51
|
Qian PF, Zhou T, Li JY, Zhou YB, Shi BF. Ru(II)/Chiral Carboxylic Acid-Catalyzed Asymmetric [4 + 3] Annulation of Sulfoximines with α,β-Unsaturated Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi-Bo Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
52
|
Wang B, Xu G, Huang Z, Wu X, Hong X, Yao Q, Shi B. Single‐Step Synthesis of Atropisomers with Vicinal C−C and C−N Diaxes by Cobalt‐Catalyzed Atroposelective C−H Annulation. Angew Chem Int Ed Engl 2022; 61:e202208912. [DOI: 10.1002/anie.202208912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Bing‐Jie Wang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guo‐Xiong Xu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zong‐Wei Huang
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| | - Xu Wu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi‐Jun Yao
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
53
|
Chen J, Teng M, Huang F, Song H, Wang Z, Zhuang H, Wu Y, Wu X, Yao Q, Shi B. Cobalt/Salox‐Catalyzed Enantioselective Dehydrogenative C−H Alkoxylation and Amination. Angew Chem Int Ed Engl 2022; 61:e202210106. [DOI: 10.1002/anie.202210106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jia‐Hao Chen
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ming‐Ya Teng
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Fan‐Rui Huang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hong Song
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zhen‐Kai Wang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - He‐Lin Zhuang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yong‐Jie Wu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xu Wu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi‐Jun Yao
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
54
|
Wu Z, Wu Z, Zhang W, Gu Q, You S. Rh(
III
)‐Catalyzed Enantioselective Intermolecular Aryl C−H Bond Addition to Aldehydes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhi‐Jie Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road Shanghai 201210 China
| | - Zhuo Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road Shanghai 201210 China
| |
Collapse
|
55
|
Zhu J, Wang Y, Charlack AD, Wang YM. Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds. J Am Chem Soc 2022; 144:15480-15487. [PMID: 35976157 PMCID: PMC9437123 DOI: 10.1021/jacs.2c07297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling the propargylic deprotonation of the alkyne through π-coordination, as well as the generation of a π-allyl species from the allylic ether starting material.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu225002, China
| | - Aaron D Charlack
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
56
|
Chen JH, Teng MY, Huang FR, Song H, Wang ZK, Zhuang HL, Wu YJ, Wu X, Yao QJ, Shi BF. Cobalt/Salox‐Catalyzed Enantioselective Dehydrogenative C–H Alkoxylation and Amination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jia-Hao Chen
- Zhejiang University Departmenf of Chemistry CHINA
| | - Ming-Ya Teng
- Zhejiang University Departmenf of Chemistry CHINA
| | | | - Hong Song
- Zhejiang University Departmenf of Chemistry CHINA
| | | | | | - Yong-Jie Wu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Xu Wu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Qi-Jun Yao
- Zhejiang University Departmenf of Chemistry CHINA
| | - Bing-Feng Shi
- Zhejiang University Department of Chemistry 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
57
|
Wang BJ, Xu GX, Huang ZW, Wu X, Hong X, Yao QJ, Shi BF. Single‐Step Synthesis of Atropisomers with Vicinal C–C and C–N Diaxes by Cobalt‐Catalyzed Atroposelective C–H Annulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Guo-Xiong Xu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Zong-Wei Huang
- University of Michigan Departmenf of Chemistry UNITED STATES
| | - Xu Wu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Xin Hong
- Zhejiang University Departmenf of Chemistry CHINA
| | - Qi-Jun Yao
- Zhejiang University Departmenf of Chemistry CHINA
| | - Bing-Feng Shi
- Zhejiang University Department of Chemistry 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
58
|
Brandes DS, Ellman JA. C-H bond activation and sequential addition to two different coupling partners: a versatile approach to molecular complexity. Chem Soc Rev 2022; 51:6738-6756. [PMID: 35822540 PMCID: PMC9364435 DOI: 10.1039/d2cs00012a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sequential multicomponent C-H bond addition is a powerful approach for the rapid, modular generation of molecular complexity in a single reaction. In this approach, C-H bonds are typically added across π-bonds or π-bond isosteres, followed by subsequent coupling to another type of functionality, thereby forming two σ-bonds in a single reaction sequence. Many sequential C-H bond addition reactions have been developed to date, including additions across both conjugated and isolated π-systems followed by coupling with reactants such as carbonyl compounds, cyanating reagents, aminating reagents, halogenating reagents, oxygenating reagents, and alkylating reagents. These atom-economical reactions transform ubiquitous C-H bonds under mild conditions to more complex structures with a high level of regiochemical and stereochemical control. Surprising connectivities and diverse mechanisms have been elucidated in the development of these reactions. Given the large number of possible combinations of coupling partners, there are enormous opportunities for the discovery of new sequential C-H bond addition reactions.
