51
|
Chou KC. A molecular piston mechanism of pumping protons by bacteriorhodopsin. Amino Acids 2013; 7:1-17. [PMID: 24185969 DOI: 10.1007/bf00808442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1993] [Accepted: 12/20/1993] [Indexed: 10/26/2022]
Abstract
In this review the proton-pumping mechanism proposed recently for bacteriorhodopsin [Chou, K. C. (1993) Journal of Protein Chemistry, 12: 337-350] is illustrated in terms of a phenomenological model. According to the model, theβ-ionone of the retinal chromophore in bacteriorhodopsin can be phenomenologically imagined as a molecular "piston". The photon capture by bacteriorhodopsin would "pull" it up while the spontaneous decrease in potential energy would "push" it down so that it would be up and down alternately during the photocycle process. When it is pulled up, the gate of pore is open and the water channel for the proton translocation is through; when it is pushed down, the gate of pore is closed and the water channel is shut up. Such a model not only is quite consistent with experimental observations, but also provides useful insights and a different view to elucidate the protonpumping mechanism of bacteriorhodopsin. The essence of the model might be useful in investigating the mechanism of ion-channels of other membrane proteins.
Collapse
Affiliation(s)
- K C Chou
- Computational Chemistry, Upjohn Laboratories, 49001-4940, Kalamazoo, Michigan, USA
| |
Collapse
|
52
|
Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins. J Theor Biol 2013; 342:70-82. [PMID: 24184221 DOI: 10.1016/j.jtbi.2013.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/25/2013] [Accepted: 10/09/2013] [Indexed: 12/27/2022]
Abstract
Prion diseases, traditionally referred to as transmissible spongiform encephalopathies (TSEs), are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep and goats, bovine spongiform encephalopathy (BSE or mad-cow disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)), and the conversion of PrP(C) to PrP(Sc) is believed to involve conformational change from a predominantly α-helical protein to one rich in β-sheet structure. Such a conformational change may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show that they have a low susceptibility to be infected by PrP(Sc), but recently it was reported that rabbit prions can be generated through saPMCA (serial automated Protein Misfolding Cyclic Amplification) in vitro and the rabbit prion is infectious and transmissible. In this paper, we first do a detailed survey on the research advances of rabbit prion protein (RaPrP) and then we perform MD simulations on the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants. The survey shows to us that rabbits were not challenged directly in vivo with other known prion strains and the saPMCA result did not pass the test of the known BSE strain of cattle. Thus, we might still look rabbits as a prion resistant species. MD results indicate that the three α-helices of the wild-type are stable under the neutral pH environment (but under low pH environment the three α-helices have been unfolded into β-sheets), and the three α-helices of the mutants (I214V and S173N) are unfolded into rich β-sheet structures under the same pH environment. In addition, we found an interesting result that the salt bridges such as ASP201-ARG155, ASP177-ARG163 contribute greatly to the structural stability of RaPrP.
Collapse
|
53
|
How to design a drug for the disordered proteins? Drug Discov Today 2013; 18:910-5. [DOI: 10.1016/j.drudis.2013.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/25/2013] [Accepted: 04/22/2013] [Indexed: 11/20/2022]
|
54
|
Jin YY, Ma Y, Gao QX, Wang RL, Wang SQ, Xu WR. Design of specific inhibitors of the protein tyrosine phosphatase SHP-2 by virtual screening and core hopping method. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.824573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
55
|
Arooj M, Kim S, Sakkiah S, Cao GP, Lee Y, Lee KW. Molecular modeling study for inhibition mechanism of human chymase and its application in inhibitor design. PLoS One 2013; 8:e62740. [PMID: 23638140 PMCID: PMC3636146 DOI: 10.1371/journal.pone.0062740] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymase complexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41 upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most active compound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitory mechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes.
Collapse
Affiliation(s)
- Mahreen Arooj
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Songmi Kim
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Sugunadevi Sakkiah
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Guang Ping Cao
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yuno Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
56
|
Liu L, Ma Y, Wang RL, Xu WR, Wang SQ, Chou KC. Find novel dual-agonist drugs for treating type 2 diabetes by means of cheminformatics. Drug Des Devel Ther 2013; 7:279-88. [PMID: 23630413 PMCID: PMC3623550 DOI: 10.2147/dddt.s42113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The high prevalence of type 2 diabetes mellitus in the world as well as the increasing reports about the adverse side effects of the existing diabetes treatment drugs have made developing new and effective drugs against the disease a very high priority. In this study, we report ten novel compounds found by targeting peroxisome proliferator-activated receptors (PPARs) using virtual screening and core hopping approaches. PPARs have drawn increasing attention for developing novel drugs to treat diabetes due to their unique functions in regulating glucose, lipid, and cholesterol metabolism. The reported compounds are featured with dual functions, and hence belong to the category of dual agonists. Compared with the single PPAR agonists, the dual PPAR agonists, formed by combining the lipid benefit of PPARα agonists (such as fibrates) and the glycemic advantages of the PPARγ agonists (such as thiazolidinediones), are much more powerful in treating diabetes because they can enhance metabolic effects while minimizing the side effects. This was observed in the studies on molecular dynamics simulations, as well as on absorption, distribution, metabolism, and excretion, that these novel dual agonists not only possessed the same function as ragaglitazar (an investigational drug developed by Novo Nordisk for treating type 2 diabetes) did in activating PPARα and PPARγ, but they also had more favorable conformation for binding to the two receptors. Moreover, the residues involved in forming the binding pockets of PPARα and PPARγ among the top ten compounds are explicitly presented, and this will be very useful for the in-depth conduction of mutagenesis experiments. It is anticipated that the ten compounds may become potential drug candidates, or at the very least, the findings reported here may stimulate new strategies or provide useful insights for designing new and more powerful dual-agonist drugs for treating type 2 diabetes.
Collapse
Affiliation(s)
- Lei Liu
- PET/CT Center, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
57
|
Mingaleev SF, Christiansen PL, Gaididei YB, Johansson M, Rasmussen KØ. Models for energy and charge transport and storage in biomolecules. J Biol Phys 2013; 25:41-63. [PMID: 23345687 DOI: 10.1023/a:1005152704984] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrödinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the total energy. The possibility of controlled switching between pinned and mobile states is demonstrated. The mechanism could be important for controlling energy storage and transport in DNA molecules. Another model is offered for the description of nonlinear excitations in proteins and other anharmonic biomolecules. We show that in the highly anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.
