51
|
Liu H, Huang D, Wen J. Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum. Microb Cell Fact 2016; 15:36. [PMID: 26879529 PMCID: PMC4753663 DOI: 10.1186/s12934-016-0436-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/01/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Clostridium acetobutylicum is one of the most important butanol producing strains. However, environmental stress in the fermentation process usually leads to a lower yield, seriously hampering its industrialization. In order to systematically investigate the key intracellular metabolites that influence the strain growth and butanol production, and find out the critical regulation nodes, an integrated analysis approach has been carried out in this study. RESULTS Based on the gas chromatography-mass spectrometry technology, the partial least square discriminant analysis and the pathway analysis, 40 metabolic pathways linked with 43 key metabolic nodes were identified. In-depth analysis showed that lots of amino acids metabolism promoted cell growth but exerted slight influence on butanol production, while sugar metabolism was favorable for cell growth but unfavorable for butanol synthesis. Besides, both lysine and succinic acid metabolism generated a complex effect on the whole metabolic network. Dicarboxylate metabolism exerted an indispensable role on cell growth and butanol production. Subsequently, rational feeding strategies were proposed to verify these conclusions and facilitate the butanol biosynthesis. Feeding amino acids, especially glycine and serine, could obviously improve cell growth while yeast extract, citric acid and ethylene glycol could significantly enhance both growth and butanol production. CONCLUSIONS The feeding experiment confirmed that metabolic profiling combined with pathway analysis provided an accurate, reasonable and practical approach to explore the cellular metabolic activity and supplied a basis for improving butanol production. These strategies can also be extended for the production of other important bio-chemical compounds.
Collapse
Affiliation(s)
- Huanhuan Liu
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, People's Republic of China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300457, People's Republic of China.
| | - Jianping Wen
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
52
|
Chen CT, Liao JC. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett 2016; 363:fnw020. [PMID: 26832641 DOI: 10.1093/femsle/fnw020] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
The heavy dependence on petroleum-derived fuel has raised concerns about energy sustainability and climate change, which have prompted researchers to explore fuel production from renewable sources. 1-Butanol and isobutanol are promising biofuels that have favorable properties and can also serve as solvents or chemical feedstocks. Microbial production of these alcohols provides great opportunities to access a wide spectrum of renewable resources. In recent years, research has improved the native 1-butanol production and has engineered isobutanol production in various organisms to explore metabolic diversity and a broad range of substrates. This review focuses on progress in metabolic engineering for the production of these two compounds using various resources.
Collapse
Affiliation(s)
- Chang-Ting Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
53
|
Wu YD, Xue C, Chen LJ, Wan HH, Bai FW. Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum. Sci Rep 2015; 5:16598. [PMID: 26586044 PMCID: PMC4653742 DOI: 10.1038/srep16598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/15/2015] [Indexed: 12/15/2022] Open
Abstract
The micronutrient zinc plays vital roles in ABE fermentation by Clostridium acetobutylicum. In order to elucidate the zinc-associated response for enhanced glucose utilization and earlier solventogenesis, transcriptional analysis was performed on cells grown in glucose medium at the exponential growth phase of 16 h without/with supplementary zinc. Correspondingly, the gene glcG (CAC0570) encoding a glucose-specific PTS was significantly upregulated accompanied with the other two genes CAC1353 and CAC1354 for glucose transport in the presence of zinc. Additionally, genes involved in the metabolisms of six other carbohydrates (maltose, cellobiose, fructose, mannose, xylose and arabinose) were differentially expressed, indicating that the regulatory effect of micronutrient zinc is carbohydrate-specific with respects to the improved/inhibited carbohydrate utilization. More importantly, multiple genes responsible for glycolysis (glcK and pykA), acidogenesis (thlA, crt, etfA, etfB and bcd) and solventogenesis (ctfB and bdhA) of C. acetobutylicum prominently responded to the supplementary zinc at differential expression levels. Comparative analysis of intracellular metabolites revealed that the branch node intermediates such as acetyl-CoA, acetoacetyl-CoA, butyl-CoA, and reducing power NADH remained relatively lower whereas more ATP was generated due to enhanced glycolysis pathway and earlier initiation of solventogenesis, suggesting that the micronutrient zinc-associated response for the selected intracellular metabolisms is significantly pleiotropic.
Collapse
Affiliation(s)
- You-Duo Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Li-Jie Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Hui-Hui Wan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Feng-Wu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
54
|
Zhang F, Qian X, Si H, Xu G, Han R, Ni Y. Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering. Microb Cell Fact 2015; 14:175. [PMID: 26542360 PMCID: PMC4635540 DOI: 10.1186/s12934-015-0368-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Escherichia coli has emerged as a promising platform microorganism to produce biofuels and fine chemicals of industrial interests. Certain obstacles however remain to be overcome, among which organic-solvent tolerance is a crucial one. RESULTS We used global transcription machinery engineering (gTME) to improve the organic-solvent tolerance (OST) of E. coli JM109. A mutant library of σ(70) encoded by rpoD was screened under cyclohexane pressure. E. coli JM109 strain harboring σ(70) mutant C9 was identified with capability of tolerating 69 % cyclohexane. The rpoD mutant contains three amino-acid substitutes and a stop-codon mutation, resulting a truncated sequence containing regions σ(1.1) and σ(1.2). Total protein difference produced by E. coli JM109 strain harboring C9 was examined with 2D-PAGE, and 204 high-abundant proteins showed over twofold variation under different solvent stress. CONCLUSIONS Our results show that several genes (gapA, sdhB, pepB and dppA) play critical roles in enhanced solvent tolerance of E. coli, mainly involving in maintaining higher intracellular energy level under solvent stress. Global transcription machinery engineering is therefore a feasible and efficient approach for engineering strain with enhanced OST-phenotype.
