51
|
Norris V, Grondin Y. DNA movies and panspermia. Life (Basel) 2011; 1:9-18. [PMID: 25382053 PMCID: PMC4187124 DOI: 10.3390/life1010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/08/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022] Open
Abstract
There are several ways that our species might try to send a message to another species separated from us by space and/or time. Synthetic biology might be used to write an epitaph to our species, or simply “Kilroy was here”, in the genome of a bacterium via the patterns of either (1) the codons to exploit Life's non-equilibrium character or (2) the bases themselves to exploit Life's quasi-equilibrium character. We suggest here how DNA movies might be designed using such patterns. We also suggest that a search for mechanisms to create and preserve such patterns might lead to a better understanding of modern cells. Finally, we argue that the cutting-edge microbiology and synthetic biology needed for the Kilroy project would put origin-of-life studies in the vanguard of research.
Collapse
Affiliation(s)
- Victor Norris
- EA 3829, Department of Biology, University of Rouen, 76821 Mont Saint Aignan, France.
| | - Yohann Grondin
- Harvard School of Public Health, 665 Huntington Avenue, 02115 Boston, MA, USA.
| |
Collapse
|
52
|
Norris V, Zemirline A, Amar P, Audinot JN, Ballet P, Ben-Jacob E, Bernot G, Beslon G, Cabin A, Fanchon E, Giavitto JL, Glade N, Greussay P, Grondin Y, Foster JA, Hutzler G, Jost J, Kepes F, Michel O, Molina F, Signorini J, Stano P, Thierry AR. Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theory Biosci 2011; 130:211-28. [PMID: 21384168 PMCID: PMC3163788 DOI: 10.1007/s12064-010-0118-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 12/15/2010] [Indexed: 10/29/2022]
Abstract
The relevance of biological materials and processes to computing-alias bioputing-has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating.
Collapse
Affiliation(s)
- Vic Norris
- Epigenomics Project, Genopole Campus 1, Bât. Genavenir 6, 5 rue Henri Desbruères, 91030, Évry Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Norris V. Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis. Med Hypotheses 2011; 76:706-16. [PMID: 21349650 DOI: 10.1016/j.mehy.2011.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 01/23/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
The exact nature of the mechanism that triggers initiation of chromosome replication in the best understood of all organisms, Escherichia coli, remains mysterious. Here, I suggest that this mechanism evolved in response to the problems that arise if chromosome replication does not occur. E. coli is now known to be highly structured. This leads me to propose a mechanism for initiation of replication based on the dynamics of large assemblies of molecules and macromolecules termed hyperstructures. In this proposal, hyperstructures and their constituents are put into two classes, non-equilibrium and equilibrium, that spontaneously separate and that are appropriate for life in either good or bad conditions. Maintaining the right ratio(s) of non-equilibrium to equilibrium hyperstructures is therefore a major challenge for cells. I propose that this maintenance entails a major transfer of material from equilibrium to non-equilibrium hyperstructures once per cell and I further propose that this transfer times the cell cycle. More specifically, I speculate that the dialogue between hyperstructures involves the structuring of water and the condensation of cations and that one of the outcomes of ion condensation on ribosomal hyperstructures and decondensation from the origin hyperstructure is the separation of strands at oriC responsible for triggering initiation of replication. The dualism hypothesis that comes out of these speculations may help integrate models for initiation of replication, chromosome segregation and cell division with the 'prebiotic ecology' scenario of the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, EA 3829, Department of Biology, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
54
|
Hansma HG. Possible origin of life between mica sheets. J Theor Biol 2010; 266:175-88. [PMID: 20558181 DOI: 10.1016/j.jtbi.2010.06.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/21/2010] [Accepted: 06/08/2010] [Indexed: 11/26/2022]
Abstract
The mica hypothesis is a new hypothesis about how life might have originated. The mica hypothesis provides simple solutions to many basic questions about the origins of life. In the mica hypothesis, the spaces between mica sheets functioned as the earliest cells. These 'cells' between mica sheets are filled with potassium ions, and they provide an environment in which: polymer entropy is low; cyclic wetting and drying can occur; molecules can evolve in isolated spaces and also migrate and ligate to form larger molecules. The mica hypothesis also proposes that mechanical energy (work) is a major energy source that could have been used on many length scales to form covalent bonds, to alter polymer conformations, and to bleb daughter cells off protocells. The mica hypothesis is consistent with many other origins hypotheses, including the RNA, lipid, and metabolic 'worlds'. Therefore the mica hypothesis has the potential to unify origins hypotheses, such that different molecular components and systems could simultaneously evolve in the spaces between mica sheets.
