51
|
Brösamlen D, Oestreich M. Regioselective Hydroalkylation of Vinyl- and Allylsilanes as Well as Vinylgermanes under Ni-H Catalysis. Org Lett 2023. [PMID: 37418633 DOI: 10.1021/acs.orglett.3c01881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
A Ni-H-catalyzed hydroalkylation of vinylsilanes and -germanes as well as allylsilanes with unactivated alkyl iodides is reported. Unlike related reactions of styrene or vinyl boronate esters, the addition across the C-C double bond proceeds with anti-Markovnikov selectivity to deliver the linear regioisomer. Mechanistic control experiments support a radical mechanism, and a competition experiment reveals that the chemoselectivity is in favor of the vinyl over the allyl group.
Collapse
Affiliation(s)
- Daniel Brösamlen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
52
|
Behera RR, Saha R, Kumar AA, Sethi S, Jana NC, Bagh B. Hydrosilylation of Terminal Alkynes Catalyzed by an Air-Stable Manganese-NHC Complex. J Org Chem 2023. [PMID: 37317486 DOI: 10.1021/acs.joc.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, catalysis with base metal manganese has received a significant amount of interest. Catalysis with manganese complexes having N-heterocyclic carbenes (NHCs) is relatively underdeveloped in comparison to the extensively investigated manganese catalysts possessing pincer ligands (particularly phosphine-based ligands). Herein, we describe the synthesis of two imidazolium salts decorated with picolyl arms (L1 and L2) as NHC precursors. Facile coordination of L1 and L2 with MnBr(CO)5 in the presence of a base resulted in the formation manganese(I)-NHC complexes (1 and 2) as an air-stable solid in good isolated yield. Single-crystal X-ray analysis revealed the structure of the cationic complexes [Mn(CO)3(NHC)][PF6] with tridentate N,C,N binding of the NHC ligand in a facile fashion. Along with a few known manganese(I) complexes, these Mn(I)-NHC complexes 1 and 2 were tested for the hydrosilylation of terminal alkynes. Complex 1 was proved to be an effective catalyst for the hydrosilylation of terminal alkynes with good selectivity toward the less thermodynamically stable β-(Z)-vinylsilanes. This method provided good regioselectivity (anti-Markovnikov addition) and stereoselectivity (β-(Z)-product). Experimental evidence suggested that the present hydrosilylation pathway involved an organometallic mechanism with manganese(I)-silyl species as a possible reactive intermediate.
Collapse
Affiliation(s)
- Rakesh R Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Alamsaty Ashis Kumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
53
|
Liang RX, Tang HW, Liu JL, Xu JF, Chen LJ, Jia YX. Cobalt-catalyzed enantioselective desymmetrizing reductive cyclization of alkynyl cyclodiketones. Chem Sci 2023; 14:6393-6398. [PMID: 37325142 PMCID: PMC10266457 DOI: 10.1039/d3sc00119a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
A highly enantioselective cobalt-catalyzed desymmetrizing reductive cyclization of alkynyl cyclodiketones has been developed. Under mild reaction conditions by employing HBpin as a reducing agent and ferrocene-based PHOX as a chiral ligand, a series of polycyclic tertiary allylic alcohols bearing contiguous quaternary stereocenters are achieved in moderate to excellent yields with excellent enantioselectivities (up to 99%). Broad substrate scope and high functional group compatibility are observed in this reaction. A CoH-catalyzed pathway involving alkyne hydrocobaltation followed by nucleophilic addition to the C[double bond, length as m-dash]O bond is proposed. Synthetic transformations of the product are conducted to demonstrate the practical utilities of this reaction.
Collapse
Affiliation(s)
- Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Heng-Wei Tang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Jia-Liang Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Jian-Feng Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Ling-Jia Chen
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
54
|
Wang X, Xue J, Rong ZQ. Divergent Access to Chiral C2- and C3-Alkylated Pyrrolidines by Catalyst-Tuned Regio- and Enantioselective C(sp 3)-C(sp 3) Coupling. J Am Chem Soc 2023. [PMID: 37307532 DOI: 10.1021/jacs.3c03900] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel-substituted pyrrolidine derivatives are widely used in drugs and bioactive molecules. The efficient synthesis of these valuable skeletons, especially enantiopure derivatives, is still recognized as a key bottleneck to overcome in chemical synthesis. Herein, we report a highly efficient catalyst-tuned regio- and enantioselective hydroalkylation reaction for the divergent synthesis of chiral C2- and C3-alkylated pyrrolidines through desymmetrization of the readily available 3-pyrrolines. The catalytic system consists of CoBr2 with a modified bisoxazoline (BOX) ligand, which can achieve the asymmetric C(sp3)-C(sp3) coupling via the distal stereocontrol, providing a series of C3-alkylated pyrrolidines in high efficiency. Moreover, the nickel catalytic system allows the enantioselective hydroalkylation to synthesize the C2-alkylated pyrrolidines through the tandem alkene isomerization/hydroalkylation reaction. This divergent method uses readily available catalysts, chiral BOX ligands, and reagents, delivering enantioenriched 2-/3-alkyl substituted pyrrolidines with excellent regio- and enantioselectivity (up to 97% ee). We also demonstrate the compatibility of this transformation with complex substrates derived from a series of drugs and bioactive molecules in good efficiency, which offers a distinct entry to more functionalized chiral N-heterocycles.