Collapse
Affiliation(s)
- S F Mingaleev
- Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna Str., 252143 Kiev, Ukraine
| | | | | | | | | |
Collapse
|
58
|
Lin SX, Lapointe J. Theoretical and experimental biology in one<br>—A symposium in honour of Professor Kuo-Chen Chou’s 50th anniversary and Professor Richard Giegé’s 40th anniversary of their scientific careers. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.64054] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
59
|
Pradeep H, Rajanikant GK. A rational approach to selective pharmacophore designing: an innovative strategy for specific recognition of Gsk3β. Mol Divers 2012; 16:553-62. [PMID: 22918724 PMCID: PMC7089308 DOI: 10.1007/s11030-012-9387-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/25/2012] [Indexed: 12/21/2022]
Abstract
We propose a novel cheminformatics approach that combines structure and ligand-based design to identify target-specific pharmacophores with well-defined exclusion ability. Our strategy includes the prediction of selective interactions, developing structure, and knowledge-based selective pharmacophore models, followed by database screening and molecular docking. This unique strategy was employed in addressing the off-target toxicity of Gsk3β and CDKs. The connections of Gsk3β in eukaryotic cell apoptosis and the extensive potency of Gsk3β inhibitors to block cell death have made it a potential drug-discovery target for many grievous human disorders. Gsk3β is phylogenetically very closely related to the CDKs, such as CDK1 and CDK2, which are suggested to be the off-target proteins of Gsk3β inhibitors. Here, we have employed novel computational approaches in designing the ligand candidates that are potentially inhibitory against Gsk3β, with well-defined the exclusion ability to CDKs. A structure-ligand -based selective pharmacophore was modeled. This model was used to retrieve molecules from the zinc database. The hits retrieved were further screened by molecular docking and protein–ligand interaction fingerprints. Based on these results, four molecules were predicted as selective Gsk3β antagonists. It is anticipated that this unique approach can be extended to investigate any protein–ligand specificity.
Collapse
Affiliation(s)
- H Pradeep
- Bioinformatics Centre, School of Biotechnology, National Institute of Technology, Calicut 673601, India
| | | |
Collapse
|
60
|
Thangapandian S, John S, Lazar P, Choi S, Lee KW. Structural origins for the loss of catalytic activities of bifunctional human LTA4H revealed through molecular dynamics simulations. PLoS One 2012; 7:e41063. [PMID: 22848428 PMCID: PMC3405069 DOI: 10.1371/journal.pone.0041063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/17/2012] [Indexed: 12/18/2022] Open
Abstract
Human leukotriene A4 hydrolase (hLTA4H), which is the final and rate-limiting enzyme of arachidonic acid pathway, converts the unstable epoxide LTA4 to a proinflammatory lipid mediator LTB4 through its hydrolase function. The LTA4H is a bi-functional enzyme that also exhibits aminopeptidase activity with a preference over arginyl tripeptides. Various mutations including E271Q, R563A, and K565A have completely or partially abolished both the functions of this enzyme. The crystal structures with these mutations have not shown any structural changes to address the loss of functions. Molecular dynamics simulations of LTA4 and tripeptide complex structures with functional mutations were performed to investigate the structural and conformation changes that scripts the observed differences in catalytic functions. The observed protein-ligand hydrogen bonds and distances between the important catalytic components have correlated well with the experimental results. This study also confirms based on the structural observation that E271 is very important for both the functions as it holds the catalytic metal ion at its location for the catalysis and it also acts as N-terminal recognition residue during peptide binding. The comparison of binding modes of substrates revealed the structural changes explaining the importance of R563 and K565 residues and the required alignment of substrate at the active site. The results of this study provide valuable information to be utilized in designing potent hLTA4H inhibitors as anti-inflammatory agents.
Collapse
Affiliation(s)
- Sundarapandian Thangapandian
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju, Republic of Korea
- College of Pharmacy, Division of Life and Pharmaceutical Sciences and National Core Research Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Republic of Korea
| | - Shalini John
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Prettina Lazar
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun Choi
- College of Pharmacy, Division of Life and Pharmaceutical Sciences and National Core Research Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center, Plant Molecular Biology and Biotechnology Research Center, Research Institute of Natural Science, Gyeongsang National University, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
61
|
Ma Y, Wang SQ, Xu WR, Wang RL, Chou KC. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One 2012; 7:e38546. [PMID: 22685582 PMCID: PMC3369836 DOI: 10.1371/journal.pone.0038546] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/07/2012] [Indexed: 12/02/2022] Open
Abstract
Owing to their unique functions in regulating glucose, lipid and cholesterol metabolism, PPARs (peroxisome proliferator-activated receptors) have drawn special attention for developing drugs to treat type-2 diabetes. By combining the lipid benefit of PPAR-alpha agonists (such as fibrates) with the glycemic advantages of the PPAR-gamma agonists (such as thiazolidinediones), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of the powerful “core hopping” and “glide docking” techniques, a novel class of PPAR dual agonists was discovered based on the compound GW409544, a well-known dual agonist for both PPAR-alpha and PPAR-gamma modified from the farglitazar structure. It was observed by molecular dynamics simulations that these novel agonists not only possessed the same function as GW409544 did in activating PPAR-alpha and PPAR-gamma, but also had more favorable conformation for binding to the two receptors. It was further validated by the outcomes of their ADME (absorption, distribution, metabolism, and excretion) predictions that the new agonists hold high potential to become drug candidates. Or at the very least, the findings reported here may stimulate new strategy or provide useful insights for discovering more effective dual agonists for treating type-2 diabetes. Since the “core hopping” technique allows for rapidly screening novel cores to help overcome unwanted properties by generating new lead compounds with improved core properties, it has not escaped our notice that the current strategy along with the corresponding computational procedures can also be utilized to find novel and more effective drugs for treating other illnesses.