Collapse
Affiliation(s)
- Daniel S Brandes
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA.
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA.
| |
Collapse
|
59
|
Zhou YB, Zhou T, Qian PF, Li JY, Shi BF. Synthesis of Sulfur-Stereogenic Sulfoximines via Co(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective C–H Amidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yi-Bo Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
60
|
Wodrich MD, Chang M, Gallarati S, Woźniak Ł, Cramer N, Corminboeuf C. Mapping Catalyst-Solvent Interplay in Competing Carboamination/Cyclopropanation Reactions. Chemistry 2022; 28:e202200399. [PMID: 35522013 PMCID: PMC9401068 DOI: 10.1002/chem.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/06/2022]
Abstract
Group 9 metals, in particular RhIII complexes with cyclopentadienyl ligands, are competent C-H activation catalysts. Recently, a Cp*RhIII -catalyzed reaction of alkenes with N-enoxyphthalimides showed divergent outcome based on the solvent, with carboamination favored in methanol and cyclopropanation in 2,2,2-trifluoroethanol (TFE). Here, we create selectivity and activity maps capable of unravelling the catalyst-solvent interplay on the outcome of these competing reactions by analyzing 42 cyclopentadienyl metal catalysts, CpX MIII (M=Co, Rh, Ir). These maps not only can be used to rationalize previously reported experimental results, but also capably predict the behavior of untested catalyst/solvent combinations as well as aid in identifying experimental protocols that simultaneously optimize both catalytic activity and selectivity (solutions in the Pareto front). In this regard, we demonstrate how and why the experimentally employed Cp*RhIII catalyst represents an ideal choice to invoke a solvent-induced change in reactivity. Additionally, the maps reveal the degree to which even perceived minor changes in the solvent (e. g., replacing methanol with ethanol) influence the ratio of carboamination and cyclopropanation products. Overall, the selectivity and activity maps presented here provide a generalizable tool to create global pictures of anticipated reaction outcome that can be used to develop new experimental protocols spanning metal, ligand, and solvent space.
Collapse
Affiliation(s)
- Matthew D. Wodrich
- Laboratory for Computational Molecular DesignInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Competence in Research – Catalysis (NCCR-Catalysis)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Miyeon Chang
- Laboratory for Computational Molecular DesignInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Simone Gallarati
- Laboratory for Computational Molecular DesignInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Łukasz Woźniak
- National Centre for Competence in Research – Catalysis (NCCR-Catalysis)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Competence in Research – Catalysis (NCCR-Catalysis)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular DesignInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Competence in Research – Catalysis (NCCR-Catalysis)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Computational Design andDiscovery of Novel Materials (MARVEL)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
61
|
Yue Q, Liu B, Liao G, Shi BF. Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330031, China
| | - Gang Liao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543Republic of Singapore
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| |
Collapse
|
62
|
Li JY, Xie PP, Zhou T, Qian PF, Zhou YB, Li HC, Hong X, Shi BF. Ir(III)-Catalyzed Asymmetric C–H Activation/Annulation of Sulfoximines Assisted by the Hydrogen-Bonding Interaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pei-Pei Xie
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi-Bo Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hao-Chen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, PR China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
63
|
Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Cobalt(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective Synthesis of Benzothiadiazine-1-oxides via C-H Activation. Angew Chem Int Ed Engl 2022; 61:e202205341. [PMID: 35491238 DOI: 10.1002/anie.202205341] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/11/2022]
Abstract
Among sulfoximine derivatives containing a chiral sulfur center, benzothiadiazine-1-oxides are important for applications in medicinal chemistry. Here, we report that the combination of an achiral cobalt(III) catalyst and a pseudo-C2 -symmetric H8 -binaphthyl chiral carboxylic acid enables the asymmetric synthesis of benzothiadiazine-1-oxides from sulfoximines and dioxazolones via enantioselective C-H bond cleavage. With the optimized protocol, benzothiadiazine-1-oxides with several functional groups can be accessed with high enantioselectivity.