Collapse
Affiliation(s)
- Fa Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| | - Xiaohong Qian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| | - Haiming Si
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| | - Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, Jiangsu, China.
| |
Collapse
|
55
|
Luo H, Ge L, Zhang J, Zhao Y, Ding J, Li Z, He Z, Chen R, Shi Z. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition. PLoS One 2015; 10:e0141160. [PMID: 26489085 PMCID: PMC4619017 DOI: 10.1371/journal.pone.0141160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/03/2015] [Indexed: 12/28/2022] Open
Abstract
In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.
Collapse
Affiliation(s)
- Hongzhen Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Laibing Ge
- China Shijiazhuang Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Jingshu Zhang
- China Shijiazhuang Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Yanli Zhao
- Hebei Changshan Biochemical Pharmaceutical Co., Ltd., Shijiazhuang, Hebei, China
| | - Jian Ding
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhigang Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhenni He
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Rui Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongping Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- * E-mail:
| |
Collapse
|
56
|
Abdelaal AS, Ageez AM, Abd El-Hadi AEHA, Abdallah NA. Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum. 3 Biotech 2015; 5:401-410. [PMID: 28324542 PMCID: PMC4522734 DOI: 10.1007/s13205-014-0235-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022] Open
Abstract
Strain tolerance to toxic metabolites remains an important issue in the
production of biofuels. Here we examined the impact of overexpressing the
heterologous groESL chaperone from Clostridium acetobutylicum to enhance the tolerance of
Escherichia coli against several stressors.
Strain tolerance was identified using strain maximum specific growth rate (μ) and strain growth after a period of solvent exposure.
In comparison with control strain, the groESL
overexpressing strain yielded a 27 % increase in growth under 0.8 % (v/v) butanol, a
9 % increase under 1 % (v/v) butanol, and a 64 % increase under 1.75 (g/l) acetate.
Moreover, after 10 h, groESL overexpression
resulted in increase in relative tolerance of 58 % compared with control strain
under 0.8 % (v/v) butanol, 56 % increase under 1 % (v/v) butanol, 42 % increase
under 1 % (v/v) isobutanol, 36 % increase under 4 % (v/v) ethanol, 58 % increase
under 1.75 (g/l) acetate. These data demonstrate that overexpression of the
groESL from C.
acetobutylicum in E. coli increased
tolerance to several stressors. Solvent tolerant strain of E. coli was developed to be used as a basic strain for biofuel
production.
Collapse
Affiliation(s)
- Ali S Abdelaal
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
| | - Amr M Ageez
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | | | - Naglaa A Abdallah
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
57
|
Bauer S, Ibáñez AB. Does size matter? Separations on guard columns for fast sample analysis applied to bioenergy research. BMC Biotechnol 2015; 15:38. [PMID: 26016474 PMCID: PMC4445503 DOI: 10.1186/s12896-015-0159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/01/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Increasing sample throughput is needed when large numbers of samples have to be processed. In chromatography, one strategy is to reduce column length for decreased analysis time. Therefore, the feasibility of analyzing samples simply on a guard column was explored using refractive index and ultraviolet detection. Results from the guard columns were compared to the analyses using the standard 300 mm Aminex HPX-87H column which is widely applied to the analysis of samples from many biotechnology- and bioenergy-related experiments such as biomass conversions or fermentations. RESULTS The 50 mm Rezex RFQ Fast Acid H(+) guard column was able to separate the most common fermentation products (ethanol, acetone, iso- and n-butanol) and promising precursors (furfural and 5-hydroxymethylfurfural) of biofuels and value-added chemicals. Compound profiles in fermentation samples were analyzed with similar accuracy compared to results using the 300 mm column. However, separation of glucose and xylose was not achieved. Nevertheless, it was possible to monitor the consumption of one of the two sugars during fermentation if the other one was absent or remained constant over the course of the experiment. If correct peak integration and interference subtraction was applied, concentration profiles from enzymatic digestibility experiments and even more complex samples (e.g. acetone-butanol-ethanol (ABE) fermentation) were reliably obtained. With the 50 mm guard column, samples were analyzed up to ten-times faster compared to the 300 mm column. A further decrease in analysis time was achieved by using the 30 mm Micro Guard Cation H guard column. This column is especially suitable for the rapid analysis of compounds with long elution times on the standard 300 mm column, such as biofuel-related alcohols (e.g., n-butanol, n-hexanol) and furan- and tetrahydrofuran-type molecules. CONCLUSION Applied to a suitable set of samples, separations on a guard column can give rapid and sufficiently accurate information on compound changes over the course of an experiment. Therefore, it is an inexpensive and ideal tool for processing a large amount of samples, such as in screening or discovery experiments, where detecting relative changes is often sufficient to identify promising candidates for further analysis.
Collapse
Affiliation(s)
- Stefan Bauer
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
| | - Ana B Ibáñez
- Energy Biosciences Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
58
|
Venkataramanan KP, Min L, Hou S, Jones SW, Ralston MT, Lee KH, Papoutsakis ET. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:81. [PMID: 26269711 PMCID: PMC4533764 DOI: 10.1186/s13068-015-0260-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/30/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. RESULTS The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. CONCLUSIONS The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.