Collapse
Affiliation(s)
- Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
55
|
Zhang Z, Chen Y, Gu X, Ho CY. (NHC)Ni(II)-Directed Insertions and Higher Substituted Olefin Synthesis from Simple Olefins. Acc Chem Res 2023; 56:1070-1086. [PMID: 37036948 DOI: 10.1021/acs.accounts.3c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
ConspectusWell-controlled olefin insertion is critical for achieving catalytic and productive bulk and fine-chemical synthesis. Developing efficient and selective methods for meeting diverse insertion demands is extremely noteworthy, as it supports numerous transformations. The challenges are related to improving catalyst performance and selectivity control and uniting previously unreactive substrate pairs to achieve higher molecular structural complexity and utility. Nickel catalysts have received persistent attention in higher substituted olefin synthesis and polymerization, and numerous new strategies have been established to fulfill the ever-changing demands. This Account focuses on the recent progress based on N-heterocyclic carbene (NHC) ligands and nickel catalysts in our laboratory in using simple terminal olefins as olefin donors or acceptors.It begins with a brief history of olefin codimerization and the major advances in hydrovinylation achieved by other research groups using ethylene as an olefin donor. It then describes problems related to the reductive elimination that can occur when both the hydrometalated alkene and NHC are on the catalyst. It emphasizes the impact of NHC catalyst generation methods on the competing reactivity. Next, it explains the principal challenges and great opportunities in using our method (with α-olefins as olefin donors and alkenyl sources) to replace intermolecular reductive hydroalkenylation reactions (which require rare and more expensive alkenyl halides and boronic acids as reactants, alongside a stoichiometric amount of metallic reagents). The Account then illustrates the potential uses of our method for solving challenging organic synthesis problems using tailor-made (NHC)Ni(II) catalysts to allow redox-neutral catalytic cycles based on high chemo- and regioselective cross-insertion controls. It shows that upon optimal steric and electronic cooperation between the NHC, olefin donor, and olefin acceptor, regiodivergent insertion and convergent synthesis can be achieved easily.In the course of our work, we uncovered several unique insights into regulating (anti-)Markovnikov hydronickelation, carbonickelation, hydrocarbonation, ring closure, 1,3-allyl shift, isomerization, and catalyst regeneration under green, neutral, and mild-temperature conditions. These insights are also outlined here, along with theoretical calculations that offer additional understandings of the insertion reactivity and selectivity differences observed between the NHC and the highly related phosphorus-based Ni(II) hydride-catalyzed cross-hydroalkenylation and cycloisomerization systems.Compared to traditional olefin and cyclic structure synthesis technology, such as olefin cross-metathesis, enyne cyclization, and cross-coupling reactions, the new catalyst systems often offer previously inaccessible product structural characteristics, substrate scope, and outcomes. In particular, the method is effective for the catalytic synthesis of unsymmetrical and functionalized 1,1-disubstituted olefins (a.k.a. gem-olefins), 1,4-dienes (a.k.a. skipped dienes), conjugated dienes, endo- and exocyclic olefins, fused and spiro rings, and aromatic products. These syntheses are variously achieved by cross-hydroalkenylation, insertion-induced rearrangement, cycloadditions, and other approaches inspired by our investigations and detailed in this Account. Cross-hydroalkenylation can be achieved with high enantioselectivity by application of carefully designed and structurally flexible C1 and C2 chiral NHC ligands, yielding a pool of chiral branched alkenes and 1,4-dienes directly from simple chemical feedstocks used in industry. This Account will draw further attention to green alkenylation and the related development of redox-neutral catalytic cycles.
Collapse
Affiliation(s)
- Zhifeng Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao Gu
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chun-Yu Ho
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
56
|
Ye M, Hou M, Wang Y, Ma X, Yang K, Song Q. Arylation of Terminal Alkynes: Transition-Metal-Free Sonogashira-Type Coupling for the Construction of C(sp)-C(sp 2) Bonds. Org Lett 2023; 25:1787-1792. [PMID: 36884031 DOI: 10.1021/acs.orglett.3c00586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Alkynes are attractive synthons for organic chemistry. Despite the prevalence of transition-metal-catalyzed Sonogashira reactions, a transition-metal-free version of the arylation of terminal alkynes is elusive. Herein, we report an efficient transition-metal-free Sonogashira-type coupling reaction for the one-pot arylation of alkynes to construct C(sp)-C(sp2) bonds from a tetracoordinate boron intermediate with NIS as a mediator. With its high efficiency, wide substrate range, and good functional group tolerance, this method is further supported by the gram-scale synthesis and subsequent modification of complex molecules.
Collapse
Affiliation(s)
- Mingxing Ye
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry at Fuzhou University, Fujian Province University, Fuzhou, Fujian 350108, P. R. China
| | - Mengyuan Hou
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry at Fuzhou University, Fujian Province University, Fuzhou, Fujian 350108, P. R. China
| | - Yahao Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry at Fuzhou University, Fujian Province University, Fuzhou, Fujian 350108, P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry at Fuzhou University, Fujian Province University, Fuzhou, Fujian 350108, P. R. China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry at Fuzhou University, Fujian Province University, Fuzhou, Fujian 350108, P. R. China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry at Fuzhou University, Fujian Province University, Fuzhou, Fujian 350108, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
57
|
Zhang WR, Zhang WW, Li H, Li BJ. Amide-Directed, Rhodium-Catalyzed Enantioselective Hydrosilylation of Unactivated Internal Alkenes. Org Lett 2023; 25:1667-1672. [PMID: 36892303 DOI: 10.1021/acs.orglett.3c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Despite the recent advances made in the area of asymmetric hydrosilylation, metal-catalyzed enantioselective hydrosilylation of unactivated internal alkenes remains a challenge. Here, we report a rhodium-catalyzed enantioselective hydrosilylation of unactivated internal alkenes bearing a polar group. The coordination assistance by an amide group enables the hydrosilylation to occur with high regio- and enantioselectivity.