Collapse
Affiliation(s)
- Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (SQW); (RLW)
| | - Wei-Ren Xu
- Tianjin Institute of Pharmaceutical Research (TIPR), Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
- * E-mail: (SQW); (RLW)
| | - Kuo-Chen Chou
- Gordon Life Science Institute, San Diego, California, United States of America
| |
Collapse
|
62
|
Li XB, Wang SQ, Xu WR, Wang RL, Chou KC. Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One 2011; 6:e28111. [PMID: 22140516 PMCID: PMC3227604 DOI: 10.1371/journal.pone.0028111] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/01/2011] [Indexed: 01/22/2023] Open
Abstract
The worldwide spread of H1N1 avian influenza and the increasing reports about its resistance to the current drugs have made a high priority for developing new anti-influenza drugs. Owing to its unique function in assisting viruses to bind the cellular surface, a key step for them to subsequently penetrate into the infected cell, hemagglutinin (HA) has become one of the main targets for drug design against influenza virus. To develop potent HA inhibitors, the ZINC fragment database was searched for finding the optimal compound with the core hopping technique. As a result, the Neo6 compound was obtained. It has been shown through the subsequent molecular docking studies and molecular dynamic simulations that Neo6 not only assumes more favorable conformation at the binding pocket of HA but also has stronger binding interaction with its receptor. Accordingly, Neo6 may become a promising candidate for developing new and more powerful drugs for treating influenza. Or at the very least, the findings reported here may provide useful insights to stimulate new strategy in this area.
Collapse
Affiliation(s)
- Xiao-Bo Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (S-QW); (R-LW)
| | - Wei-Ren Xu
- Tianjin Institute of Pharmaceutical Research (TIPR), Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
- * E-mail: (S-QW); (R-LW)
| | - Kuo-Chen Chou
- Gordon Life Science Institute, San Diego, California, United States of America
| |
Collapse
|
63
|
Daniel M, Vanitha M. Bubble solitons in an inhomogeneous, helical DNA molecular chain with flexible strands. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031928. [PMID: 22060424 DOI: 10.1103/physreve.84.031928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/13/2011] [Indexed: 05/31/2023]
Abstract
Base pair opening in an inhomogeneous, DNA double helical molecular chain with flexible strands is investigated by studying its internal dynamics. For the study, a generalized model which takes into account the energies involved in stacking and hydrogen bonds along with inhomogeneity, helicity, and phonons coupled to the stacking and hydrogen bonds is proposed. The internal dynamics of the proposed DNA model is governed by a perturbed nonlinear Schrödinger equation. The unperturbed, completely integrable nonlinear Schrödinger equation which admits soliton solutions and forming a bubble corresponds to DNA dynamics with homogeneous and rigid strands. The results of the soliton perturbation analysis show that the inhomogeneity in stacking and hydrogen bonds in localized and periodic forms and the helicity do not alter the amplitude under perturbation. However, the flexibility of the strands diminishes the perturbed amplitude. On the other hand, the velocity of the soliton and bubble are unaltered due to all the above effects. However, the position and phase of the soliton and the bubble vary linearly in time. While the position of the soliton depends on the initial velocity, the phase depends on both the initial velocity and the initial amplitude of the soliton. The above effects introduce small fluctuation in the tail of the soliton, without affecting the robust nature of the soliton and the bubble during propagation. The soliton and the bubble obtained as solutions of the internal dynamics of the DNA molecule represent an opening of the base pairs which is essential for the transcription process.
Collapse
Affiliation(s)
- M Daniel
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024, India.
| | | |
Collapse
|
64
|
Havelka D, Cifra M, Kučera O, Pokorný J, Vrba J. High-frequency electric field and radiation characteristics of cellular microtubule network. J Theor Biol 2011; 286:31-40. [PMID: 21782830 DOI: 10.1016/j.jtbi.2011.07.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 07/10/2011] [Accepted: 07/11/2011] [Indexed: 01/11/2023]
Abstract
Microtubules are important structures in the cytoskeleton, which organizes the cell. Since microtubules are electrically polar, certain microtubule normal vibration modes efficiently generate oscillating electric field. This oscillating field may be important for the intracellular organization and intercellular interaction. There are experiments which indicate electrodynamic activity of variety of cells in the frequency region from kHz to GHz, expecting the microtubules to be the source of this activity. In this paper, results from the calculation of intensity of electric field and of radiated electromagnetic power from the whole cellular microtubule network are presented. The subunits of microtubule (tubulin heterodimers) are approximated by elementary electric dipoles. Mechanical oscillation of microtubule is represented by the spatial function which modulates the dipole moment of subunits. The field around oscillating microtubules is calculated as a vector superposition of contributions from all modulated elementary electric dipoles which comprise the cellular microtubule network. The electromagnetic radiation and field characteristics of the whole cellular microtubule network have not been theoretically analyzed before. For the perspective experimental studies, the results indicate that macroscopic detection system (antenna) is not suitable for measurement of cellular electrodynamic activity in the radiofrequency region since the radiation rate from single cells is very low (lower than 10⁻²⁰ W). Low noise nanoscopic detection methods with high spatial resolution which enable measurement in the cell vicinity are desirable in order to measure cellular electrodynamic activity reliably.
Collapse
Affiliation(s)
- D Havelka
- Department of Electromagnetic Field, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
65
|
Zhang J. Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins. J Theor Biol 2011; 269:88-95. [DOI: 10.1016/j.jtbi.2010.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 09/07/2010] [Accepted: 10/15/2010] [Indexed: 11/16/2022]
|
66
|
Wang JF, Chou KC. Insights from studying the mutation-induced allostery in the M2 proton channel by molecular dynamics. Protein Eng Des Sel 2010; 23:663-6. [PMID: 20571121 DOI: 10.1093/protein/gzq040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As an essential component of the viral envelope, M2 proton channel plays a central role in the virus replications and has been a key target for drug design against the influenza A viruses. The adamantadine-based drugs, such as amantadine and rimantadine, were developed for blocking the channel so as to suppress the replication of viruses. However, patients, especially those infected by the H1N1 influenza A viruses, are increasingly suffering from the drug-resistance problem. According to the findings revealed recently by the high-resolution NMR studies, the drug-resistance problem is due to the structural allostery caused by some mutations, such as L26F, V27A and S31N, in the four-helix bundle of the channel. In this study, we are to address this problem from a dynamic point of view by conducting molecular dynamics (MD) simulations on both the open and the closed states of the wild-type (WT) and S31N mutant M2 channels in the presence of rimantadine. It was observed from the MD simulated structures that the mutant channel could still keep open even if binding with rimantadine, but the WT channel could not. This was because the mutation would destabilize the helix bundle and trigger it from a compact packing state to a loose one. It is anticipated that the findings may provide useful insights for in-depth understanding the action mechanism of the M2 channel and developing more-effective drugs against influenza A viruses.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, 800 Dongchuan, Shanghai 200240, China.