Collapse
Affiliation(s)
- Keerthi P. Venkataramanan
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - Lie Min
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - Shuyu Hou
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - Shawn W. Jones
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - Matthew T. Ralston
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />15 Innovation Way, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711 USA
| | - Kelvin H. Lee
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| | - E. Terry Papoutsakis
- />15 Innovation Way, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
- />150 Academy Street, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711 USA
| |
Collapse
|
59
|
Linville JL, Rodriguez M, Brown SD, Mielenz JR, Cox CD. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain. BMC Microbiol 2014; 14:215. [PMID: 25128475 PMCID: PMC4236516 DOI: 10.1186/s12866-014-0215-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms. Conclusion These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.
Collapse
Affiliation(s)
| | | | | | | | - Chris D Cox
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
60
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
61
|
Pleiotropic role of the RNA chaperone protein Hfq in the human pathogen Clostridium difficile. J Bacteriol 2014; 196:3234-48. [PMID: 24982306 DOI: 10.1128/jb.01923-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Clostridium difficile is an emergent human pathogen and the most common cause of nosocomial diarrhea. Our recent data strongly suggest the importance of RNA-based mechanisms for the control of gene expression in C. difficile. In an effort to understand the function of the RNA chaperone protein Hfq, we constructed and characterized an Hfq-depleted strain in C. difficile. Hfq depletion led to a growth defect, morphological changes, an increased sensitivity to stresses, and a better ability to sporulate and to form biofilms. The transcriptome analysis revealed pleiotropic effects of Hfq depletion on gene expression in C. difficile, including genes encoding proteins involved in sporulation, stress response, metabolic pathways, cell wall-associated proteins, transporters, and transcriptional regulators and genes of unknown function. Remarkably, a great number of genes of the regulon dependent on sporulation-specific sigma factor, SigK, were upregulated in the Hfq-depleted strain. The altered accumulation of several sRNAs and interaction of Hfq with selected sRNAs suggest potential involvement of Hfq in these regulatory RNA functions. Altogether, these results suggest the pleiotropic role of Hfq protein in C. difficile physiology, including processes important for the C. difficile infection cycle, and expand our knowledge of Hfq-dependent regulation in Gram-positive bacteria.
Collapse
|
62
|
Koenig JC, Groissmeier KD, Manefield MJ. Tolerance of anaerobic bacteria to chlorinated solvents. Microbes Environ 2014; 29:23-30. [PMID: 24441515 PMCID: PMC4041229 DOI: 10.1264/jsme2.me13113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/08/2013] [Indexed: 11/12/2022] Open
Abstract
The aim of this research was to evaluate the effects of four chlorinated aliphatic hydrocarbons (CAHs), perchloroethene (PCE), carbon tetrachloride (CT), chloroform (CF) and 1,2-dichloroethane (1,2-DCA), on the growth of eight anaerobic bacteria: four fermentative species (Escherichia coli, Klebsiella sp., Clostridium sp. and Paenibacillus sp.) and four respiring species (Pseudomonas aeruginosa, Geobacter sulfurreducens, Shewanella oneidensis and Desulfovibrio vulgaris). Effective concentrations of solvents which inhibited growth rates by 50% (EC50) were determined. The octanol-water partition coefficient or log Po/w of a CAH proved a generally satisfactory measure of its toxicity. Most species tolerated approximately 3-fold and 10-fold higher concentrations of the two relatively more polar CAHs CF and 1,2-DCA, respectively, than the two relatively less polar compounds PCE and CT. EC50 values correlated well with growth rates observed in solvent-free cultures, with fast-growing organisms displaying higher tolerance levels. Overall, fermentative bacteria were more tolerant to CAHs than respiring species, with iron- and sulfate-reducing bacteria in particular appearing highly sensitive to CAHs. These data extend the current understanding of the impact of CAHs on a range of anaerobic bacteria, which will benefit the field of bioremediation.
Collapse
Affiliation(s)
- Joanna C. Koenig
- Centre for Marine Bioinnovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Kathrin D. Groissmeier
- Helmholtz Institute of Groundwater Ecology, Ingolstaedter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Mike J. Manefield
- Centre for Marine Bioinnovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
63
|
Venkataramanan KP, Jones SW, McCormick KP, Kunjeti SG, Ralston MT, Meyers BC, Papoutsakis ET. The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum. BMC Genomics 2013; 14:849. [PMID: 24299206 PMCID: PMC3879012 DOI: 10.1186/1471-2164-14-849] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/14/2013] [Indexed: 01/01/2023] Open
Abstract
Background Small non-coding RNAs (sRNA) are emerging as major components of the cell’s regulatory network, several possessing their own regulons. A few sRNAs have been reported as being involved in general or toxic-metabolite stress, mostly in Gram- prokaryotes, but hardly any in Gram+ prokaryotes. Significantly, the role of sRNAs in the stress response remains poorly understood at the genome-scale level. It was previously shown that toxic-metabolite stress is one of the most comprehensive and encompassing stress responses in the cell, engaging both the general stress (or heat-shock protein, HSP) response as well as specialized metabolic programs. Results Using RNA deep sequencing (RNA-seq) we examined the sRNome of C. acetobutylicum in response to the native but toxic metabolites, butanol and butyrate. 7.5% of the RNA-seq reads mapped to genome outside annotated ORFs, thus demonstrating the richness and importance of the small RNome. We used comparative expression analysis of 113 sRNAs we had previously computationally predicted, and of annotated mRNAs to set metrics for reliably identifying sRNAs from RNA-seq data, thus discovering 46 additional sRNAs. Under metabolite stress, these 159 sRNAs displayed distinct expression patterns, a select number of which was verified by Northern analysis. We identified stress-related expression of sRNAs affecting transcriptional (6S, S-box & solB) and translational (tmRNA & SRP-RNA) processes, and 65 likely targets of the RNA chaperone Hfq. Conclusions Our results support an important role for sRNAs for understanding the complexity of the regulatory network that underlies the stress response in Clostridium organisms, whether related to normophysiology, pathogenesis or biotechnological applications.