Collapse
Affiliation(s)
- Yuki Hirata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshimi Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Luqing Lin
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
64
|
Yoshino T. Enantioselective C–H Functionalization Using High-Valent Group 9 Metal Catalysts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812
| |
Collapse
|
65
|
Dahiya P, Sarkar A, Sundararaju B. Well‐defined [Cp*Co(N,O)I]‐Catalysts for Site‐selective Intramolecular C‐H Amidation. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
66
|
Yao QJ, Chen JH, Song H, Huang FR, Shi BF. Cobalt/Salox-Catalyzed Enantioselective C-H Functionalization of Arylphosphinamides. Angew Chem Int Ed Engl 2022; 61:e202202892. [PMID: 35385597 DOI: 10.1002/anie.202202892] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Previous methods on CoIII -catalyzed asymmetric C-H activation rely on the use of tailor-made cyclopentadienyl-ligated CoIII complexes, which require lengthy steps for the preparation. Herein, we report an unprecedented enantioselective C-H functionalization enabled by a simple cobalt/salicyloxazoline (Salox) catalysis. The chiral Salox ligands can be easily prepared in one step from salicylonitrile and chiral amino alcohols. A broad range of P-stereogenic compounds were synthesized in high yields with excellent enantioselectivities (45 examples, up to 99 % yield and >99 % ee). The isolation and characterization of several intermediates provided insights into the generation of active catalytic cobalt species, the action of Salox, and the mode of stereocontrol.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hong Song
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
67
|
Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Cobalt(III)/Chiral Carboxylic Acid‐Catalyzed Enantioselective Synthesis of Benzothiadiazine‐1‐oxides via C−H Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Hirata
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Yoshimi Kato
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Luqing Lin
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| |
Collapse
|
68
|
Yin SY, Pan C, Zhang WW, Liu CX, Zhao F, Gu Q, You SL. SCpRh(III)-Catalyzed Enantioselective Synthesis of Atropisomers by C2-Arylation of Indoles with 1-Diazonaphthoquinones. Org Lett 2022; 24:3620-3625. [DOI: 10.1021/acs.orglett.2c01141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Si-Yong Yin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chongqing Pan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Fangnuo Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
69
|
Lahtigui O, Forster D, Duchemin C, Cramer N. Enantioselective Access to 3-Azabicyclo[3.1.0]hexanes by Cp xRh III Catalyzed C–H Activation and Cp*Ir III Transfer Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ouidad Lahtigui
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Dan Forster
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Coralie Duchemin
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
70
|
Liu YY, Qu YL, Kang YS, Zhu YL, Sun WY, Lu Y. Mild Three-Step Consecutive C-H Activations. Org Lett 2022; 24:3118-3122. [PMID: 35475650 DOI: 10.1021/acs.orglett.2c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the Rh-catalyzed consecutive C-H bond olefination/annulation/olefination cascade, tandemly directed by sulfonamide and ester groups, has been developed under mild conditions with the assistance of 1-adamantane carboxylic acid. A seven-membered metallacycle including an ester group was preferred to the five-membered one including a sulfonamide group for the third C-H activation. In this transformation, the Rh catalyst exhibits its high reactivity by catalyzing a triple C-H activation process with a low catalyst loading at 50 °C. This method can be applied in the construction of various pharmaceutical derivatives.