Collapse
|
55
|
Kafri R, Markovitch O, Lancet D. Spontaneous chiral symmetry breaking in early molecular networks. Biol Direct 2010; 5:38. [PMID: 20507625 PMCID: PMC2894767 DOI: 10.1186/1745-6150-5-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 05/27/2010] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis. RESULTS We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD) model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes) enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection. CONCLUSION It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells.
Collapse
Affiliation(s)
- Ran Kafri
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Omer Markovitch
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
56
|
Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc Natl Acad Sci U S A 2010; 107:1470-5. [PMID: 20080693 DOI: 10.1073/pnas.0912628107] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A basic property of life is its capacity to experience Darwinian evolution. The replicator concept is at the core of genetics-first theories of the origin of life, which suggest that self-replicating oligonucleotides or their similar ancestors may have been the first "living" systems and may have led to the evolution of an RNA world. But problems with the nonenzymatic synthesis of biopolymers and the origin of template replication have spurred the alternative metabolism-first scenario, where self-reproducing and evolving proto-metabolic networks are assumed to have predated self-replicating genes. Recent theoretical work shows that "compositional genomes" (i.e., the counts of different molecular species in an assembly) are able to propagate compositional information and can provide a setup on which natural selection acts. Accordingly, if we stick to the notion of replicator as an entity that passes on its structure largely intact in successive replications, those macromolecular aggregates could be dubbed "ensemble replicators" (composomes) and quite different from the more familiar genes and memes. In sharp contrast with template-dependent replication dynamics, we demonstrate here that replication of compositional information is so inaccurate that fitter compositional genomes cannot be maintained by selection and, therefore, the system lacks evolvability (i.e., it cannot substantially depart from the asymptotic steady-state solution already built-in in the dynamical equations). We conclude that this fundamental limitation of ensemble replicators cautions against metabolism-first theories of the origin of life, although ancient metabolic systems could have provided a stable habitat within which polymer replicators later evolved.
Collapse
|
57
|
Demongeot J. Biological boundaries and biological age. Acta Biotheor 2009; 57:397-418. [PMID: 19907923 DOI: 10.1007/s10441-009-9087-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 09/16/2009] [Indexed: 11/28/2022]
Abstract
The chronologic age classically used in demography is often unable to give useful information about which exact stage in development or aging processes has reached an organism. Hence, we propose here to explain in some applications for what reason the chronologic age fails in explaining totally the observed state of an organism, which leads to propose a new notion, the biological age. This biological age is essentially determined by the number of divisions before the Hayflick's limit the tissue or mitochondrion in a critical organ (in the sense where its loss causes the death of the whole organism) has already used for its development and adult phases. We give a precise definition of the biological age of an organ based on the Hayflick's limit of its cells and we introduce a desynchronization index (the cell entropy) for some critical tissues or membranes, which are mainly skin, intestinal endothelium, alveoli epithelium and mitochondrial inner membrane. In these actively metabolising interface tissues or membranes, there is a rapid turnover of cells, of their cytoplasmic constituents such as proteins, and of membrane lipids. The boundaries corresponding to these tissues, cells or membranes have vital functions of interface with the environment (protection, homeothermy, nutrition and respiration) and have a rapid turnover (the total cell renewal time is in mice equal to 3 weeks for the skin, 1.5 day for the intestine, 4 months for the alveolae and 11 days for mitochondrial inner membrane) conditioning their biological age. The biological age of a tissue is made of two major components: (1) first, its embryonic age based on the distance (in number of divisions) between the birth date of its first differentiated cell and the time until it reaches its final boundary at the end of its development and (2) second, its adult age whose complement until its death is just the lapse of time made of the sum of remaining cell cycle durations authorized by its Hayflick's limit. From this definition, we calculate the global biological lifespan of an organism and revisit notions like demographic survival curves, duration and synchrony of cell cycles, living boundaries from proto-cells to organs, and embryonic and adult phases duration.
Collapse
Affiliation(s)
- Jacques Demongeot
- TIMC-IMAG, UMR CNRS 5525, Team AGIM(3), Faculty of Medicine of Grenoble, University J. Fourier, 38700, La Tronche, France.
| |
Collapse
|
58
|
RNA relics and origin of life. Int J Mol Sci 2009; 10:3420-3441. [PMID: 20111682 PMCID: PMC2812825 DOI: 10.3390/ijms10083420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/11/2009] [Accepted: 07/28/2009] [Indexed: 11/18/2022] Open
Abstract
A number of small RNA sequences, located in different non-coding sequences and highly preserved across the tree of life, have been suggested to be molecular fossils, of ancient (and possibly primordial) origin. On the other hand, recent years have revealed the existence of ubiquitous roles for small RNA sequences in modern organisms, in functions ranging from cell regulation to antiviral activity. We propose that a single thread can be followed from the beginning of life in RNA structures selected only for stability reasons through the RNA relics and up to the current coevolution of RNA sequences; such an understanding would shed light both on the history and on the present development of the RNA machinery and interactions. After presenting the evidence (by comparing their sequences) that points toward a common thread, we discuss a scenario of genome coevolution (with emphasis on viral infectious processes) and finally propose a plan for the reevaluation of the stereochemical theory of the genetic code; we claim that it may still be relevant, and not only for understanding the origin of life, but also for a comprehensive picture of regulation in present-day cells.