Collapse
|
64
|
Wang Q, Venkataramanan KP, Huang H, Papoutsakis ET, Wu CH. Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. BMC SYSTEMS BIOLOGY 2013; 7:120. [PMID: 24196194 PMCID: PMC3828012 DOI: 10.1186/1752-0509-7-120] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/30/2013] [Indexed: 01/17/2023]
Abstract
Background Organisms of the genus Clostridium are Gram-positive endospore formers of great importance to the carbon cycle, human normo- and pathophysiology, but also in biofuel and biorefinery applications. Exposure of Clostridium organisms to chemical and in particular toxic metabolite stress is ubiquitous in both natural (such as in the human microbiome) and engineered environments, engaging both the general stress response as well as specialized programs. Yet, despite its fundamental and applied significance, it remains largely unexplored at the systems level. Results We generated a total of 96 individual sets of microarray data examining the transcriptional changes in C. acetobutylicum, a model Clostridium organism, in response to three levels of chemical stress from the native metabolites, butanol and butyrate. We identified 164 significantly differentially expressed transcriptional regulators and detailed the cellular programs associated with general and stressor-specific responses, many previously unexplored. Pattern-based, comparative genomic analyses enabled us, for the first time, to construct a detailed picture of the genetic circuitry underlying the stress response. Notably, a list of the regulons and DNA binding motifs of the stress-related transcription factors were identified: two heat-shock response regulators, HrcA and CtsR; the SOS response regulator LexA; the redox sensor Rex; and the peroxide sensor PerR. Moreover, several transcriptional regulators controlling stress-responsive amino acid and purine metabolism and their regulons were also identified, including ArgR (arginine biosynthesis and catabolism regulator), HisR (histidine biosynthesis regulator), CymR (cysteine metabolism repressor) and PurR (purine metabolism repressor). Conclusions Using an exceptionally large set of temporal transcriptional data and regulon analyses, we successfully built a STRING-based stress response network model integrating important players for the general and specialized metabolite stress response in C. acetobutylicum. Since the majority of the transcription factors and their target genes are highly conserved in other organisms of the Clostridium genus, this network would be largely applicable to other Clostridium organisms. The network informs the molecular basis of Clostridium responses to toxic metabolites in natural ecosystems and the microbiome, and will facilitate the construction of genome-scale models with added regulatory-network dimensions to guide the development of tolerant strains.
Collapse
|
65
|
Gaida SM, Al-Hinai MA, Indurthi DC, Nicolaou SA, Papoutsakis ET. Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res 2013; 41:8726-37. [PMID: 23892399 PMCID: PMC3794604 DOI: 10.1093/nar/gkt651] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 12/31/2022] Open
Abstract
Synthetic acid tolerance, especially during active cell growth, is a desirable phenotype for many biotechnological applications. Natively, acid resistance in Escherichia coli is largely a stationary-phase phenotype attributable to mechanisms mostly under the control of the stationary-phase sigma factor RpoS. We show that simultaneous overexpression of noncoding small RNAs (sRNAs), DsrA, RprA and ArcZ, which are translational RpoS activators, increased acid tolerance (based on a low-pH survival assay) supra-additively up to 8500-fold during active cell growth, and provided protection against carboxylic acid and oxidative stress. Overexpression of rpoS without its regulatory 5'-UTR resulted in inferior acid tolerance. The supra-additive effect of overexpressing the three sRNAs results from the impact their expression has on RpoS-protein levels, and the beneficial perturbation of the interconnected RpoS and H-NS networks, thus leading to superior tolerance during active growth. Unlike the overexpression of proteins, overexpression of sRNAs imposes hardly any metabolic burden on cells, and constitutes a more effective strain engineering strategy.