Collapse
Affiliation(s)
- Wen-Ran Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.,Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), and Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
58
|
Hu L, Gao H, Hu Y, Wu YB, Lv X, Lu G. Origins of Regioselectivity in CuH-Catalyzed Hydrofunctionalization of Alkenes. J Org Chem 2023. [PMID: 36790843 DOI: 10.1021/acs.joc.2c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Factors controlling the regioselectivity in alkene hydrocupration were computationally investigated using energy decomposition analysis. The results demonstrate that the Markovnikov-selective hydrocupration with electronically activated mono-substituted olefins is mostly affected by the destabilizing Pauli repulsion, which is due to the electron delocalization effect. The anti-Markovnikov-selective hydrocupration with 1,1-dialkyl-substituted terminal olefins is dominated by the repulsive electrostatic interactions, which is because of the unequal π electron distribution caused by the induction effect of alkyl substituents.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
59
|
Sheng FT, Wang SC, Zhou J, Chen C, Wang Y, Zhu S. Control of Axial Chirality through NiH-Catalyzed Atroposelective Hydrofunctionalization of Alkynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Feng-Tao Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Shi-Chao Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Junqian Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Changpeng Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People’s Republic of China
| |
Collapse
|
60
|
Xu X, Gao A, Chen W, Xu X, Li J, Cui C. Lanthanum Ate Amide-Catalyzed Regio- and Stereoselective Hydrosilylation of Internal Alkynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Xiaoming Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Ailin Gao
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Wufeng Chen
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Xiufang Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
61
|
Zhong K, Liu S, He X, Ni H, Lai W, Gong W, Shan C, Zhao Z, Lan Y, Bai R. Oxidative cyclopalladation triggers the hydroalkylation of alkynes. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
62
|
Singh D, RajanBabu TV. Chemodivergent, Regio- and Enantioselective Cycloaddition Reactions between 1,3-Dienes and Alkynes. Angew Chem Int Ed Engl 2023; 62:e202216000. [PMID: 36520619 PMCID: PMC9908849 DOI: 10.1002/anie.202216000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/16/2022]
Abstract
Alkynes and 1,3-dienes are among the most readily available precursors for organic synthesis. We report two distinctly different, catalyst-dependent, modes of regio- and enantioselective cycloaddition reactions between these classes of compounds providing rapid access to highly functionalized 1,4-cyclohexadienes or cyclobutenes from the same precursors. Complexes of an earth abundant metal, cobalt, with several commercially available chiral bisphosphine ligands with narrow bite angles catalyze [4+2]-cycloadditions between a 1,3-diene and an alkyne giving a cyclohexa-1,4-diene in excellent chemo-, regio- and enantioselectivities. In sharp contrast, complex of a finely tuned phosphino-oxazoline ligand promotes unique [2+2]-cycloaddition between the alkyne and the terminal double bond of the diene giving a highly functionalized cyclobutene in excellent regio- and enantioselectivities.
Collapse
Affiliation(s)
- Dipshi Singh
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - T. V. RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
63
|
Li T, Liu R, Liu X, Chen Y. Organocalcium-Complex-Catalyzed Dehydrogenative Silylation and Mono/Dihydrosilylation Tandem Reactions of Terminal Alkynes. Org Lett 2023; 25:761-765. [PMID: 36700929 DOI: 10.1021/acs.orglett.2c04230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In principle, catalytic dehydrogenative silylation and mono/dihydrosilylation tandem reactions of terminal alkynes with hydrosilanes provide gem-disilylated alkenes or gem-trisilylated alkanes, but very little progress has been made. Herein, we report organocalcium-complex-catalyzed dehydrogenative silylation and mono/dihydrosilylation tandem reactions of terminal alkynes with hydrosilanes in one pot, which produce gem-disilylated alkenes in moderate yields and gem-trisilylated alkanes in high yields. We also briefly demonstrate that the synthesized gem-disilylated alkenes can be easily transformed into other organosilanes.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Ruixin Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiaojuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.,Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
64
|
Zhao W, Lu HX, Zhang WW, Li BJ. Coordination Assistance: A Powerful Strategy for Metal-Catalyzed Regio- and Enantioselective Hydroalkynylation of Internal Alkenes. Acc Chem Res 2023; 56:308-321. [PMID: 36628651 DOI: 10.1021/acs.accounts.2c00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
ConspectusAlkenes are versatile compounds that are readily available on a large scale from industry or through organic synthesis. The widespread occurrence of alkenes provides the continuous impetus for the development of catalytic asymmetric alkene hydrofunctionalizations, which enables expeditious construction of complex chiral molecules from readily available starting materials. Catalytic asymmetric hydrofunctionalization of internal alkenes presents a notable challenge, due to their low reactivity, many potential side reactions, and the simultaneous control of the regio-, diastereo-, and enantioselectivities.Dehydroamino acids and enamides are among the first substrates that provide notable enantioselectivities in catalytic asymmetric hydrogenation. The crucial importance of an amide coordinating group is established by a series of classical mechanistic studies. This initial success greatly stimulated further development for catalytic hydrogenation and hydrofunctionalization. Building on these pioneering works in asymmetric hydrogenation as well as related hydrofunctionalizations, we have adopted coordination assistance as a powerful tool to address the challenges associated with the asymmetric hydrofunctionalization of internal alkenes. Using a functional group on the alkene substrate as a native coordinating group, a two-point binding mode of the substrate to the metal center effectively enhances the reactivity and facilitates the control of regio-, diastereo- and enantioselectivities. Through this strategy, we have developed a number of alkene hydrofunctionalization methods with excellent regio-, diastereo-, and enantiocontrols.In this Account, we summarize the recent advance in our lab using coordination assistance as a key element to achieve regio- and enantioselective hydroalkynylation of internal alkenes. First, we describe our early work aimed at controlling the regio- and enantioselectivity of hydroalkynylation using disubstituted enamide as the substrate. Both α- and β-alkynylation were achieved by channeling the reaction pathway into a Chalk-Harrod or modified Chalk-Harrod mechanism. Next, we discuss the further development of catalysts to achieve regiodivergent and enantioselective hydroalkynylation of trisubstituted enamide to access vicinal stereocenters and quaternary carbon stereocenters. We also discuss the hydroalkynylation of α,β-unsaturated amides to achieve unconventional site-selectivity through a combination of alkene isomerization and regioselective hydroalkynylation. This provides the basis for the construction of a remote quaternary carbon stereocenter through catalytic hydroalkynylation of trisubstituted β,γ-unsaturated amides. We further show that this controlling principle is applicable to terminal alkene with a coordinating group as well. A ligand-controlled mechanism shift is discussed for the enantioselective alkynylation at the terminal and internal position of 1,1,-disubstituted alkenes. Finally, we briefly mention the application of coordination assistance to other hydrofunctionalizations such as hydroboration and hydrosilylation, where previously inaccessible reactivity and selectivity were achieved. Collectively, these catalytic methods demonstrate the power of coordination assistance for enantioselective hydrofunctionalizations. We anticipate that this strategy will create a platform to enable diverse enantioselective alkene transformations.