Collapse
|
59
|
Glansdorff N, Xu Y, Labedan B. The origin of life and the last universal common ancestor: do we need a change of perspective? Res Microbiol 2009; 160:522-8. [PMID: 19524037 DOI: 10.1016/j.resmic.2009.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/20/2009] [Accepted: 05/27/2009] [Indexed: 11/16/2022]
Abstract
A complete tree with roots, trunk and crown remains an appropriate model to represent all steps of life's development, from the emergence of a unique genetic code up to the last universal common ancestor and its further radiation. Catalytic closure of a mixture of prebiotic polymers is a heuristic alternative to the RNA world. Conjectures about emergence of life in an infinite multiverse should not confuse probability with possibility.
Collapse
Affiliation(s)
- Nicolas Glansdorff
- JM Wiame Research Institute for Microbiology, Vrije Universiteit Brussel, 1 ave E. Gryzon, B-1070 Brussels, Belgium.
| | | | | |
Collapse
|
60
|
Norris V, Root-Bernstein R. The eukaryotic cell originated in the integration and redistribution of hyperstructures from communities of prokaryotic cells based on molecular complementarity. Int J Mol Sci 2009; 10:2611-2632. [PMID: 19582221 PMCID: PMC2705508 DOI: 10.3390/ijms10062611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/25/2009] [Accepted: 06/03/2009] [Indexed: 11/16/2022] Open
Abstract
In the "ecosystems-first" approach to the origins of life, networks of non-covalent assemblies of molecules (composomes), rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, EA 3829, University of Rouen, Mont Saint Aignan, 76821 France; E-Mail:
(V.N.)
| | - Robert Root-Bernstein
- Department of Physiology, 2174 BPS, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
61
|
Lipoplex nanostructures reveal a general self-organization of nucleic acids. Biochim Biophys Acta Gen Subj 2009; 1790:385-94. [DOI: 10.1016/j.bbagen.2009.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 11/21/2022]
|
62
|
Evolution in biological and nonbiological systems under different mechanisms of generation and inheritance. Theory Biosci 2008; 127:343-58. [PMID: 18946696 DOI: 10.1007/s12064-008-0052-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
The majority of definitions of life and evolution include the notion that part of an organism has to be copied to its offspring and that this includes some form of coded information. This article presents the thesis that this conception is too restrictive and that evolution can occur in systems in which there is no copy of information between generations. For that purpose, this article introduces a new set of concepts and a theoretical framework that is designed to be equally applicable to the study of the evolution of biological and nonbiological systems. In contrast to some theoretical approaches in evolution, like neo-Darwinism, the approach presented here is not focused on the transmission and change of hereditary information that can be copied (like in the case of DNA). Instead, multiple mechanisms by which a system can generate offspring (with and without copying) and by which information in it affects the structure and evolution of its offspring are considered. The first part of this article describes in detail these new concepts. The second part of this article discusses how these concepts are directly applicable to the diversity of systems that can evolve. The third part introduces hypotheses concerning (1) how different mechanisms of generation and inheritance can arise from each other during evolution, and (2) how the existence of several inheritance mechanisms in an organism can affect its evolution.
Collapse
|
63
|
Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 2008; 3:29. [PMID: 18613974 PMCID: PMC2478661 DOI: 10.1186/1745-6150-3-29] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. RESULTS LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. CONCLUSION Life was born complex and the LUCA displayed that heritage. It had the "body "of a mesophilic eukaryote well before maturing by endosymbiosis into an organism adapted to an atmosphere rich in oxygen. Abundant indications suggest reductive evolution of this complex and heterogeneous entity towards the "prokaryotic" Domains Archaea and Bacteria. The word "prokaryote" should be abandoned because epistemologically unsound. REVIEWERS This article was reviewed by Anthony Poole, Patrick Forterre, and Nicolas Galtier.
Collapse
Affiliation(s)
- Nicolas Glansdorff
- JM Wiame Research Institute for Microbiology and Vrije Universiteit Brussel, 1 ave E. Gryzon, B-1070 Brussels, Belgium.
| | | | | |
Collapse
|
64
|
McNichol J. Primordial soup, fool's gold, and spontaneous generation: A brief introduction to the theory, history, and philosophy of the search for the origin of life. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 36:255-261. [PMID: 21591204 DOI: 10.1002/bmb.20194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study provides a concise background to the biochemical search for the origin of life, as grounded in the field of prebiotic chemistry. It is intended to provide a good summary of competing theories and place them in a broader context, raising questions about weaknesses in any particular theory. This material is relevant for science educators at all levels, and will stimulate interest in a wide variety of students.