Collapse
Affiliation(s)
- Stefan M. Gaida
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| | - Mohab A. Al-Hinai
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| | - Dinesh C. Indurthi
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| | - Sergios A. Nicolaou
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| | - Eleftherios T. Papoutsakis
- Department Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA, Molecular Biotechnology Laboratory, Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA and Department of Biology, Sultan Qaboos University, Muscat, 123, Oman
| |
Collapse
|
66
|
Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Appl Environ Microbiol 2013; 79:5313-20. [PMID: 23811509 DOI: 10.1128/aem.01703-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cross-tolerance and antagonistic pleiotropy have been observed between different complex phenotypes in microbial systems. These relationships between adaptive landscapes are important for the design of industrially relevant strains, which are generally subjected to multiple stressors. In our previous work, we evolved Escherichia coli for enhanced tolerance to the biofuel n-butanol and discovered a molecular mechanism of n-butanol tolerance that also conferred tolerance to the cationic antimicrobial peptide polymyxin B in one specific lineage (green fluorescent protein [GFP] labeled) in the evolved population. In this work, we aim to identify additional mechanisms of n-butanol tolerance in an independent lineage (yellow fluorescent protein [YFP] labeled) from the same evolved population and to further explore potential cross-tolerance and antagonistic pleiotropy between n-butanol tolerance and other industrially relevant stressors. Analysis of the transcriptome data of the YFP-labeled mutants allowed us to discover additional membrane-related and osmotic stress-related genes that confer n-butanol tolerance in E. coli. Interestingly, the n-butanol resistance mechanisms conferred by the membrane-related genes appear to be specific to n-butanol and are in many cases antagonistic with isobutanol and ethanol. Furthermore, the YFP-labeled mutants showed cross-tolerance between n-butanol and osmotic stress, while the GFP-labeled mutants showed antagonistic pleiotropy between n-butanol and osmotic stress tolerance.
Collapse
|
67
|
Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach. Appl Environ Microbiol 2013; 79:4282-93. [PMID: 23645199 DOI: 10.1128/aem.00694-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The marine hydrocarbonoclastic bacterium Alcanivorax borkumensis is able to degrade mixtures of n-alkanes as they occur in marine oil spills. However, investigations of growth behavior and physiology of these bacteria when cultivated with n-alkanes of different chain lengths (C6 to C30) as the substrates are still lacking. Growth rates increased with increasing alkane chain length up to a maximum between C12 and C19, with no evident difference between even- and odd-numbered chain lengths, before decreasing with chain lengths greater than C19. Surface hydrophobicity of alkane-grown cells, assessed by determination of the water contact angles, showed a similar pattern, with maximum values associated with growth rates on alkanes with chain lengths between C11 and C19 and significantly lower values for cells grown on pyruvate. A. borkumensis was found to incorporate and modify the fatty acid intermediates generated by the corresponding n-alkane degradation pathway. Cells grown on distinct n-alkanes proved that A. borkumensis is able to not only incorporate but also modify fatty acid intermediates derived from the alkane degradation pathway. Comparing cells grown on pyruvate with those cultivated on hexadecane in terms of their tolerance toward two groups of toxic organic compounds, chlorophenols and alkanols, representing intensely studied organic compounds, revealed similar tolerances toward chlorophenols, whereas the toxicities of different n-alkanols were significantly reduced when hexadecane was used as a carbon source. As one adaptive mechanism of A. borkumensis to these toxic organic solvents, the activity of cis-trans isomerization of unsaturated fatty acids was proven. These findings could be verified by a detailed transcriptomic comparison between cultures grown on hexadecane and pyruvate and including solvent stress caused by the addition of 1-octanol as the most toxic intermediate of n-alkane degradation.
Collapse
|
68
|
Systematic applications of metabolomics in metabolic engineering. Metabolites 2012; 2:1090-122. [PMID: 24957776 PMCID: PMC3901235 DOI: 10.3390/metabo2041090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/29/2012] [Accepted: 12/10/2012] [Indexed: 02/05/2023] Open
Abstract
The goals of metabolic engineering are well-served by the biological information provided by metabolomics: information on how the cell is currently using its biochemical resources is perhaps one of the best ways to inform strategies to engineer a cell to produce a target compound. Using the analysis of extracellular or intracellular levels of the target compound (or a few closely related molecules) to drive metabolic engineering is quite common. However, there is surprisingly little systematic use of metabolomics datasets, which simultaneously measure hundreds of metabolites rather than just a few, for that same purpose. Here, we review the most common systematic approaches to integrating metabolite data with metabolic engineering, with emphasis on existing efforts to use whole-metabolome datasets. We then review some of the most common approaches for computational modeling of cell-wide metabolism, including constraint-based models, and discuss current computational approaches that explicitly use metabolomics data. We conclude with discussion of the broader potential of computational approaches that systematically use metabolomics data to drive metabolic engineering.
Collapse
|
69
|
Use of proteomic analysis to elucidate the role of calcium in acetone-butanol-ethanol fermentation by Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 2012; 79:282-93. [PMID: 23104411 DOI: 10.1128/aem.02969-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calcium carbonate increases growth, substrate utilization, and acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii NCIMB 8052. Toward an understanding of the basis for these pleiotropic effects, we profiled changes in the C. beijerinckii NCIMB 8052 proteome that occur in response to the addition of CaCO(3). We observed increases in the levels of different heat shock proteins (GrpE and DnaK), sugar transporters, and proteins involved in DNA synthesis, repair, recombination, and replication. We also noted significant decreases in the levels of proteins involved in metabolism, nucleic acid stabilization, sporulation, oxidative and antibiotic stress responses, and signal transduction. We determined that CaCO(3) enhances ABE fermentation due to both its buffering effects and its ability to influence key cellular processes, such as sugar transport, butanol tolerance, and solventogenesis. Moreover, activity assays in vitro for select solventogenic enzymes revealed that part of the underpinning for the CaCO(3)-mediated increase in the level of ABE fermentation stems from the enhanced activity of these catalysts in the presence of Ca(2+). Collectively, these proteomic and biochemical studies provide new insights into the multifactorial basis for the stimulation of ABE fermentation and butanol tolerance in the presence of CaCO(3).