Collapse
Affiliation(s)
- Yao-Yao Liu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yuan-Lu Qu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yan-Shang Kang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yue-Lu Zhu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
71
|
Zou Y, Wang P, Kong L, Li X. Rhodium-Catalyzed Atroposelective C-H Arylation of (Hetero)Arenes Using Carbene Precursors as Arylating Reagents. Org Lett 2022; 24:3189-3193. [PMID: 35468294 DOI: 10.1021/acs.orglett.2c00968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rhodium(III)-catalyzed C-H activation-based arylation of sterically hindered (hetero)arenes has been realized using diazo compounds and triazoles as arylating reagents for atroposelective synthesis of two classes of biaryls. The coupling of 3-substituted indoles and N-sulfonyltriazoles afforded indoles with a C(2)-C chiral axis, while the arylation of 1-naphthylthioether with ortho-quinone diazide afforded chiral binaphthyls. These coupling systems proceeded under mild conditions via C-H activation and carbene insertion despite the steric hindrance of both the arenes and the carbene precursors.
Collapse
Affiliation(s)
- Yun Zou
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Peiyuan Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| |
Collapse
|
72
|
Kurihara T, Kojima M, Yoshino T, Matsunaga S. Achiral Cp*Rh(III)/Chiral Lewis Base Cooperative Catalysis for Enantioselective Cyclization via C–H Activation. J Am Chem Soc 2022; 144:7058-7065. [DOI: 10.1021/jacs.2c01223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Takumaru Kurihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
73
|
Yao QJ, Chen JH, Song H, Huang FR, Shi BF. Cobalt/Salox‐Catalyzed Enantioselective C–H Functionalization of Arylphosphinamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi-Jun Yao
- Zhejiang University Department of Chemistry CHINA
| | - Jia-Hao Chen
- Zhejiang University Department of Chemistry CHINA
| | - Hong Song
- Zhejiang University Department of Chemistry CHINA
| | | | - Bing-Feng Shi
- Zhejiang University Department of Chemistry 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
74
|
Dethe DH, Beeralingappa NC, Siddiqui SA, Chavan PN. Asymmetric Ru/Cinchonine Dual Catalysis for the One-Pot Synthesis of Optically Active Phthalides from Benzoic Acids and Acrylates. J Org Chem 2022; 87:4617-4630. [PMID: 35266689 DOI: 10.1021/acs.joc.1c02961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, we report the asymmetric Ru/cinchonine dual catalysis that provides straightforward access to enantioselective synthesis of C-3 substituted phthalides via tandem C-H activation/Michael addition cascade. The use of readily accessible and less expensive [RuCl2(p-cym)]2 and cinchonine catalyst for the one-pot assembly of chiral phthalides greatly overcomes the present trend of using highly sophisticated catalysts. The developed method provides access to both enantiomers of a product using pseudoenantiomeric cinchona alkaloids as catalysts streamlining the synthesis of phthalide in both the optically active forms.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Salman A Siddiqui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Prakash N Chavan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
75
|
Yu W, Chen C, Feng L, Xia T, Shi C, Yang Y, Zhou B. Rhodium(III)-Catalyzed Asymmetric 1,2-Carboamidation of Alkenes Enables Access to Chiral 2,3-Dihydro-3-benzofuranmethanamides. Org Lett 2022; 24:1762-1767. [PMID: 35234476 DOI: 10.1021/acs.orglett.2c00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through the initial screening and further rational design of chiral cyclopentadienyl ligands, a chiral rhodium-catalyzed enantioselective 1,2-carboamidation of aromatic tethered alkenes was developed, enabling the asymmetric preparation of various chiral 2,3-dihydro-3-benzofuranmethanamides with an enantioenriched all-carbon quaternary center at the β position of amide. This robust transformation has a broad functional group tolerance, excellent enantioselectivities (up to 98.5:1.5 er), and a mild reaction conditions, releasing CO2 as the single byproduct.