Collapse
Affiliation(s)
- Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| | - Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| | - Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Tsinghua Yuan Street, Beijing100084, China
| |
Collapse
|
65
|
Wang Y, Li Y, Wang L, Ding S, Song L, Zhang X, Wu YD, Sun J. Ir-Catalyzed Regioselective Dihydroboration of Thioalkynes toward Gem-Diboryl Thioethers. J Am Chem Soc 2023; 145:2305-2314. [PMID: 36657379 DOI: 10.1021/jacs.2c10881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
While 1,1-diboryl (gem-diboryl) compounds are valuable synthetic building blocks, currently, related studies have mainly focused on those 1,1-diboryl alkanes without a hetero functional group in the α-position. gem-Diboryl compounds with an α-hetero substituent, though highly versatile, have been limitedly accessible and thus rarely utilized. Herein, we have developed the first α-dihydroboration of heteroalkynes leading to the efficient construction of gem-diboryl, hetero-, and tetra-substituted carbon centers. This straightforward, practical, mild, and atom-economic reaction is an attractive complement to the conventional multistep synthetic strategy relying on deprotonation of gem-diborylmethane by a strong base. Specifically, [Ir(cod)(OMe)]2 was found to be uniquely effective for this process of thioalkynes, leading to excellent α-regioselectivity when delivering the two boryl groups, which is remarkable in view of the many competitive paths including monohydroboration, 1,2-dihydroboration, dehydrodiboration, triboration, tetraboration, etc. Control experiments combined with DFT calculations suggested that this process involves two sequential hydroboration events. The second hydroboration requires a higher energy barrier due to severe steric repulsion in generating the highly congested α-sulfenyl gem-diboryl carbon center, a structural motif that was almost unknown before.
Collapse
Affiliation(s)
- Yong Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Yuxuan Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Lei Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Shengtao Ding
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
| |
Collapse
|
66
|
Lu D, Chen C, Zheng L, Ying J, Lu Z. Regio- and Stereoselective Cobalt-Catalyzed Hydroboration of Vinylcyclopropanes to Access Homoallylic Boronates. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Dongpo Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Chenhui Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Lixuan Zheng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Jiale Ying
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Zhan Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| |
Collapse
|
67
|
Suzuki H, Kondo S, Yamada K, Matsuda T. Diastereo- and Enantioselective Reductive Mannich-type Reaction of α,β-Unsaturated Carboxylic Acids to Ketimines: A Direct Entry to Unprotected β 2,3,3 -Amino Acids. Chemistry 2023; 29:e202202575. [PMID: 36341524 PMCID: PMC10107894 DOI: 10.1002/chem.202202575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Stereoselective construction of unprotected β-amino acids is a significant challenge owing to the lack of methods for the catalytic generation of highly enantioenriched carboxylic acid enolates. In this study, a novel copper-catalyzed diastereo- and enantioselective reductive Mannich-type reaction of α,β-unsaturated carboxylic acids was developed, which provides a direct and scalable synthetic method for enantioenriched β2,3,3 -amino acids with vicinal stereogenic centers. The protocol features in situ generation of transiently protected carboxylic acids by a hydrosilane and their diastereo- and enantioselective reductive coupling with ketimines. The synthetic utility of this process was demonstrated by a gram-scale reaction and the transformation of β-amino acids.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sora Kondo
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Koichiro Yamada
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagrazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
68
|
Li H, Yang C, Wang D, Deng L. Cobalt-Catalyzed Regio- and Stereoselective Hydrosilylation of Alk-2-ynes with Tertiary Silanes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongfang Li
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengbo Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
69
|
Ito T, Sunada Y. A Cobalt-Containing Polysilane as an Effective Solid-State Catalyst for the Hydrosilylation of Alkenes. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tatsuyoshi Ito
- Kanagawa Institute of Industrial Science and Technology, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yusuke Sunada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
70
|
Cheng Z, Li M, Zhang XY, Sun Y, Yu QL, Zhang XH, Lu Z. Cobalt-Catalyzed Regiodivergent Double Hydrosilylation of Arylacetylenes. Angew Chem Int Ed Engl 2023; 62:e202215029. [PMID: 36330602 DOI: 10.1002/anie.202215029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Double hydrosilylation of alkynes represents a straightforward method to synthesize bis(silane)s, yet it is challenging if α-substituted vinylsilanes act as the intermediates. Here, a cobalt-catalyzed regiodivergent double hydrosilylation of arylacetylenes is reported for the first time involving this challenge, accessing both vicinal and geminal bis(silane)s with exclusive regioselectivity. Various novel bis(silane)s containing Si-H bonds can be easily obtained. The gram-scale reactions could be performed smoothly. Preliminarily mechanistic studies demonstrated that the reactions were initiated by cobalt-catalyzed α-hydrosilylation of alkynes, followed by cobalt-catalyzed β-hydrosilylation of the α-vinylsilanes to deliver vicinal bis(silane)s, or hydride-catalyzed α-hydrosilylation to give geminal ones. Notably, these bis(silane)s can be used for the synthesis of high-refractive-index polymers (nd up to 1.83), demonstrating great potential utility in optical materials.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yang Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Lei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Hong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310058, China
| |
Collapse
|
71
|
Budagumpi S, Keri RS, Nagaraju D, Yhobu Z, Monica V, Geetha B, Kadu RD, Neole N. Progress in the catalytic applications of cobalt N–heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Kehner RA, Lubaev AE, Rathnayake MD, Loden R, Zhang G, Bayeh-Romero L. Selective zirconocene hydride-catalyzed semi-hydrogenation of terminal alkynes. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
73
|