Collapse
|
70
|
Abstract
Strain tolerance to toxic metabolites is an important trait for many biotechnological applications, such as the production of solvents as biofuels or commodity chemicals. Engineering a complex cellular phenotype, such as solvent tolerance, requires the coordinated and tuned expression of several genes. Using combinations of heat shock proteins (HSPs), we engineered a semisynthetic stress response system in Escherichia coli capable of tolerating high levels of toxic solvents. Simultaneous overexpression of the HSPs GrpE and GroESL resulted in a 2-fold increase in viable cells (CFU) after exposure to 5% (vol/vol) ethanol for 24 h. Co-overexpression of GroESL and ClpB on coexisting plasmids resulted in 1,130%, 78%, and 25% increases in CFU after 24 h in 5% ethanol, 1% n-butanol, and 1% i-butanol, respectively. Co-overexpression of GrpE, GroESL, and ClpB on a single plasmid produced 200%, 390%, and 78% increases in CFU after 24 h in 7% ethanol, 1% n-butanol, or 25% 1,2,4-butanetriol, respectively. Overexpression of other autologous HSPs (DnaK, DnaJ, IbpA, and IbpB) alone or in combinations failed to improve tolerance. Expression levels of HSP genes, tuned through inducible promoters and the plasmid copy number, affected the effectiveness of the engineered stress response system. Taken together, these data demonstrate that tuned co-overexpression of GroES, GroEL, ClpB, and GrpE can be engaged to engineer a semisynthetic stress response system capable of greatly increasing the tolerance of E. coli to solvents and provides a starting platform for engineering customized tolerance to a wide variety of toxic chemicals. Microbial production of useful chemicals is often limited by the toxicity of desired products, feedstock impurities, and undesired side products. Improving tolerance is an essential step in the development of practical platform organisms for production of a wide range of chemicals. By overexpressing autologous heat shock proteins in Escherichia coli, we have developed a modular semisynthetic stress response system capable of improving tolerance to ethanol, n-butanol, and potentially other toxic solvents. Using this system, we demonstrate that a practical stress response system requires both tuning of individual gene components and a reliable framework for gene expression. This system can be used to seek out new interacting partners to improve the tolerance phenotype and can be used in the development of more robust solvent production strains.
Collapse
|
71
|
Chen T, Wang J, Zeng L, Li R, Li J, Chen Y, Lin Z. Significant rewiring of the transcriptome and proteome of an Escherichia coli strain harboring a tailored exogenous global regulator IrrE. PLoS One 2012; 7:e37126. [PMID: 22792156 PMCID: PMC3390347 DOI: 10.1371/journal.pone.0037126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 04/17/2012] [Indexed: 12/25/2022] Open
Abstract
Cell reprogramming for microorganisms via engineered or artificial transcription factors and RNA polymerase mutants has presented a powerful tool for eliciting complex traits that are practically useful particularly for industrial strains, and for understanding at the global level the regulatory network of gene transcription. We previously further showed that an exogenous global regulator IrrE (derived from the extreme radiation-resistant bacterium Deinococcus radiodurans) can be tailored to confer Escherichia coli (E. coli) with significantly enhanced tolerances to different stresses. In this work, based on comparative transcriptomic and proteomic analyses of the representative strains E1 and E0, harboring the ethanol-tolerant IrrE mutant E1 and the ethanol-intolerant wild type IrrE, respectively, we found that the transcriptome and proteome of E. coli were extensively rewired by the tailored IrrE protein. Overall, 1196 genes (or approximately 27% of E. coli genes) were significantly altered at the transcriptomic level, including notably genes in the nitrate-nitrite-nitric oxide (NO) pathway, and genes for non-coding RNAs. The proteomic profile revealed significant up- or downregulation of several proteins associated with syntheses of the cell membrane and cell wall. Analyses of the intracellular NO level and cell growth under reduced temperature supported a close correlation between NO and ethanol tolerance, and also suggests a role for membrane fluidity. The significantly different omic profiles of strain E1 indicate that IrrE functions as a global regulator in E. coli, and that IrrE may be evolved for other cellular tolerances. In this sense, it will provide synthetic biology with a practical and evolvable regulatory “part” that operates at a higher level of complexity than local regulators. This work also suggests a possibility of introducing and engineering other exogenous global regulators to rewire the genomes of microorganism cells.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jianqing Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Lingli Zeng
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Rizong Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jicong Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yilu Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
72
|
Konopka A, Wilkins MJ. Application of meta-transcriptomics and -proteomics to analysis of in situ physiological state. Front Microbiol 2012; 3:184. [PMID: 22783237 PMCID: PMC3390588 DOI: 10.3389/fmicb.2012.00184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/03/2012] [Indexed: 12/30/2022] Open
Abstract
Analysis of the growth-limiting factor or environmental stressors affecting microbes in situ is of fundamental importance but analytically difficult. Microbes can reduce in situ limiting nutrient concentrations to sub-micromolar levels, and contaminated ecosystems may contain multiple stressors. The patterns of gene or protein expression by microbes in nature can be used to infer growth limitations, because they are regulated in response to environmental conditions. Experimental studies under controlled conditions in the laboratory provide the physiological underpinnings for developing these physiological indicators. Although regulatory networks may differ among specific microbes, there are some broad principles that can be applied, related to limiting nutrient acquisition, resource allocation, and stress responses. As technologies for transcriptomics and proteomics mature, the capacity to apply these approaches to complex microbial communities will accelerate. Global proteomics has the particular advantage that it reflects expressed catalytic activities. Furthermore, the high mass accuracy of some proteomic approaches allows mapping back to specific microbial strains. For example, at the Rifle IFRC field site in Western Colorado, the physiological status of Fe(III)-reducing populations has been tracked over time. Members of a “subsurface clade” within the Geobacter predominated during carbon amendment to the subsurface environment. At the functional level, proteomic identifications produced inferences regarding (i) temporal changes in anabolism and catabolism of acetate, (ii) the onset of N2 fixation when N became limiting, and (iii) expression of phosphate transporters during periods of intense growth. The application of these approaches in situ can lead to discovery of novel physiological adaptations.