Collapse
Affiliation(s)
- Wenwen Yu
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lei Feng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqi Xia
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Shi
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxi Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhou
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
76
|
Liao G, Zhang T, Jin L, Wang BJ, Xu CK, Lan Y, Zhao Y, Shi BF. Experimental and Computational Studies on the Directing Ability of Chalcogenoethers in Palladium-Catalyzed Atroposelective C-H Olefination and Allylation. Angew Chem Int Ed Engl 2022; 61:e202115221. [PMID: 34985788 DOI: 10.1002/anie.202115221] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 01/14/2023]
Abstract
We present herein our experimental and DFT computational studies on the directing ability of chalcogenoether motifs in Pd-catalyzed atroposelective C-H functionalization. The thioether motif was found to be a superior directing group compared to the corresponding ether and selenoether in terms of reactivity and enantiocontrol. Remarkably, DFT calculation provided a predictive model for the optimization of reaction conditions and the interpretation of the origin of enantioselectivity. Both Pd-catalyzed enantioselective C-H olefination and allylation reactions were successfully developed using chiral phosphoric acids as efficient ligands, providing a broad range of axially chiral biaryls in good yields with excellent enantioselectivities. The highly enantio- and diastereoselective construction of polyaryls bearing multiple stereogenic axes, gram-scale reaction and various chemical transformations make this protocol more attractive and significant.
Collapse
Affiliation(s)
- Gang Liao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Tao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Liang Jin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Cheng-Kai Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
77
|
Wang Q, Nie YH, Liu CX, Zhang WW, Wu ZJ, Gu Q, Zheng C, You SL. Rhodium(III)-Catalyzed Enantioselective C–H Activation/Annulation of Ferrocenecarboxamides with Internal Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quannan Wang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Yu-Han Nie
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Zhi-Jie Wu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
78
|
Davies C, Shaaban S, Waldmann H. Asymmetric catalysis with chiral cyclopentadienyl complexes to access privileged scaffolds. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
79
|
Enantioselective synthesis of indenopyrazolopyrazolones enabled by dual directing groups-assisted and rhodium(III)-catalyzed tandem C-H alkenylation/[3 + 2] stepwise cycloaddition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
80
|
Liao G, Zhang T, Jin L, Wang BJ, Xu CK, Lan Y, Zhao Y, Shi BF. Experimental and Computational Studies on the Directing Ability of Chalcogenoethers in Palladium‐Catalyzed Atroposelective C–H Olefination and Allylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gang Liao
- Zhejiang University Department of Chemistry CHINA
| | - Tao Zhang
- Zhengzhou University Green Catalysis Center, College of Chemistry CHINA
| | - Liang Jin
- Zhejiang University Department of Chemistry CHINA
| | | | - Cheng-Kai Xu
- Zhejiang University Department of Chemistry CHINA
| | - Yu Lan
- Zhengzhou University Green Catalysis Center, College of Chemistry CHINA
| | - Yu Zhao
- National University of Singapore Department of Chemistry SINGAPORE
| | - Bing-Feng Shi
- Zhejiang University Department of Chemistry 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
81
|
Shaaban S, Merten C, Waldmann H. Catalytic Atroposelective C7 Functionalisation of Indolines and Indoles. Chemistry 2022; 28:e202103365. [PMID: 34676929 PMCID: PMC9298066 DOI: 10.1002/chem.202103365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/15/2022]
Abstract
Axially chiral atropisomeric compounds are widely applied in asymmetric catalysis and medicinal chemistry. In particular, axially chiral indole- and indoline-based frameworks have been recognised as important heterobiaryl classes because they are the core units of bioactive natural alkaloids, chiral ligands and bioactive compounds. Among them, the synthesis of C7-substituted indole biaryls and the analogous indoline derivatives is particularly challenging, and methods for their efficient synthesis are in high demand. Transition-metal catalysis is considered one of the most efficient methods to construct atropisomers. Here, we report the enantioselective synthesis of C7-indolino- and C7-indolo biaryl atropisomers by means of C-H functionalisation catalysed by chiral RhJasCp complexes.
Collapse
Affiliation(s)
- Saad Shaaban
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Christian Merten
- Ruhr University BochumDepartment of Organic ChemistryUniversität Straße 15044801BochumGermany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Straße 1144227DortmundGermany
- Technical University DortmundFaculty of Chemical BiologyOtto-Hahn-Straße 4a44227DortmundGermany
| |
Collapse
|
82
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
83
|
Tanaka R, Hirata Y, Kojima M, Yoshino T, Matsunaga S. Cp*Rh(III)/boron hybrid catalysis for directed C-H addition to β-substituted α,β-unsaturated carboxylic acids. Chem Commun (Camb) 2021; 58:76-79. [PMID: 34874388 DOI: 10.1039/d1cc05956d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The C-H bond addition reaction of 2-phenylpyridine derivatives with α,β-unsaturated carboxylic acids catalyzed by Cp*Rh(III)/BH3·SMe2 is reported. Activation of C-H bonds with the rhodium catalyst and activation of α,β-unsaturated carboxylic acids with the boron catalyst cooperatively work, and a BINOL-urea hybrid ligand significantly improved the reactivity. With the optimized hybrid catalytic system, various β-disubstituted carboxylic acids were obtained under mild reaction conditions.