| | | |
Collapse
|
67
|
Yang J, Li JH, Wang J, Zhang CY. Molecular modeling of BAD complex resided in a mitochondrion integrating glycolysis and apoptosis. J Theor Biol 2010; 266:231-41. [PMID: 20540951 DOI: 10.1016/j.jtbi.2010.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/27/2010] [Accepted: 06/04/2010] [Indexed: 11/15/2022]
Abstract
BAD (Bcl-2 antagonist of cell death) and GK (glucokinase) reside in a mitochondrial complex together with PKA and PP1 catalytic units (PKAc and PP1c) and WAVE-1 that integrates glycolysis and apoptosis. Our research results reveal that BAD is phosphorylated and inactivated on Ser 75 in a BAD-Bcl-xL complex by PKA (targeted to mitochondria through association with WAVE1), resulting in the dissociation of BAD and its binding to GK. Moreover, GK can interact with PP1c and also distinguish WAVE1. On the other hand, BAD is dephosphorylated and activated on Ser75 by PP1c, leading to the separation of PKAc and its binding to the regulatory (R) subunit of PKA which by the dimerization domain of its R subunit connects with WAVE1 linked with GK of the complex. This may be the reason of the complex existing in liver mitochondria, regardless of phosphorylated and dephosphorylated BAD. Additionally, GK like PKA may also prevent Bcl-xL from rebinding to BAD by phosphorylating BAD at Ser 118. The BAD complex model reveals that BAD and GK play key roles because of BAD as a substrate for the PKA-PP1 pair and by BH3 domain directly interacting with GK. This is helpful for our development and research of the molecular mechanism of BAD integrating glycolysis and apoptosis.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, PR China.
| | | | | | | |
Collapse
|
68
|
Huang T, Shi XH, Wang P, He Z, Feng KY, Hu L, Kong X, Li YX, Cai YD, Chou KC. Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks. PLoS One 2010; 5:e10972. [PMID: 20532046 PMCID: PMC2881046 DOI: 10.1371/journal.pone.0010972] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/14/2010] [Indexed: 11/19/2022] Open
Abstract
The metabolic stability is a very important idiosyncracy of proteins that is related to their global flexibility, intramolecular fluctuations, various internal dynamic processes, as well as many marvelous biological functions. Determination of protein's metabolic stability would provide us with useful information for in-depth understanding of the dynamic action mechanisms of proteins. Although several experimental methods have been developed to measure protein's metabolic stability, they are time-consuming and more expensive. Reported in this paper is a computational method, which is featured by (1) integrating various properties of proteins, such as biochemical and physicochemical properties, subcellular locations, network properties and protein complex property, (2) using the mRMR (Maximum Relevance & Minimum Redundancy) principle and the IFS (Incremental Feature Selection) procedure to optimize the prediction engine, and (3) being able to identify proteins among the four types: “short”, “medium”, “long”, and “extra-long” half-life spans. It was revealed through our analysis that the following seven characters played major roles in determining the stability of proteins: (1) KEGG enrichment scores of the protein and its neighbors in network, (2) subcellular locations, (3) polarity, (4) amino acids composition, (5) hydrophobicity, (6) secondary structure propensity, and (7) the number of protein complexes the protein involved. It was observed that there was an intriguing correlation between the predicted metabolic stability of some proteins and the real half-life of the drugs designed to target them. These findings might provide useful insights for designing protein-stability-relevant drugs. The computational method can also be used as a large-scale tool for annotating the metabolic stability for the avalanche of protein sequences generated in the post-genomic age.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
| | - Xiao-He Shi
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ping Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhisong He
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kai-Yan Feng
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
| | - LeLe Hu
- Institute of Systems Biology, Shanghai University, Shanghai, People's Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
- * E-mail: (XYK); (YXL); (YDC); (KCC)
| | - Yi-Xue Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
- * E-mail: (XYK); (YXL); (YDC); (KCC)
| | - Yu-Dong Cai
- Institute of Systems Biology, Shanghai University, Shanghai, People's Republic of China
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (XYK); (YXL); (YDC); (KCC)
| | - Kuo-Chen Chou
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (XYK); (YXL); (YDC); (KCC)
| |
Collapse
|
69
|
Zhang J. Studies on the structural stability of rabbit prion probed by molecular dynamics simulations of its wild-type and mutants. J Theor Biol 2010; 264:119-22. [PMID: 20109469 DOI: 10.1016/j.jtbi.2010.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/08/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect humans and animals. Rabbits are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species (Vorberg et al., 2003). Fortunately, the NMR structure of rabbit prion (124-228) (PDB entry 2FJ3), the NMR structure of rabbit prion protein mutation S173N (PDB entry 2JOH) and the NMR structure of rabbit prion protein mutation I214V (PDB entry 2JOM) were released recently. This paper studies these NMR structures by molecular dynamics simulations. Simulation results confirm the structural stability of wild-type rabbit prion, and show that the salt bridge between D177 and R163 greatly contributes to the structural stability of rabbit prion protein.