Yang H, Hinz A, Fan Q, Xie S, Qi X, Huang W, Li Q, Sun H, Li X. Control over Selectivity in Alkene Hydrosilylation Catalyzed by Cobalt(III) Hydride Complexes. Inorg Chem 2022; 61:19710-19725. [PMID: 36455154 DOI: 10.1021/acs.inorgchem.2c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Two new bisphosphine [PCP] pincer cobalt(III) hydrides, [(L1)Co(PMe3)(H)(Cl)] (L11, L1 = 2,6-((Ph2P)(Et)N)2C6H3) and [(L2)Co(PMe3)(H)(Cl)] (L21, L2 = 2,6-((iPr2P)(Et)N)2C6H3), as well as one new bissilylene [SiCSi] pincer cobalt(III) hydride, [(L3)Co(PMe3)(H)(Cl)] (L31, L3 = 1,3-((PhC(tBuN)2Si)(Et)N)2C6H3), were synthesized by reaction of the corresponding protic [PCP] or [SiCSi] pincer ligands L1H, L2H, and L3H with CoCl(PMe3)3. Despite the similarities in the ligand scaffolds, the three cobalt(III) hydrides show remarkably different performance as catalysts in alkene hydrosilylation. Among the PCP pincer complexes, L11 has higher catalytic activity than complex L21, and both catalysts afford anti-Markovnikov selectivity for both aliphatic and aromatic alkenes. In contrast, the catalytic activity for alkene hydrosilylation of silylene complex L31 is comparable to phosphine complex L11, but a dependence of regioselectivity on the substrates was observed: While aliphatic alkenes are converted in an anti-Markovnikov fashion, the hydrosilylation of aromatic alkenes affords Markovnikov products. The substrate scope was explored with 28 examples. Additional experiments were conducted to elucidate these mechanisms of hydrosilylation. The synthesis of cobalt(I) complex (L1)Co(PMe3)2 (L17) and its catalytic properties for alkene hydrosilylation allowed for the proposal of the mechanistic variations that occur in dependence of reaction conditions and substrates.
Collapse
Affiliation(s)
- Haiquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Alexander Hinz
- Institute for Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Xinghao Qi
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
| |
Collapse
|
74
|
Wang Y, He Y, Zhu S. NiH-Catalyzed Functionalization of Remote and Proximal Olefins: New Reactions and Innovative Strategies. Acc Chem Res 2022; 55:3519-3536. [PMID: 36350093 DOI: 10.1021/acs.accounts.2c00628] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transition metal hydride catalyzed functionalization of remote and proximal olefins has many advantages over conventional cross-coupling reactions. It avoids the separate, prior generation of stoichiometric amounts of organometallic reagents and the use of preformed organometallic reagents, which are sometimes hard to access and may compromise functional group compatibility. The migratory insertion of metal hydride complexes generated in situ into readily available alkene starting materials, the hydrometalation process, provides an attractive and straightforward route to alkyl metal intermediates, which can undergo a variety of sequential cross-coupling reactions. In particular, with the synergistic combination of chain-walking and cross-coupling chemistry of nickel, NiH-catalyzed functionalization of remote and proximal olefins has undergone particularly intense development in the past few years. This Account aims to chronicle the progress made in this arena in terms of activation modes, diverse functionalizations, and chemo-, regio-, and enantioselectivity.We first provide a brief introduction to the general reaction mechanisms. Taking remote hydroarylation as an example, the four oxidation states of Ni have allowed us to develop two different reaction strategies to form the final product: a Ni(I)-H/X-Ni(II)-H platform that relies on stoichiometric reductants and a Ni(I/II/III) cycle and a redox-neutral functional group or FG-Ni(II)-H platform that reacts with an alkene substrate and forms the migratory products via a Ni(0/II) pathway. We also demonstrate that diverse functionalization, including general C-C bond-forming reactions and the more challenging C-N/C-S bond-forming reactions could be realized. Moreover, the employment of appropriate chiral ligands has allowed us to successfully realize the corresponding asymmetric hydrofunctionalization reactions of olefins, including hydroalkylation, hydroarylation, hydroalkenylation, hydroalkynylation, and hydroamination. Interestingly, the enantio-determining step could be enantioselective hydronickelation, selective oxidative addition, or selective reductive elimination. To realize more challenging asymmetric migratory hydrofunctionalization, we have developed a general ligand relay catalytic strategy with a combination of two simple ligands, the first for chain-walking and the second for asymmetric coupling. This novel strategy avoids the design of a single, possibly structurally complex chiral ligand to promote both steps of chain-walking and asymmetric coupling. In addition, the success of multicomponent hydrofunctionalization provides a convenient approach to gain simple access to complex molecules. Finally, alkyl halides could be used as olefin precursors to undergo a variety of reductive migratory cross-electrophile coupling reactions. Applications of these remote hydrofunctionalization reactions are also discussed. We hope this Account will inspire future development in the field to overcome key challenges, including conceptually new catalytic strategies, development of high-performance systems with enhanced reactivity and selectivity, cutting-edge catalyst design, and further mechanistic studies.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuli He
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
75
|
Tao X, Wang Q, Kong L, Ni S, Pan Y, Wang Y. Branched-Selective Hydroacylation of Alkenes via Photoredox Cobalt and N-Heterocyclic Carbene Cooperative Triple Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xiangzhang Tao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lingyu Kong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
76
|
Jiao M, Fang X. Cobalt-Catalyzed Hydrocyanation of Methylenecyclopropanes to Homoallylic Nitriles. Org Lett 2022; 24:8890-8894. [DOI: 10.1021/acs.orglett.2c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingdong Jiao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
77
|
Jiang X, Sheng FT, Zhang Y, Deng G, Zhu S. Ligand Relay Catalysis Enables Asymmetric Migratory Reductive Acylation of Olefins or Alkyl Halides. J Am Chem Soc 2022; 144:21448-21456. [DOI: 10.1021/jacs.2c10785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiaoli Jiang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Feng-Tao Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Yao Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Gao Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, China
| |
Collapse
|
78
|
Sennari G, Gardner KE, Wiesler S, Haider M, Eggert A, Sarpong R. Unified Total Syntheses of Benzenoid Cephalotane-Type Norditerpenoids: Cephanolides and Ceforalides. J Am Chem Soc 2022; 144:19173-19185. [PMID: 36198090 PMCID: PMC11620759 DOI: 10.1021/jacs.2c08803] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Detailed herein are our synthetic studies toward the preparation of the C18- and C19-benzenoid cephalotane-type norditerpenoids. Guided by chemical network analysis, the core structure of this natural product family was constructed in a concise manner using an iterative cross-coupling, followed by a formal inverse-electron-demand [4 + 2] cycloaddition. Initial efforts to functionalize an alkene group in the [4 + 2] cycloadduct using a Mukaiyama hydration and a subsequent olefination led to the complete C18-carbon framework. While effective, this approach proved lengthy and prompted the development of a direct alkene difunctionalization that relies on borocupration to advance the cycloadduct to the natural products. Late-stage peripheral C-H functionalization facilitated access to all of the known cephanolides in 6-10 steps as well as five recently isolated ceforalides in 8-13 steps.