Collapse
Affiliation(s)
- Allan Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
73
|
Wang Y, Li X, Mao Y, Blaschek HP. Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics 2012; 13:102. [PMID: 22433311 PMCID: PMC3395874 DOI: 10.1186/1471-2164-13-102] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/20/2012] [Indexed: 12/31/2022] Open
Abstract
Background Clostridium beijerinckii is a prominent solvent-producing microbe that has great potential for biofuel and chemical industries. Although transcriptional analysis is essential to understand gene functions and regulation and thus elucidate proper strategies for further strain improvement, limited information is available on the genome-wide transcriptional analysis for C. beijerinckii. Results The genome-wide transcriptional dynamics of C. beijerinckii NCIMB 8052 over a batch fermentation process was investigated using high-throughput RNA-Seq technology. The gene expression profiles indicated that the glycolysis genes were highly expressed throughout the fermentation, with comparatively more active expression during acidogenesis phase. The expression of acid formation genes was down-regulated at the onset of solvent formation, in accordance with the metabolic pathway shift from acidogenesis to solventogenesis. The acetone formation gene (adc), as a part of the sol operon, exhibited highly-coordinated expression with the other sol genes. Out of the > 20 genes encoding alcohol dehydrogenase in C. beijerinckii, Cbei_1722 and Cbei_2181 were highly up-regulated at the onset of solventogenesis, corresponding to their key roles in primary alcohol production. Most sporulation genes in C. beijerinckii 8052 demonstrated similar temporal expression patterns to those observed in B. subtilis and C. acetobutylicum, while sporulation sigma factor genes sigE and sigG exhibited accelerated and stronger expression in C. beijerinckii 8052, which is consistent with the more rapid forespore and endspore development in this strain. Global expression patterns for specific gene functional classes were examined using self-organizing map analysis. The genes associated with specific functional classes demonstrated global expression profiles corresponding to the cell physiological variation and metabolic pathway switch. Conclusions The results from this work provided insights for further C. beijerinckii strain improvement employing system biology-based strategies and metabolic engineering approaches.
Collapse
Affiliation(s)
- Yi Wang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | | | |
Collapse
|
74
|
Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 2011; 78:1416-23. [PMID: 22210214 DOI: 10.1128/aem.06382-11] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adh(B-593)) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h.
Collapse
|
75
|
Hendrix W, Rocha AM, Padmanabhan K, Choudhary A, Scott K, Mihelcic JR, Samatova NF. DENSE: efficient and prior knowledge-driven discovery of phenotype-associated protein functional modules. BMC SYSTEMS BIOLOGY 2011; 5:172. [PMID: 22024446 PMCID: PMC3231954 DOI: 10.1186/1752-0509-5-172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/24/2011] [Indexed: 01/09/2023]
Abstract
Background Identifying cellular subsystems that are involved in the expression of a target phenotype has been a very active research area for the past several years. In this paper, cellular subsystem refers to a group of genes (or proteins) that interact and carry out a common function in the cell. Most studies identify genes associated with a phenotype on the basis of some statistical bias, others have extended these statistical methods to analyze functional modules and biological pathways for phenotype-relatedness. However, a biologist might often have a specific question in mind while performing such analysis and most of the resulting subsystems obtained by the existing methods might be largely irrelevant to the question in hand. Arguably, it would be valuable to incorporate biologist's knowledge about the phenotype into the algorithm. This way, it is anticipated that the resulting subsytems would not only be related to the target phenotype but also contain information that the biologist is likely to be interested in. Results In this paper we introduce a fast and theoretically guranteed method called DENSE (Dense and ENriched Subgraph Enumeration) that can take in as input a biologist's prior knowledge as a set of query proteins and identify all the dense functional modules in a biological network that contain some part of the query vertices. The density (in terms of the number of network egdes) and the enrichment (the number of query proteins in the resulting functional module) can be manipulated via two parameters γ and μ, respectively. Conclusion This algorithm has been applied to the protein functional association network of Clostridium acetobutylicum ATCC 824, a hydrogen producing, acid-tolerant organism. The algorithm was able to verify relationships known to exist in literature and also some previously unknown relationships including those with regulatory and signaling functions. Additionally, we were also able to hypothesize that some uncharacterized proteins are likely associated with the target phenotype. The DENSE code can be downloaded from http://www.freescience.org/cs/DENSE/
Collapse
Affiliation(s)
- Willam Hendrix
- Department of Computer Science, North Carolina State University, Raleigh, 27695, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Heluane H, Evans MR, Dagher SF, Bruno-Bárcena JM. Meta-analysis and functional validation of nutritional requirements of solventogenic Clostridia growing under butanol stress conditions and coutilization of D-glucose and D-xylose. Appl Environ Microbiol 2011; 77:4473-85. [PMID: 21602379 PMCID: PMC3127714 DOI: 10.1128/aem.00116-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/07/2011] [Indexed: 01/22/2023] Open
Abstract
Recent advances in systems biology, omics, and computational studies allow us to carry out data mining for improving biofuel production bioprocesses. Of particular interest are bioprocesses that center on microbial capabilities to biotransform both the hexose and pentose fractions present in crop residues. This called for a systematic exploration of the components of the media to obtain higher-density cultures and more-productive fermentation operations than are currently found. By using a meta-analysis approach of the transcriptional responses to butanol stress, we identified the nutritional requirements of solvent-tolerant strain Clostridium beijerinckii SA-1 (ATCC 35702). The nutritional requirements identified were later validated using the chemostat pulse-and-shift technique. C. beijerinckii SA-1 was cultivated in a two-stage single-feed-stream continuous production system to test the proposed validated medium formulation, and the coutilization of D-glucose and D-xylose was evaluated by taking advantage of the well-known ability of solventogenic clostridia to utilize a large variety of carbon sources such as mono-, oligo-, and polysaccharides containing pentose and hexose sugars. Our results indicated that C. beijerinckii SA-1 was able to coferment hexose/pentose sugar mixtures in the absence of a glucose repression effect. In addition, our analysis suggests that the solvent and acid resistance mechanisms found in this strain are differentially regulated compared to strain NRRL B-527 and are outlined as the basis of the analysis toward optimizing butanol production.