Collapse
Affiliation(s)
- Jiapu Zhang
- Victorian Life Sciences Computation Initiative, The University of Melbourne, 1 Hull Road, Croydon, VIC 3136, Australia.
| |
Collapse
|
70
|
Pérez-Montoto LG, Santana L, González-Díaz H. Scoring function for DNA-drug docking of anticancer and antiparasitic compounds based on spectral moments of 2D lattice graphs for molecular dynamics trajectories. Eur J Med Chem 2009; 44:4461-9. [PMID: 19604606 PMCID: PMC7127518 DOI: 10.1016/j.ejmech.2009.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 02/02/2023]
Abstract
We introduce here a new class of invariants for MD trajectories based on the spectral moments pi(k)(L) of the Markov matrix associated to lattice network-like (LN) graph representations of Molecular Dynamics (MD) trajectories. The procedure embeds the MD energy profiles on a 2D Cartesian coordinates system using simple heuristic rules. At the same time, we associate the LN with a Markov matrix that describes the probabilities of passing from one state to other in the new 2D space. We construct this type of LNs for 422 MD trajectories obtained in DNA-drug docking experiments of 57 furocoumarins. The combined use of psoralens+ultraviolet light (UVA) radiation is known as PUVA therapy. PUVA is effective in the treatment of skin diseases such as psoriasis and mycosis fungoides. PUVA is also useful to treat human platelet (PTL) concentrates in order to eliminate Leishmania spp. and Trypanosoma cruzi. Both are parasites that cause Leishmaniosis (a dangerous skin and visceral disease) and Chagas disease, respectively; and may circulate in blood products collected from infected donors. We included in this study both lineal (psoralens) and angular (angelicins) furocoumarins. In the study, we grouped the LNs on two sets; set1: DNA-drug complex MD trajectories for active compounds and set2: MD trajectories of non-active compounds or no-optimal MD trajectories of active compounds. We calculated the respective pi(k)(L) values for all these LNs and used them as inputs to train a new classifier that discriminate set1 from set2 cases. In training series the model correctly classifies 79 out of 80 (specificity=98.75%) set1 and 226 out of 238 (Sensitivity=94.96%) set2 trajectories. In independent validation series the model correctly classifies 26 out of 26 (specificity=100%) set1 and 75 out of 78 (sensitivity=96.15%) set2 trajectories. We propose this new model as a scoring function to guide DNA-docking studies in the drug design of new coumarins for anticancer or antiparasitic PUVA therapy.
Collapse
Affiliation(s)
- Lázaro G. Pérez-Montoto
- Department of Microbiology & Parasitology, and Department of Organic Chemistry
- Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Lourdes Santana
- Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain
| | - Humberto González-Díaz
- Department of Microbiology & Parasitology, and Department of Organic Chemistry
- Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain
| |
Collapse
|
71
|
Kwansa AL, Freeman JW. Elastic energy storage in an unmineralized collagen type I molecular model with explicit solvation and water infiltration. J Theor Biol 2009; 262:691-7. [PMID: 19878687 DOI: 10.1016/j.jtbi.2009.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/28/2022]
Abstract
Collagen type I is a structural protein that provides tensile strength to tendons and ligaments. Type I collagen molecules form collagen fibers, which are viscoelastic and can therefore store energy elastically via molecular elongation and dissipate viscous energy through molecular rearrangement and fibrillar slippage. The ability to store elastic energy is important for the resiliency of tendons and ligaments, which must be able to deform and revert to their initial lengths with changes in load. In an earlier paper by one of the present authors, molecular modeling was used to investigate the role of mineralization upon elastic energy storage in collagen type I. Their collagen model showed a similar trend to their experimental data but with an over-estimation of elastic energy storage. Their simulations were conducted in vacuum and employed a distance-dependent dielectric function. In this study, we performed a re-evaluation of Freeman and Silver's model data incorporating the effects of explicit solvation and water infiltration, in order to determine whether the model data could be improved with a more accurate representation of the solvent and osmotic effects. We observed an average decrease in the model's elastic energy storage of 45.1%+/-6.9% in closer proximity to Freeman and Silver's experimental data. This suggests that although the distance-dependent dielectric implicit solvation approach was favored for its increased speed and decreased computational requirements, an explicit representation of water may be necessary to more accurately model solvent interactions in this particular system. In this paper, we discuss the collagen model described by Freeman and Silver, the present model building approach, the application of the present model to that of Freeman and Silver, and additional assumptions and limitations.
Collapse
Affiliation(s)
- Albert L Kwansa
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, 327 ICTAS Building, Stanger Street (MC 0298), Blacksburg, VA 24061, USA
| | | |
Collapse
|
72
|
Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations. Biochem Biophys Res Commun 2009; 390:608-12. [PMID: 19819222 DOI: 10.1016/j.bbrc.2009.10.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 11/23/2022]
Abstract
Rab5a is currently a most interesting target because it is responsible for regulating the early endosome fusion in endocytosis and possibly the budding process. We utilized longtime-scale molecular dynamics simulations to investigate the internal motion of the wild-type Rab5a and its A30P mutant. It was observed that, after binding with GTP, the global flexibility of the two proteins is increasing, while the local flexibility in their sensitive sites (P-loop, switch I and II regions) is decreasing. Also, the mutation of Ala30 to Pro30 can cause notable flexibility variations in the sensitive sites. However, this kind of variations is dramatically reduced after binding with GTP. Such a remarkable feature is mainly caused by the water network rearrangements in the sensitive sites. These findings might be of use for revealing the profound mechanism of the displacements of Rab5a switch regions, as well as the mechanism of the GDP dissociation and GTP association.
Collapse
|
73
|
Pérez-Montoto LG, Dea-Ayuela MA, Prado-Prado FJ, Bolas-Fernández F, Ubeira FM, González-Díaz H. Study of peptide fingerprints of parasite proteins and drug-DNA interactions with Markov-Mean-Energy invariants of biopolymer molecular-dynamic lattice networks. POLYMER 2009; 50:3857-3870. [PMID: 32287404 PMCID: PMC7111648 DOI: 10.1016/j.polymer.2009.05.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 11/26/2022]
Abstract
Since the advent of Molecular Dynamics (MD) in biopolymers science with the study by Karplus et al. on protein dynamics, MD has become the by foremost well established, computational technique to investigate structure and function of biomolecules and their respective complexes and interactions. The analysis of the MD trajectories (MDTs) remains, however, the greatest challenge and requires a great deal of insight, experience, and effort. Here, we introduce a new class of invariants for MDTs based on the spatial distribution of Mean-Energy values ξk (L) on a 2D Euclidean space representation of the MDTs. The procedure forces one MD trajectory to fold into a 2D Cartesian coordinates system using a step-by-step procedure driven by simple rules. The ξk (L) values are invariants of a Markov matrix (1 Π), which describes the probabilities of transition between two states in the new 2D space; which is associated to a graph representation of MDTs similar to the lattice networks (LNs) of DNA and protein sequences. We also introduce a new algorithm to perform phylogenetic analysis of peptides based on MDTs instead of the sequence of the polypeptide. In a first experiment, we illustrate this algorithm for 35 peptides present on the Peptide Mass Fingerprint (PMF) of a new protein of Leishmania infantum studied in this work. We report, by the first time, 2D Electrophoresis isolation, MALDI TOF Mass Spectroscopy characterization, and MASCOT search results for this PMF. In a second experiment, we construct the LNs for 422 MDTs obtained in DNA-Drug Docking simulations of the interaction of 57 anticancer furocoumarins with a DNA oligonucleotide. We calculated the respective ξk (L) values for all these LNs and used them as inputs to train a new classifier with Accuracy = 85.44% and 84.91% in training and validation respectively. The new model can be used as scoring function to guide DNA-Drug Docking studies in drug design of new coumarins for PUVA therapy. The new phylogenetics analysis algorithms encode information different from sequence similarity and may be used to analyze MDTs obtained in Docking or modeling experiments for any classes of biopolymers. The work opens new perspective on the analysis and applications of MD in polymer sciences.