Collapse
Affiliation(s)
- Goh Sennari
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Kristen E Gardner
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Stefan Wiesler
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Maximilian Haider
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Alina Eggert
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
79
|
Ni-catalyzed regiodivergent hydrophosphorylation of enynes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
80
|
Enantioselective synthesis of α-aminoboronates by NiH-catalysed asymmetric hydroamidation of alkenyl boronates. Nat Commun 2022; 13:5630. [PMID: 36163363 PMCID: PMC9512809 DOI: 10.1038/s41467-022-33411-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Chiral α-aminoboronic acids and their derivatives are generally useful as bioactive compounds and some have been approved as therapeutic agents. Here we report a NiH-catalysed asymmetric hydroamidation process that with a simple amino alcohol ligand can easily produce a wide range of highly enantioenriched α-aminoboronates from alkenyl boronates and dioxazolones under mild conditions. The reaction is proposed to proceed by an enantioselective hydrometallation followed by an inner-sphere nitrenoid transfer and C–N bond forming sequence. The synthetic utility of this transformation was demonstrated by the efficient synthesis of a current pharmaceutical agent, Vaborbactam. Enantioenriched α-aminoboronic acid, a structural unit in many bioactive molecules, is also a valuable synthon in organic synthesis. Here, the authors disclose a NiH-catalysed asymmetric hydroamidation process for their direct synthesis.
Collapse
|
81
|
Yang Z, Hou S, Cheng Y, Sun L, Yang CH. Co-Catalyzed Reductive Cyclization of Acrylate-Containing 1,6-Enynes. J Org Chem 2022; 87:13339-13345. [PMID: 36137272 DOI: 10.1021/acs.joc.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Co-catalyzed reductive cyclization of acrylate-containing 1,6-enynes is reported, providing an approach to construct five-membered carbocyclic and heterocyclic scaffolds containing enol ethers and all-carbon quaternary carbons. This novel process enables an E/Z mixture of 1,6-enynes to react with good functional group tolerance and good isolated yields, in an operationally simple manner.
Collapse
Affiliation(s)
- Zhantao Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Shenyin Hou
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Yunfan Cheng
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Li Sun
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Chun-Hua Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| |
Collapse
|
82
|
Wu X, Gannett CN, Liu J, Zeng R, Novaes LFT, Wang H, Abruña HD, Lin S. Intercepting Hydrogen Evolution with Hydrogen-Atom Transfer: Electron-Initiated Hydrofunctionalization of Alkenes. J Am Chem Soc 2022; 144:17783-17791. [PMID: 36137298 DOI: 10.1021/jacs.2c08278] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-atom transfer mediated by earth-abundant transition-metal hydrides (M-Hs) has emerged as a powerful tool in organic synthesis. Current methods to generate M-Hs most frequently rely on oxidatively initiated hydride transfer. Herein, we report a reductive approach to generate Co-H, which allows for canonical hydrogen evolution reactions to be intercepted by hydrogen-atom transfer to an alkene. Electroanalytical and spectroscopic studies provided mechanistic insights into the formation and reactivity of Co-H, which enabled the development of two new alkene hydrofunctionalization reactions.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cara N Gannett
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jinjian Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
83
|
Maj AM, Szarłan B, Pawluć P, Zaranek M. Hydroboration of alkynes initiated by sodium triethylborohydride. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
84
|
Gudun KA, Tussupbayev S, Slamova A, Khalimon AY. Hydroboration of isocyanates: cobalt-catalyzed vs. catalyst-free approaches. Org Biomol Chem 2022; 20:6821-6830. [PMID: 35968649 DOI: 10.1039/d2ob01192a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroboration of isocyanates with HBPin was demonstrated using both catalytic and catalyst-free approaches. In arene solvents, the reactions employed the commercially available and bench-stable Co(acac)2/dpephos (dpephos = bis[(2-diphenylphosphino)phenyl] ether) pre-catalyst and proved chemodivergent, showing the formation of either formamides or N-methylamines, depending on the concentration of HBPin and the reaction conditions used. Catalytic monohydroboration of isocyanates to formamides was found to be highly chemoselective, tolerating alkenes, alkynes, aryl halides, esters, carboxamides, nitriles, nitroarenes and heteroaromatic functionalities. The catalyst-free hydroboration reactions have been demonstrated in neat HBPin. Whereas monohydroboration proved less selective compared with Co(acac)2/dpephos-catalyzed transformations, selective deoxygenative hydroboration of isocyanates to N-methylamines was observed under catalyst-free conditions.