Collapse
Affiliation(s)
- Humberto Heluane
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| | | | - Sue F. Dagher
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| | - José M. Bruno-Bárcena
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
77
|
2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 2011; 77:5467-75. [PMID: 21685168 DOI: 10.1128/aem.00355-11] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,3-Butanediol (23BD) is a high-value chemical usually produced petrochemically but which can also be synthesized by some bacteria. To date, the best microbial 23BD production rates have been observed using pathogenic bacteria in fermentation systems that depend on sugars as the carbon and energy sources for product synthesis. Here we present evidence of 23BD production by three nonpathogenic acetogenic Clostridium species-Clostridium autoethanogenum, C. ljungdahlii, and C. ragsdalei-using carbon monoxide-containing industrial waste gases or syngas as the sole source of carbon and energy. Through an analysis of the C. ljungdahlii genome, the complete pathway from carbon monoxide to 23BD has been proposed. Homologues of the genes involved in this pathway were also confirmed for the other two species investigated. A gene expression study demonstrates a correlation between mRNA accumulation from 23BD biosynthetic genes and the onset of 23BD production, while a broader expression study of Wood-Ljungdahl pathway genes provides a transcription-level view of one of the oldest existing biochemical pathways.
Collapse
|
78
|
Chen Y, Indurthi DC, Jones SW, Papoutsakis ET. Small RNAs in the genus Clostridium. mBio 2011; 2:e00340-10. [PMID: 21264064 PMCID: PMC3025663 DOI: 10.1128/mbio.00340-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022] Open
Abstract
The genus Clostridium includes major human pathogens and species important to cellulose degradation, the carbon cycle, and biotechnology. Small RNAs (sRNAs) are emerging as crucial regulatory molecules in all organisms, but they have not been investigated in clostridia. Research on sRNAs in clostridia is hindered by the absence of a systematic method to identify sRNA candidates, thus delegating clostridial sRNA research to a hit-and-miss process. Thus, we wanted to develop a method to identify potential sRNAs in the Clostridium genus to open up the field of sRNA research in clostridia. Using comparative genomics analyses combined with predictions of rho-independent terminators and promoters, we predicted sRNAs in 21 clostridial genomes: Clostridium acetobutylicum, C. beijerinckii, C. botulinum (eight strains), C. cellulolyticum, C. difficile, C. kluyveri (two strains), C. novyi, C. perfringens (three strains), C. phytofermentans, C. tetani, and C. thermocellum. Although more than one-third of predicted sRNAs have Shine-Dalgarno (SD) sequences, only one-sixth have a start codon downstream of SD sequences; thus, most of the predicted sRNAs are noncoding RNAs. Quantitative reverse transcription-PCR (Q-RT-PCR) and Northern analysis were employed to test the presence of a randomly chosen set of sRNAs in C. acetobutylicum and several C. botulinum strains, leading to the confirmation of a large fraction of the tested sRNAs. We identified a conserved, novel sRNA which, together with the downstream gene coding for an ATP-binding cassette (ABC) transporter gene, responds to the antibiotic clindamycin. The number of predicted sRNAs correlated with the physiological function of the species (high for pathogens, low for cellulolytic, and intermediate for solventogenic), but not with 16S rRNA-based phylogeny.
Collapse
Affiliation(s)
- Yili Chen
- Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, Newark, Delaware, USA
- Department of Chemical Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware, USA; and
| | - Dinesh C. Indurthi
- Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, Newark, Delaware, USA
- Department of Chemical Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware, USA; and
| | - Shawn W. Jones
- Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, Newark, Delaware, USA
- Department of Chemical Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware, USA; and
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Eleftherios T. Papoutsakis
- Delaware Biotechnology Institute, Molecular Biotechnology Laboratory, University of Delaware, Newark, Delaware, USA
- Department of Chemical Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware, USA; and
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|