Collapse
Affiliation(s)
- Lázaro Guillermo Pérez-Montoto
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Auxiliadora Dea-Ayuela
- Departamento de Atención Sanitaria, Salud Pública y Sanidad Animal, Facultad CC Experimentales y de La Salud, Universidad CEU Cardenal Herrera, 46113 Moncada (Valencia), Spain
| | - Francisco J Prado-Prado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Florencio M Ubeira
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Humberto González-Díaz
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
74
|
González-Díaz H, Dea-Ayuela MA, Pérez-Montoto LG, Prado-Prado FJ, Agüero-Chapín G, Bolas-Fernández F, Vazquez-Padrón RI, Ubeira FM. QSAR for RNases and theoretic-experimental study of molecular diversity on peptide mass fingerprints of a new Leishmania infantum protein. Mol Divers 2009; 14:349-69. [PMID: 19578942 PMCID: PMC7088557 DOI: 10.1007/s11030-009-9178-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/13/2009] [Indexed: 11/29/2022]
Abstract
The toxicity and low success of current treatments for Leishmaniosis determines the search of new peptide drugs and/or molecular targets in Leishmania pathogen species (L. infantum and L. major). For example, Ribonucleases (RNases) are enzymes relevant to several biologic processes; then, theoretical and experimental study of the molecular diversity of Peptide Mass Fingerprints (PMFs) of RNases is useful for drug design. This study introduces a methodology that combines QSAR models, 2D-Electrophoresis (2D-E), MALDI-TOF Mass Spectroscopy (MS), BLAST alignment, and Molecular Dynamics (MD) to explore PMFs of RNases. We illustrate this approach by investigating for the first time the PMFs of a new protein of L. infantum. Here we report and compare new versus old predictive models for RNases based on Topological Indices (TIs) of Markov Pseudo-Folding Lattices. These group of indices called Pseudo-folding Lattice 2D-TIs include: Spectral moments pi ( k )(x,y), Mean Electrostatic potentials xi ( k )(x,y), and Entropy measures theta ( k )(x,y). The accuracy of the models (training/cross-validation) was as follows: xi ( k )(x,y)-model (96.0%/91.7%)>pi ( k )(x,y)-model (84.7/83.3) > theta ( k )(x,y)-model (66.0/66.7). We also carried out a 2D-E analysis of biological samples of L. infantum promastigotes focusing on a 2D-E gel spot of one unknown protein with M<20, 100 and pI <7. MASCOT search identified 20 proteins with Mowse score >30, but not one >52 (threshold value), the higher value of 42 was for a probable DNA-directed RNA polymerase. However, we determined experimentally the sequence of more than 140 peptides. We used QSAR models to predict RNase scores for these peptides and BLAST alignment to confirm some results. We also calculated 3D-folding TIs based on MD experiments and compared 2D versus 3D-TIs on molecular phylogenetic analysis of the molecular diversity of these peptides. This combined strategy may be of interest in drug development or target identification.
Collapse
Affiliation(s)
- Humberto González-Díaz
- Department of Microbiology and Parasitology, and Department of Organic Chemistry, Faculty of Pharmacy, USC, 15782, Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Ababneh AM. The role of polarization interactions in the wrapping/unwrapping of nucleosomal DNA around the histone octamer: Implications to gene regulation. J Theor Biol 2009; 258:229-39. [DOI: 10.1016/j.jtbi.2009.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
|
76
|
Pidaparti RM, Svintradze DV, Shan Y, Yokota H. Optimization of hydrogen bonds for combined DNA/collagen complex. J Theor Biol 2009; 256:149-56. [DOI: 10.1016/j.jtbi.2008.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
|
77
|
Ababneh AM, Ababneh ZQ, Large CC. DNA A-tracts bending: polarization effects on electrostatic interactions across their minor groove. J Theor Biol 2008; 252:742-9. [PMID: 18396297 DOI: 10.1016/j.jtbi.2008.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Bending by the DNA A-tracts constitutes a contentious issue, suggesting deficiencies in the physics employed so far. Here, we inquire as to the importance in this bending of many-body polarization effects on the electrostatic interactions across their narrow minor groove. We have done this on the basis of the findings of Jarque and Buckingham who developed a procedure based on a Monte Carlo simulation for two charges of the same sign embedded in a polarizable medium. Remarkably, the present analysis reveals that for compact DNA conformations, which result from dynamic effects, an overall attractive interaction operates between the phosphate charges; this interaction is especially strong for the narrow minor groove of the A-tracts, suggesting a tendency for DNA to bend toward this groove. This tendency is in agreement with the conclusions of electrophoretic and NMR solution studies. The present analysis is also consistent with the experimental observations that the minor groove is much more easily compressible than the major groove and the bending propensity of the A-tracts is greatly reduced at "premelting" temperatures. By contrast, the dielectric screening model predicts a repulsion between the phosphate charges and is not consistent with the aforementioned bending tendency or experimental observations.