Collapse
Affiliation(s)
- Kristina A Gudun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr. Avenue, Nur-Sultan 010000, Kazakhstan.
| | - Samat Tussupbayev
- Institute of Polymer Materials and Technologies, 3/1 Atyrau 1, Almaty 050019, Kazakhstan
| | - Ainur Slamova
- Core Facilities, Office of the Provost, Nazarbayev University, 53 Kabanbay Batyr. Avenue, Nur-Sultan 010000, Kazakhstan
| | - Andrey Y Khalimon
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr. Avenue, Nur-Sultan 010000, Kazakhstan. .,The Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, 53 Kabanbay Batyr. Avenue, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
85
|
Chen J, Ying J, Lu Z. Cobalt-catalyzed branched selective hydroallylation of terminal alkynes. Nat Commun 2022; 13:4518. [PMID: 35922446 PMCID: PMC9349270 DOI: 10.1038/s41467-022-32291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022] Open
Abstract
Here, we reported a cobalt-hydride-catalyzed Markovnikov-type hydroallylation of terminal alkynes with allylic electrophile to access valuable and branched skipped dienes (1,4-dienes) with good regioselectivity. This operationally simple protocol exhibits excellent functional group tolerance and exceptional substrate scope. The reactions could be carried out in gram-scale with TON (turn over number) up to 1160, and the products could be easily derivatized. The preliminary mechanism of electrophilic allylation of α-selective cobalt alkenyl intermediate was proposed based on deuterium labeling experiment and kinetic studies. Selectively generating “skipped” dienes, where two carbon–carbon double bonds are separated by a saturated carbon center, is an interesting problem in organic chemistry, with few reliable, catalytic methods currently available. Here, the authors report branched selective hydroallylation of terminal alkynes with allylic bromides to form skipped dienes, via cobalt catalysis.
Collapse
Affiliation(s)
- Jieping Chen
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jiale Ying
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China. .,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
86
|
Guo J, Tang J, Xi H, Zhao SY, Liu W. Manganese catalyzed urea and polyurea synthesis using methanol as C1 source. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
87
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022; 61:e202205624. [DOI: 10.1002/anie.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|
88
|
Chen C, Wang H, Li T, Lu D, Li J, Zhang X, Hong X, Lu Z. Cobalt‐Catalyzed Asymmetric Sequential Hydroboration/Isomerization/Hydroboration of 2‐Aryl Vinylcyclopropanes. Angew Chem Int Ed Engl 2022; 61:e202205619. [DOI: 10.1002/anie.202205619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Chenhui Chen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hongliang Wang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Tongtong Li
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Dongpo Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Jiajing Li
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xie Zhang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310027 China
- Beijing National Laboratory for Molecular Sciences Zhongguancun North First Street NO. 2 Beijing 100190 China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| |
Collapse
|
89
|
Wang Y, Yin J, Li Y, Yuan X, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Conjugate Addition of Alkene-Derived Nucleophiles to Alkenyl-Substituted Heteroarenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - JianJun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
90
|
Li Y, Liu D, Wan L, Zhang JY, Lu X, Fu Y. Ligand-Controlled Cobalt-Catalyzed Regiodivergent Alkyne Hydroalkylation. J Am Chem Soc 2022; 144:13961-13972. [PMID: 35866845 DOI: 10.1021/jacs.2c06279] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Regiodivergent alkyne hydroalkylation to generate different isomers of an alkene from the same alkyne starting material would be beneficial; however, it remains a challenge. Herein, we report a ligand-controlled cobalt-catalyzed regiodivergent alkyne hydroalkylation. The sensible selection of bisoxazoline (L1) and pyridine-oxazoline (L8) ligands led to reliable and predictable protocols that provided (E)-1,2-disubstituted and 1,1-disubstituted alkenes with high E/Z stereoselectivity and regioisomeric ratio starting from identical terminal alkyne and alkyl halide substrates and produced trisubstituted alkenes in the case of internal alkynes. This method exhibits a broad scope for terminal and internal alkynes with a wide range of activated and unactivated alkyl halides and shows excellent functional group compatibility.
Collapse
Affiliation(s)
- Yan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Deguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Lei Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Jun-Yang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Xi Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Yao Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China.,Institute of Energy, Hefei Comprehensive National Science Center, 230031 Hefei, China
| |
Collapse
|
91
|
Dong W, Ye Z, Zhao W. Enantioselective Cobalt-Catalyzed Hydroboration of Ketone-Derived Silyl Enol Ethers. Angew Chem Int Ed Engl 2022; 61:e202117413. [PMID: 35488385 DOI: 10.1002/anie.202117413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Catalytic asymmetric hydroboration of alkenes is a powerful tool for the synthesis of natural products, agrochemicals, and pharmaceuticals via the versatile transformations of chiral alkyl boronic esters. However, the scope of available alkenes is limited to styrenes, activated alkenes, and compounds with directing groups. The catalytic enantioselective hydroboration of heteroatom-substituted alkenes is rarely explored and those catalyzed by earth-abundant metals are yet to be reported. Herein, we report a cobalt-catalyzed asymmetric hydroboration of ketone-derived silyl enol ethers and provide a convenient approach to access valuable enantiopure β-hydroxy boronic esters. This protocol features mild reaction conditions, a broad substrate scope, and excellent enantioselectivities (up to 99 % ee). This approach was applied in the successful synthesis of salmeterol and albuterol, demonstrating its potential to streamline complex molecule synthesis.
Collapse
Affiliation(s)
- Wenke Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhiyang Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
92
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
93
|
Li WT, Hu MY, Xiong JW, Zhang XY, Zhu SF. Iron-catalysed hydroalumination of internal alkynes. Chem Sci 2022; 13:7873-7879. [PMID: 35865894 PMCID: PMC9258402 DOI: 10.1039/d2sc02160a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Although research on iron-catalysed reactions has recently achieved significant progress, the activity and selectivity of iron catalysts are generally inferior to those of noble-metal catalysts. The development of new iron-catalysed reactions, especially those in which iron catalysts exhibit superior activity or selectivity to other catalysts, is the key to promote iron catalysis. Herein, we report the first protocol for iron-catalysed hydroalumination of internal alkynes. Specifically, in the presence of iron catalysts bearing 2,9-diaryl-1,10-phenanthroline ligands, internal alkynes were stereo- and regioselectively hydroaluminated with the commercially available reagent diisobutylaluminum hydride. Compared with other metal-catalysed alkyne hydroalumination reactions reported in the literature, the iron-catalysed protocol has the following advantages: unusual amino-group-directed regioselectivity, a wide substrate scope, good functional group tolerance, high selectivity, and mild reaction conditions. The alkenylaluminum products prepared in this way could undergo a diverse array of transformations, and were used for the synthesis of bioactive compounds. The current study expands the scope of iron catalysis, provides a new efficient access to alkenylaluminum, discloses the origin of the superiority of iron catalysts, and thus may inspire further studies in related fields.