Collapse
Affiliation(s)
- Ryo Tanaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Yuki Hirata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan. .,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan. .,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
84
|
Mikhailov IE, Dushenko GA, Minkin VI. Pentacarboxycyclopentadienes in Organic Synthesis. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021110014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
85
|
Zhang CW, Hu XQ, Dai YH, Yin P, Wang C, Duan WL. Asymmetric C–H Activation for the Synthesis of P- and Axially Chiral Biaryl Phosphine Oxides by an Achiral Cp*Ir Catalyst with Chiral Carboxylic Amide. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chao-Wei Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Xian-Qi Hu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Yuan-Hao Dai
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Peng Yin
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, People’s Republic of China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi’an 710119, People’s Republic of China
| |
Collapse
|
86
|
Hirose J, Wakikawa T, Satake S, Kojima M, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Cp*Rh III/Chiral Disulfonate/CuOAc Catalyst System for the Enantioselective Intramolecular Oxyamination of Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jumpei Hirose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takumi Wakikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shun Satake
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Manabu Hatano
- Graduate School of Pharmaceutical Sciences, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
87
|
Zhang Q, Wu LS, Shi BF. Forging C−heteroatom bonds by transition metal-catalyzed enantioselective C–H functionalization. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
88
|
Liu YH, Xie PP, Liu L, Fan J, Zhang ZZ, Hong X, Shi BF. Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C-H Activation. J Am Chem Soc 2021; 143:19112-19120. [PMID: 34747617 DOI: 10.1021/jacs.1c08562] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enantioselective hydroarylation of unactivated terminal akenes constitutes a prominent challenge in organic chemistry. Herein, we reported a Cp*Co(III)-catalyzed asymmetric hydroarylation of unactivated aliphatic terminal alkenes assisted by a new type of tailor-made amino acid ligands. Critical to the chiral induction was the engaging of a novel noncovalent interaction (NCI), which has seldomly been disclosed in the C-H activation area, arising from the molecular recognition among the organocobalt(III) intermediate, the coordinated alkene, and the well-designed chiral ligand. A broad range of C2-alkylated indoles were obtained in high yields and excellent enantioselectivities. DFT calculations revealed the reaction mechanism and elucidated the origins of chiral induction in the stereodetermining alkene insertion step.
Collapse
Affiliation(s)
- Yan-Hua Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lei Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhuo-Zhuo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
89
|
Yang C, Li F, Wu TR, Cui R, Wu BB, Jin RX, Li Y, Wang XS. Development of Axially Chiral Styrene-Type Carboxylic Acid Ligands via Palladium-Catalyzed Asymmetric C-H Alkynylation. Org Lett 2021; 23:8132-8137. [PMID: 34647750 DOI: 10.1021/acs.orglett.1c02692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A weakly coordinated carboxylate-directed palladium-catalyzed atroposelective C-H alkynylation method for the development of novel axially chiral styrene-type carboxylic acids is disclosed. This transformation exhibits good yields (up to 85%), excellent enantiocontrol (up to 99% ee), and mild conditions. Notably, the synthetic utility of the resulting alkynyl carboxylic acid derivatives was demonstrated by various derivatizations as well as their potential as chiral ligands in asymmetric C-H activations.