Collapse
Affiliation(s)
- Anas M Ababneh
- Physics Department, Yarmouk University, Irbid 211-63, Jordan.
| | | | | |
Collapse
|
78
|
Qi JP, Shao SH, Li DD, Zhou GP. A dynamic model for the p53 stress response networks under ion radiation. Amino Acids 2007; 33:75-83. [PMID: 17072789 PMCID: PMC7088058 DOI: 10.1007/s00726-006-0454-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 09/29/2006] [Indexed: 12/27/2022]
Abstract
P53 controls the cell cycle arrest and cell apoptosis through interaction with the downstream genes and their signal pathways. To stimulate the investigation into the complicated responses of p53 under the circumstance of ion radiation (IR) in the cellular level, a dynamic model for the p53 stress response networks is proposed. The model can be successfully used to simulate the dynamic processes of generating the double-strand breaks (DSBs) and their repairing, ataxia telangiectasia mutated (ATM) activation, as well as the oscillations occurring in the p53-MDM2 feedback loop.
Collapse
Affiliation(s)
- J-P Qi
- Bio-Informatics Research Center, Donghua University, Shanghai, China.
| | | | | | | |
Collapse
|
79
|
Sinkala Z. Soliton/exciton transport in proteins. J Theor Biol 2006; 241:919-27. [PMID: 16516929 DOI: 10.1016/j.jtbi.2006.01.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 01/16/2006] [Accepted: 01/24/2006] [Indexed: 11/27/2022]
Abstract
The study of electron/proton transport in alpha-helix sections of proteins have illustrated the existence of soliton-like mechanisms. Recently, Ciblis and Cosic extended investigation to the existence of possible like soliton-type mechanisms in other parts of the protein. They used Quantum Hamiltonian analysis to investigate. In this paper, we investigate the same problem but we use Classical Hamiltonian analysis in our investigation.
Collapse
Affiliation(s)
- Zachariah Sinkala
- Department of Mathematical Sciences, Middle Tennessee State University, Box 34, Murfreesboro, TN 37132, USA.
| |
Collapse
|
80
|
Georghiou S, Kubala SM, Large CC. Environmental Control of the Deformability of the DNA Double Helix. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb09088.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
81
|
Cusumano M, Di Pietro ML, Giannetto A, Nicolò F, Rotondo E. Noncovalent Interactions of Platinum(II) Square Planar Complexes Containing Ligands Out-of-Plane with DNA. Inorg Chem 1998; 37:563-568. [PMID: 11670308 DOI: 10.1021/ic9705406] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of the complexes [Pt(bipy)(4-Rpy)(2)](2+) and [Pt(4,4'-Ph(2)bipy)(4-Rpy)(2)](2+) (Ph = phenyl; bipy = 2,2'-bipyridine; R = H, CN, CH(3), NH(2)) with DNA has been studied with a series of techniques. The processes give rise to (i) lengthening of rodlike DNA and unwinding of closed circular DNA and (ii) an increase in the DNA melting temperature comparable with that observed for known intercalators. In addition, the reaction of the complexes [Pt(bipy)(py)(2)](2+) and [Pt(4,4'-Ph(2)bipy)(py)(2)](2+) is inhibited by the presence of DNA. These results have been interpreted by assuming that the substances intercalate in spite of the presence of ligands out of plane. The crystal structure determined for [Pt(4,4'-Ph(2)bipy)(3,5-Me(2)py)(2)](2+) by X-ray analysis shows that also one of the phenyl rings is twisted with respect to the square plane. Binding constants, K(B), determined spectrophotometrically at 25 degrees C and pH 7 using the McGhee-von Hippel approach, increase for both series of complexes on increasing pK(a) of coordinated pyridines and are larger for those with 4,4'-Ph(2)bipy. The increasing affinity for DNA on increasing electron density of the interacting moiety is accounted for by assuming that London dispersion forces play a major role in the processes.
Collapse
Affiliation(s)
- Matteo Cusumano
- Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, University of Messina, Messina, Italy
| | | | | | | | | |
Collapse
|
82
|
Dolgounitcheva O, Zakrzewski VG, Ortiz JV. Ionization Energies of Acridine, Phenazine, and Diazaphenanthrenes. J Phys Chem A 1997. [DOI: 10.1021/jp971910e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- O. Dolgounitcheva
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-3701
| | - V. G. Zakrzewski
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-3701
| | - J. V. Ortiz
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506-3701
| |
Collapse
|
83
|
Georghiou S, Bradrick TD, Philippetis A, Beechem JM. Large-amplitude picosecond anisotropy decay of the intrinsic fluorescence of double-stranded DNA. Biophys J 1996; 70:1909-22. [PMID: 8785350 PMCID: PMC1225160 DOI: 10.1016/s0006-3495(96)79755-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The conformational flexibility of the DNA double helix is of great interest because of its potential role in protein recognition, packaging into chromosomes, formation of photodefects, and interaction with drugs. Theory finds that DNA is very flexible; however, there is a scarcity of experimental results that examine intrinsic properties of the DNA bases for the inherent flexibility in solution. We have studied the dynamics of poly(dA).poly(dT) and (dA)20.(dT)20 in a 50 mM cacodylate, 0.1 M NaCl, pH 7 buffer by using the time-correlated picosecond fluorescence anisotropy of thymine selectively excited at 293 nm. For both nucleic acids, a large-amplitude biphasic decrease in the anisotropy is observed that has a very fast, large-amplitude component on the picosecond time scale and a slower, smaller-amplitude component on the nanosecond time scale. These modes are sensitive to sucrose concentration, and are greatly attenuated at 77% sucrose by volume. This observation suggests that motions of the bases make a significant contribution to the observed fluorescence depolarization (in the absence of sucrose). Measurements on the single-stranded systems poly(dT) and (dT)20 reveal a much smaller amplitude of the very fast depolarization mode. These observations are consistent with a mechanism that involves concerted motions in the interior of the double-stranded systems.