Collapse
Affiliation(s)
- Wen-Tao Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Meng-Yang Hu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jun-Wen Xiong
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Xin-Yu Zhang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
94
|
Bai JF, Tang J, Gao X, Jiang ZJ, Tang B, Chen J, Gao Z. Regioselective Cycloaddition and Substitution Reaction of Tertiary Propargylic Alcohols and Heteroareneboronic Acids via Acid Catalysis. Org Lett 2022; 24:4507-4512. [PMID: 35708270 DOI: 10.1021/acs.orglett.2c01403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an acid-catalyzed formal cycloaddition and dehydrative substitution reaction of tertiary propargylic alcohols and heteroareneboronic acids. The properties of the substituents on the alkynyl moiety determines the regioselectivity of the reaction, which could selectively construct fused heterocycles, tetrasubstituted allenes, or 1,3-dienes. This reaction proceeds efficiently with a wide array of substrate scope in up to 89% yield. A significant advantage of this protocol is the transition-metal-free and mild conditions needed.
Collapse
Affiliation(s)
- Jian-Fei Bai
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| | - Jianbo Tang
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| | - Xiaolong Gao
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000 Lanzhou, P. R. China
| | - Zhi-Jiang Jiang
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| | - Bencan Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, 315100 Ningbo, PR China
| | - Jia Chen
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| | - Zhanghua Gao
- School of Biological and Chemical Engineering, NingboTech University, 315100 Ningbo, P. R. China
| |
Collapse
|
95
|
Li Q, Fang X, Pan R, Yao H, Lin A. Palladium-Catalyzed Asymmetric Sequential Hydroamination of 1,3-Enynes: Enantioselective Syntheses of Chiral Imidazolidinones. J Am Chem Soc 2022; 144:11364-11376. [PMID: 35687857 DOI: 10.1021/jacs.2c03620] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pd-catalyzed sequential hydroamination of readily available 1,3-enynes is reported. The redox-neutral process provides an efficient route to synthesize a broad scope of imidazolidinones, thiadiazolidines, and imidazolidines. Asymmetric sequential hydroamination generates a series of synthetically valuable, enantioenriched imidazolidinones. Mechanistic studies revealed that the transformation occurred via an intermolecular enyne hydroamination pathway to give an allene intermediate. Subsequent intramolecular hydroamination of the allene intermediate proceeded under the Curtin-Hammett principle to provide enantioenriched imidazolidinone products.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinxin Fang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
96
|
Qin T, Lv G, Miao H, Guan M, Xu C, Zhang G, Xiong T, Zhang Q. Cobalt-Catalyzed Asymmetric Alkylation of (Hetero)Arenes with Styrenes. Angew Chem Int Ed Engl 2022; 61:e202201967. [PMID: 35363410 DOI: 10.1002/anie.202201967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/08/2022]
Abstract
An efficient and general intermolecular Cobalt(II)-catalyzed asymmetric alkylation of styrenes with (hetero)arenes including indoles, thiophene and electron rich arenes has been developed, providing straightforward access to enantioenriched alkyl(hetero)arenes with high enantioselectivity. Mechanistic studies suggest that the reaction underwent a CoH-mediated hydrogen atom transfer (HAT) with alkenes, followed by a pivotal catalyst-controlled SN 2-like pathway between in situ generated organocobalt(IV) species and aromatic nucleophiles. This is the first CoH-catalyzed asymmetric hydrofunctionalization using carbon nucleophiles, providing a new strategy for asymmetric Friedel-Crafts type alkylation.
Collapse
Affiliation(s)
- Tao Qin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guowei Lv
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Huanran Miao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Meihui Guan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Chunlu Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
97
|
Bołt M, Żak P. Solvent-free hydroboration of alkynes catalyzed by an NHC-cobalt complex. RSC Adv 2022; 12:18572-18577. [PMID: 35873331 PMCID: PMC9234744 DOI: 10.1039/d2ra03005e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
A new cobalt complex bearing a bulky N-heterocyclic carbene (NHC) ligand is described as a pre-catalyst for alkyne hydroboration. The proposed catalytic system, synthesized using easily accessible reagents, allowed obtaining a series of mono- and dialkenylboranes in solvent-free conditions with excellent efficiency and selectivity. The results have been compared to those obtained in the presence of the same cobalt complex containing smaller NHC ligands and those achieved for the catalytic system based on a CoCl2 - NHC precursor.
Collapse
Affiliation(s)
- Małgorzata Bołt
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan Uniwersytetu Poznańskiego 8 61-614 Poznan Poland
| | - Patrycja Żak
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan Uniwersytetu Poznańskiego 8 61-614 Poznan Poland
| |
Collapse
|
98
|
Liu T, Li C, Bai J, Zhang P, Guo Y, Wang X. Markovnikov‐Selective Hydroboration of Aryl Alkenes Enabled by A Simple Nickel Salt. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianfen Liu
- Green Catalysis Center College of Chemistry, Zhengzhou University, 100 Science Avenue, High‐Tech District Zhengzhou 450001 China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chuhan Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Panke Zhang
- Green Catalysis Center College of Chemistry, Zhengzhou University, 100 Science Avenue, High‐Tech District Zhengzhou 450001 China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub‐lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
99
|
Cobalt‐Catalyzed Asymmetric Sequential Hydroboration/Isomerization/Hydroboration of 2‐Aryl Vinylcyclopropanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
100
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|