Collapse
Affiliation(s)
- Jesse McNichol
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1B3.
| |
Collapse
|
65
|
Norris V, Hunding A, Kepes F, Lancet D, Minsky A, Raine D, Root-Bernstein R, Sriram K. Question 7: the first units of life were not simple cells. ORIGINS LIFE EVOL B 2007; 37:429-32. [PMID: 17624805 DOI: 10.1007/s11084-007-9088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Accepted: 04/10/2007] [Indexed: 11/30/2022]
Abstract
Five common assumptions about the first cells are challenged by the pre-biotic ecology model and are replaced by the following propositions: firstly, early cells were more complex, more varied and had a greater diversity of constituents than modern cells; secondly, the complexity of a cell is not related to the number of genes it contains, indeed, modern bacteria are as complex as eukaryotes; thirdly, the unit of early life was an 'ecosystem' rather than a 'cell'; fourthly, the early cell needed no genes at all; fifthly, early life depended on non-covalent associations and on catalysts that were not confined to specific reactions. We present here the outlines of a theory that connects findings about modern bacteria with speculations about their origins.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, UMR CNRS 6522, University of Rouen, Mont Saint Aignan, 76821, France.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Root-Bernstein R. Simultaneous origin of homochirality, the genetic code and its directionality. Bioessays 2007; 29:689-98. [PMID: 17563089 DOI: 10.1002/bies.20602] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The origin of homochirality in molecules characterizing living systems has remained a mystery since Pasteur's recognition of the problem some 150 years ago.(2-5) Most theories also assume that homochirality emerged in one class of molecules (e.g. ribose) from which it was enriched in other molecules (e.g. amino acids) as well.(2-5)I propose a novel, experimentally testable hypothesis describing a process by which selective chirality in amino acids and ribonucleotides emerged simultaneously and hand-in-hand with the origin and directionality of the genetic code within a system of interactions involving amino acids, peptides, nucleotide bases, their sugars and polynucleotides.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, 2174 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
67
|
Herrick J, Sclavi B. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 2007; 63:22-34. [PMID: 17229208 DOI: 10.1111/j.1365-2958.2006.05493.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All organisms that synthesize their own DNA have evolved mechanisms for maintaining a constant DNA/cell mass ratio independent of growth rate. The DNA/cell mass ratio is a central parameter in the processes controlling the cell cycle. The co-ordination of DNA replication with cell growth involves multiple levels of regulation. DNA synthesis is initiated at specific sites on the chromosome termed origins of replication, and proceeds bidirectionally to elongate and duplicate the chromosome. These two processes, initiation and elongation, therefore determine the total rate of DNA synthesis in the cell. In Escherichia coli, initiation depends on the DnaA protein while elongation depends on a multiprotein replication factory that incorporates deoxyribonucleotides (dNTPs) into the growing DNA chain. The enzyme ribonucleotide reductase (RNR) is universally responsible for synthesizing the necessary dNTPs. In this review we examine the role RNR plays in regulating the total rate of DNA synthesis in E. coli and, hence, in maintaining constant DNA/cell mass ratios during normal growth and under conditions of DNA stress.
Collapse
|
68
|
Raine DJ, Norris V. Lipid domain boundaries as prebiotic catalysts of peptide bond formation. J Theor Biol 2006; 246:176-85. [PMID: 17275851 DOI: 10.1016/j.jtbi.2006.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 12/14/2006] [Indexed: 11/23/2022]
Abstract
To address central problems in the origin of life such as the formation of linear polymers composed of only a small number of types of molecules, we have modeled the distribution of peptides in lipid monolayers. We show that short peptides and amino acids accumulate at the boundary between lipid domains, and that the concentration towards the boundary is higher the longer the peptide. We invoke a constraint on diffusion to one dimension as well as on orientation to suggest that polymerization of peptides is more likely to occur at the domain boundary than within domains or in the bulk phase. In a simple model, in which polymerization is taken to occur only at the boundary, we show that the equilibrium distribution of polymer lengths is shifted towards longer peptides. Since the reaction is occurring in a partially non-aqueous environment, hydrolysis is reduced and condensation increased to yield a significant polymerization. We show also that the free energy change from the redistribution of peptides within domains is sufficient to drive the formation of the peptide bond.
Collapse
Affiliation(s)
- D J Raine
- Department of Physics and Astronomy, University of Leicester, LE1 7RH, UK
| | | |
Collapse
|