aqueous medium, were functionalized quantitatively and in situ with a pair of pentapeptides Phe-(Gly)3-Cys by grafting their cysteine residues to the Pt centers. The resulting CB[8]·(Pt·peptide)2 assemblies were used to target secondary hosts CB[7] and CB[8] via their pair of phenylalanine residues, again in situ. A series of well-defined architectures, including a supramolecular “pendant necklace” with hybrid head-to-head and head-to-tail arrangements inside CB[8], were obtained during the self-sorting process after combining only 3 or 4 simple building units. A platinum terpyridyl complex, pentapeptide Phe-(Gly)3-Cys and cucurbit[8]uril assemble into a “pendant necklace” with hybrid head-to-head and head-to-tail arrangements in aqueous medium.![]()
Collapse
Affiliation(s)
- Héctor Barbero
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| |
Collapse
|
52
|
Chen J, Li S, Wang Z, Pan Y, Wei J, Lu S, Zhang QW, Wang LH, Wang R. Synthesis of an AIEgen functionalized cucurbit[7]uril for subcellular bioimaging and synergistic photodynamic therapy and supramolecular chemotherapy. Chem Sci 2021; 12:7727-7734. [PMID: 34168825 PMCID: PMC8188462 DOI: 10.1039/d1sc01139a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregation-induced emission (AIE) based fluorophores (AIEgens) have attracted increasing attention for biomedical applications due to their unique optical properties. Here we report an AIE photosensitizer functionalized CB[7], namely AIECB[7], which could spontaneously self-assemble into nanoaggregates in aqueous solutions. Interestingly, the carbonyl-lace of CB[7] may potentially act as a proton acceptor in an acidic environment to fine-tune the fluorescence and singlet oxygen generation of AIECB[7] nanoaggregates by regulating the inner stacking of AIEgens. Additionally, benefiting from the guest-binding properties of CB[7], oxaliplatin was included into AIECB[7] nanoaggregates for combined photodynamic therapy and supramolecular chemotherapy. To show the modular versatility of this supramolecular system, a hypoxia-activatable prodrug banoxantrone (AQ4N) was loaded into AIECB[7] nanoaggregates, which exhibited synergistic antitumor effects on a multicellular tumor spheroid model (MCTS). This work not only provides AIECB[7] for versatile theranostic applications, but also offers important new insights into the design and development of macrocycle-conjugated AIE materials for diverse biomedical applications.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| | - Shengke Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Zeyu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| | - Yating Pan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University 100 Kexue Road Zhengzhou 450001 China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| | - Lian-Hui Wang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| |
Collapse
|
53
|
Pedrini A, Devi Das A, Pinalli R, Hickey N, Geremia S, Dalcanale E. The Role of Chain Length in Cucurbit[8]uril Complexation of Methyl Alkyl Viologens. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandro Pedrini
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anjali Devi Das
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Roberta Pinalli
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Neal Hickey
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Enrico Dalcanale
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
54
|
Wang H, Yang Y, Yuan B, Ni XL, Xu JF, Zhang X. Cucurbit[10]uril-Encapsulated Cationic Porphyrins with Enhanced Fluorescence Emission and Photostability for Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2269-2276. [PMID: 33411497 DOI: 10.1021/acsami.0c18725] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porphyrins are widely applied for imaging, diagnosis, and treatment of diseases because of their excellent photophysical properties. However, porphyrins easily tend to aggregate driven by hydrophobic interaction and π-π stacking in an aqueous medium, which causes fluorescence quenching of the porphyrins as well as limitation of cell uptake and intracellular accumulation. Herein, cucurbit[10]uril (CB[10]) was used to fully encapsulate cationic porphyrin (CPor) in the large cavity with strong binding affinity in aqueous solutions, and the CPor aggregates were efficient disassembled, companying remarkable enhancing its fluorescence intensity. The CB[10]-based host-guest complex provided excellent protection to CPor, resulting in less susceptibility to oxidation and imparting higher photostability to CPor for cell imaging. In addition, by complexation with CB[10], it was found that the fluorescence signals and photostability of CPor were also effectively improved in cells with different reactive oxygen species levels. It is highly anticipated that the large macrocyclic host cavity-triggered large-guest encapsulation strategy in this work will provide a convenient and efficient method for designing supramolecular porphyrin dyes, thus broadening the diagnosis and imaging application in cells and microorganisms.
Collapse
Affiliation(s)
- Hua Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, Guizhou University, Guiyang 550025, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
55
|
Wu H, Wang Y, Jones LO, Liu W, Song B, Cui Y, Cai K, Zhang L, Shen D, Chen XY, Jiao Y, Stern CL, Li X, Schatz GC, Stoddart JF. Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. J Am Chem Soc 2020; 142:16849-16860. [PMID: 32886881 DOI: 10.1021/jacs.0c07745] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One ring threaded by two other rings to form a non-intertwined ternary ring-in-rings motif is a challenging task in noncovalent synthesis. Constructing multicolor photoluminescence systems with tunable properties is also a fundamental research goal, which can lead to applications in multidimensional biological imaging, visual displays, and encryption materials. Herein, we describe the design and synthesis of binary and ternary ring-in-ring(s) complexes, based on an extended tetracationic cyclophane and cucurbit[8]uril. The formation of these complexes is accompanied by tunable multicolor fluorescence outputs. On mixing equimolar amounts of the cyclophane and cucurbit[8]uril, a 1:1 ring-in-ring complex is formed as a result of hydrophobic interactions associated with a favorable change in entropy. With the addition of another equivalent of cucurbit[8]uril, a 1:2 ring-in-rings complex is formed, facilitated by additional ion-dipole interactions involving the pyridinium units in the cyclophane and the carbonyl groups in cucurbit[8]uril. Because of the narrowing in the energy gaps of the cyclophane within the rigid hydrophobic cavities of cucurbit[8]urils, the binary and ternary ring-in-ring(s) complexes emit green and bright yellow fluorescence, respectively. A series of color-tunable emissions, such as sky blue, cyan, green, and yellow with increased fluorescence lifetimes, can be achieved by simply adding cucurbit[8]uril to an aqueous solution of the cyclophane. Notably, the smaller cyclobis(paraquat-p-phenylene), which contains the same p-xylylene linkers as the extended tetracationic cyclophane, does not form ring-in-ring(s) complexes with cucurbit[8]uril. The encapsulation of this extended tetracationic cyclophane by both one and two cucurbit[8]urils provides an incentive to design and synthesize more advanced supramolecular systems, as well as opening up a feasible approach toward achieving tunable multicolor photoluminescence with single chromophores.
Collapse
Affiliation(s)
- Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunpeng Cui
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
| |
Collapse
|