Collapse
Affiliation(s)
- S Georghiou
- Department of Physics, University of Tennessee, Knoxville 37996-1200, USA.
| | | | | | | |
Collapse
|
84
|
Zhang CT, Chou KC. The nonlinear stretching model of hydrogen bonds and local self-fluctuation of base rotation in DNA. Chem Phys 1995. [DOI: 10.1016/0301-0104(94)00362-e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
85
|
Chou KC. Conformational change during photocycle of bacteriorhodopsin and its proton-pumping mechanism. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:337-50. [PMID: 8397792 DOI: 10.1007/bf01028196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Based on the recent finding on the structural difference of seven helix bundles in the all-trans and 13-cis bacteriorhodopsins, the distances among the key groups performing the function of proton translocation as well as their microenvironments have been investigated. Consequently, a pore-gated model was proposed for the light-driven proton-pumping mechanism of bacteriorhodopsin. According to this model, the five double-bounded polyene chain in retinal chromophore can be phenomenologically likened to a molecular "lever," whose one end links to a "piston" (the beta-ionone ring) and the other end to a pump "relay station" (the Schiff base). During the photocycle of bacteriorhodopsin, the molecular "lever" is moving up and down as marked by the position change of the "piston," so as to trigger the gate of pore to open and close alternately. When the "piston" is up, the pore-controlled gate is open so that the water channel from Asp-96 to the Schiff base and that from the Schiff base to Asp-85 is established; when the "piston" is down, the pore-controlled gate is closed and the water channels for proton transportation in both the cytoplasmic half and extracellular half are blocked. The current model allows a consistent interpretation of a great deal of experimental data and also provides a useful basis for further investigating the mechanism of proton pumping by bacteriorhodopsin.
Collapse
Affiliation(s)
- K C Chou
- Computational Chemistry, Upjohn Laboratories, Kalamazoo, Michigan 49007-4940
| |
Collapse
|
86
|
Dougherty G, Pasternack RF. Base pair selectivity in the binding of copper (II) tetrakis (4-N-methylpyridyl)porphine to polynucleotides under closely packed conditions. Biophys Chem 1992; 44:11-9. [PMID: 1330044 DOI: 10.1016/0301-4622(92)85031-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The base pair selectivity of the intercalative binding of the copper porphyrin, copper (II) tetrakis(4-N-methylpyridyl)porphine (Cu(II)TMpyP-4), to DNA has been investigated using a variety of DNA types and the synthetic polynucleotides poly(dG-dC)2 and poly(dA-dT)2. The studies utilize electron paramagnetic resonance of concentrated gels which are thought to mimic the closely packed state of nuclear DNA. The results indicate that intercalation of this porphyrin is preferred for sites containing two adjacent G-C base pairs, irrespective of sequence.
Collapse
|
87
|
Chou KC, Carlacci L, Maggiora GM, Parodi LA, Schulz MW. An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin. Protein Sci 1992; 1:810-27. [PMID: 1304922 PMCID: PMC2142245 DOI: 10.1002/pro.5560010613] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Based on the heavy-atom coordinates determined by the electron microscopy for the seven main helical regions of bacteriorhodopsin with the all-trans retinal isomer, energy optimizations were carried out for helix bundles containing the all-trans retinal and 13-cis retinal chromophores, respectively. A combination of simulated annealing and energy minimization was utilized during the process of energy optimization. It was found that the 7-helix bundle containing the all-trans isomer is about 10 kcal/mol lower in conformational energy than that containing the 13-cis isomer. An energetic analysis indicates that such a difference in energy is consistent with the observation that absorption of a 570-nm proton is required for the conversion of a bacteriorhodopsin from its all-trans to 13-cis form. It was also found that the above conversion process is accompanied by a significant conformational perturbation around the chromophore, as reflected by the fact that the beta-ionone ring of retinal moves about 5.6 A along the direction perpendicular to the membrane plane. This is consistent with the observation by Fodor et al. (Fodor, S.P.A., Ames, J.B., Gebhard, R., van der Berg, E.M.M., Stoeckenius, W., Lugtenburg, J., & Mathies, R.A., 1988, Biochemistry 27, 7097-7101). Furthermore, it is interesting to observe that although the retinal chromophore undergoes a significant change in its spatial position, the orientation of its transition dipole changes only slightly, in accord with experimental observations. In other words, even though orientation of the retinal transition dipole is very restricted, there is sufficient room, and degrees of freedom, for the retinal chromophore to readjust its position considerably. This finding provides new insight into the subtle change of the retinal microenvironment, which may be important for revealing the proton-pumping mechanism of bacteriorhodopsin. The importance of electrostatic and nonbonded interactions in stabilizing the 7-helix bundle structure has also been analyzed. Electrostatic interactions favor an antiparallel arrangement among adjacent helices. Nonbonded interactions, however, drive most of the closely packed helices into an arrangement in which the packing angles lie around -160 degrees, a value very near the -154 degrees value computed earlier as the most favorable packing arrangement of two poly(Ala) alpha-helices (Chou, K.-C., Némethy, G., & Scheraga, H.A., 1983, J. Phys. Chem. 87, 2869-2881). The structural features of the 7-helix bundle and their relationship to those found in typical 4-helix bundle proteins are also discussed.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K C Chou
- Upjohn Laboratories, Kalamazoo, Michigan 49001
| | | | | | | | | |
Collapse
|
88
|
Chou KC, Maggiora GM, Mao B. Quasi-continuum models of twist-like and accordion-like low-frequency motions in DNA. Biophys J 1989; 56:295-305. [PMID: 2775828 PMCID: PMC1280479 DOI: 10.1016/s0006-3495(89)82676-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Formulae for calculating low-frequency twist-like and accordion-like modes of DNA molecules have been derived using a quasi-continuum model. The formulae can be employed in essentially all (viz. A, B, C, D, E, and Z) forms of DNA. Calculated results indicate that the experimentally observed low-frequency modes at 22 cm-1 for the A-form octanucleotide (d[CCCCGGGG]) and at 18 cm-1 for the B-form dodecanucleotide (d[CGCAA ATTTGCG]) may result from accordion-like motions, while those observed at 12 cm-1 and 15 cm-1 may result from combinations of twist-like oscillations excited in the intact segments of B- and A-DNA's, respectively. Frequency shifts in the low-frequency modes observed when DNA molecules undergo conformational changes among different forms are also discussed in terms of the current model.
Collapse
Affiliation(s)
- K C Chou
- Computational Chemistry, Upjohn Research Laboratories, Kalamazoo, Michigan 49001
| | | | | |
Collapse
|