Collapse
Affiliation(s)
- Chi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Fei Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
90
|
Yuan WK, Shi BF. Synthesis of Chiral Spirolactams via Sequential C-H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co II /Chiral Spiro Phosphoric Acid Binary System. Angew Chem Int Ed Engl 2021; 60:23187-23192. [PMID: 34435722 DOI: 10.1002/anie.202108853] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/09/2021] [Indexed: 12/25/2022]
Abstract
An unprecedented enantioselective synthesis of spiro-γ-lactams via a sequential C-H olefination/asymmetric [4+1] spirocyclization under a simple CoII /chiral spiro phosphoric acid (SPA) binary system is reported. A range of biologically important spiro-γ-lactams are obtained with high levels of enantioselectivity (up to 98 % ee). The concise, asymmetric synthesis of an aldose reductase inhibitor was successfully achieved. Notably, contrast to previous reports that relied on the use of cyclopentadienyl or its derivatives (achiral Cp*, CptBu , or chiral Cpx ) ligated CoIII complexes requiring tedious steps to prepare, cheap and commercially available cobalt(II) acetate tetrahydrate was used as an efficient precatalyst.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
91
|
Zhou T, Jiang MX, Qian PF, Yao QJ, Xu XT, Zhang K, Shi BF. Synthesis of Chiral Sulfoxides via Pd(II)-Catalyzed Enantioselective C-H Alkynylation/Kinetic Resolution of 2-(Arylsulfinyl)pyridines. Org Lett 2021; 23:7910-7915. [PMID: 34605653 DOI: 10.1021/acs.orglett.1c02918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A Pd(II)-catalyzed enantioselective C-H alkynylation of 2-(arylsulfinyl)pyridines via kinetic resolution using cheap and commercially available l-pGlu-OH as a chiral ligand is reported. A wide range of 2-(arylsulfinyl)pyridines were compatible with this protocol, giving the alkynylation products and recovered sulfoxides in high yields with high enantioselectivities (up to 99% ee). Furthermore, the enantioenriched products can be easily transformed to several other types of chiral sulfoxide scaffolds with the retention of enantiopurity.
Collapse
Affiliation(s)
- Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Meng-Xue Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
92
|
Perekalin DS, Pototskiy RA, Boym MA, Nelyubina YV. Synthesis of Ruthenium Catalysts with a Chiral Arene Ligand Derived from Natural Camphor. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1668-2075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractA ruthenium complex with a chiral arene ligand [(camphor–arene)RuCl2]2 was synthesized by the reaction of RuCl3·nH2O with a chiral diene which was obtained from natural camphor in three steps. This complex catalyzed the asymmetric hydrogenation of acetophenone (64–85% ee), but decomposed in catalytic reactions involving C–H activation of 2-phenylpyridine or benzoic acid derivatives.
Collapse
Affiliation(s)
- Dmitry S. Perekalin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- National Research University Higher School of Economics
| | - Roman A. Pototskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
| | - Mikhail A. Boym
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- National Research University Higher School of Economics
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
| |
Collapse
|
93
|
Yuan W, Shi B. Synthesis of Chiral Spirolactams via Sequential C−H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co
II
/Chiral Spiro Phosphoric Acid Binary System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wen‐Kui Yuan
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| |
Collapse
|
94
|
Mao R, Zhao Y, Zhu X, Wang F, Deng WQ, Li X. Rhodium-Catalyzed and Chiral Zinc Carboxylate-Assisted Allenylation of Benzamides via Kinetic Resolution. Org Lett 2021; 23:7038-7043. [PMID: 34477394 DOI: 10.1021/acs.orglett.1c02398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enantioenriched allenes are important building blocks. While they have been accessed by other coupling methodologies, enantioenriched allenes have been rarely obtained via C-H activation. In this work, kinetic resolution of tertiary propargyl alcohols as an allenylating reagent has been realized via rhodium(III)-catalyzed C-H allenylation of benzamides. The reaction proceeded efficiently under mild conditions, and both the allenylated products and the propargyl alcohols were obtained in high enantioselectivities with an s-factor of up to 139. The resolution results from bias of the two propargylic substituents and is assisted by a chiral zinc carboxylate additive.
Collapse
Affiliation(s)
- Ruxia Mao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Yanliang Zhao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237 (China)
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Wei-Qiao Deng
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237 (China)
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China.,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237 (China)
| |
Collapse
|
95
|
Pan C, Yin SY, Gu Q, You SL. Cp xM(iii)-catalyzed enantioselective C-H functionalization through migratory insertion of metal-carbenes/nitrenes. Org Biomol Chem 2021; 19:7264-7275. [PMID: 34612356 DOI: 10.1039/d1ob01248g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CpxM(iii)-catalyzed enantioselective C-H functionalization reactions have progressed rapidly using either chiral cyclopentadienyl ligands or appropriate chiral carboxylic acids. In this context, highly reactive carbene and nitrene precursors can serve as effective C-H coupling partners, providing a straightforward and efficient approach to access chiral molecules. In this review, we highlight the developments in CpxM(iii)-catalyzed enantioselective C-H functionalization reactions through migratory insertion of metal-carbenes/nitrenes by employing chiral CpxM(iii) complexes or achiral CpxM(iii) complexes combined with chiral carboxylic acids.
Collapse
Affiliation(s)
- Chongqing Pan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | | | | | | |
Collapse
|
96
|
Herraiz AG, Cramer N. Cobalt(III)-Catalyzed Diastereo- and Enantioselective Three-Component C–H Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
97
|
Hu P, Kong L, Wang F, Zhu X, Li X. Twofold C-H Activation-Based Enantio- and Diastereoselective C-H Arylation Using Diarylacetylenes as Rare Arylating Reagents. Angew Chem Int Ed Engl 2021; 60:20424-20429. [PMID: 34145966 DOI: 10.1002/anie.202106871] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 12/12/2022]
Abstract
C-H bond activation has been established as an attractive strategy to access axially chiral biaryls, and the most straightforward method is direct C-H arylation of arenes. However, the arylating source has been limited to several classes of reactive and bulky reagents. Reported herein is rhodium-catalyzed 1:2 coupling of diarylphosphinic amides and diarylacetylenes for enantio- and diastereoselective construction of biaryls with both central and axial chirality. This twofold C-H activation reaction stays contrast to the previously explored Miura-Satoh type 1:2 coupling of arenes and alkynes in terms of chemoselectivity and proceeded under mild conditions with the alkyne acting as a rare arylating reagent. Both C-H activation events are stereo-determining and are under catalyst control, with the 2nd C-H activation being diastereo-determining in a remote fashion. Analysis of the stereochemistry of the major and side products suggests moderate enantioselectivity of the initial C-H activation-desymmetrization process. However, the minor (R) rhodium vinyl intermediate is consumed more readily in undesired protonolysis, eventually resulting in high enantio- and diastereoselectivity of the major product.
Collapse
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Xiaolin Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
98
|
Oxidation-promoted synthesis of ferrocenyl planar chiral rhodium(iii) complexes for C–H functionalization catalysis. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
99
|
Woźniak Ł, Cramer N. Atropo-Enantioselective Oxidation-Enabled Iridium(III)-Catalyzed C-H Arylations with Aryl Boronic Esters. Angew Chem Int Ed Engl 2021; 60:18532-18536. [PMID: 34153163 PMCID: PMC8457206 DOI: 10.1002/anie.202106403] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Atropo-enantioselective biaryl coupling through C-H bond functionalization is an emerging technology allowing direct construction of axially chiral molecules. This approach is largely limited to electrophilic coupling partners. We report a highly atropo-enantioselective C-H arylation of tetralone derivatives paired with aryl boronic esters as nucleophilic components. The transformation is catalyzed by chiral cyclopentadienyl (Cpx ) iridium(III) complexes and enabled by oxidatively enhanced reductive elimination from high-valent cyclometalated Ir-species.
Collapse
Affiliation(s)
- Łukasz Woźniak
- Institute of Chemical Sciences and Engineering (ISIC)EPFL SB ISIC LCSABCH 43051015LausanneSwitzerland
| | - Nicolai Cramer
- Institute of Chemical Sciences and Engineering (ISIC)EPFL SB ISIC LCSABCH 43051015LausanneSwitzerland
| |
Collapse
|
100
|
Hu P, Kong L, Wang F, Zhu X, Li X. Twofold C−H Activation‐Based Enantio‐ and Diastereoselective C−H Arylation Using Diarylacetylenes as Rare Arylating Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Lingheng Kong
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Fen Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xiaolin Zhu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| |
Collapse
|