51
|
Wagner S, Accorsi M, Rademann J. Benzyl Mono-P-Fluorophosphonate and Benzyl Penta-P-Fluorophosphate Anions Are Physiologically Stable Phosphotyrosine Mimetics and Inhibitors of Protein Tyrosine Phosphatases. Chemistry 2017; 23:15387-15395. [PMID: 29024172 DOI: 10.1002/chem.201701204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 01/15/2023]
Abstract
α,α-Difluoro-benzyl phosphonates are currently the most popular class of phosphotyrosine mimetics. Structurally derived from the natural substrate phosphotyrosine, they constitute classical bioisosteres and have enabled the development of potent inhibitors of protein tyrosine phosphatases (PTP) and phosphotyrosine recognition sites such as SH2 domains. Being dianions bearing two negative charges, phosphonates, however, do not permeate membranes and thus are often inactive in cells and have not been a successful starting point toward therapeutics, yet. In this work, benzyl phosphonates were modified by replacing phosphorus-bound oxygen atoms with phosphorus-bound fluorine atoms. Surprisingly, mono-P-fluorophosphonates were fully stable under physiological conditions, thus enabling the investigation of their mode of action toward PTP. Three alternative scenarios were tested and mono-P-fluorophosphonates were identified as stable reversible PTP1B inhibitors, despite of the loss of one negative charge and the replacement of one oxygen atom as an H-bond donor by fluorine. In extending this replacement strategy, α,α-difluorobenzyl penta-P-fluorophosphates were synthesized and found to be novel phosphotyrosine mimetics with improved affinity to the phosphotyrosine binding site of PTP1B.
Collapse
Affiliation(s)
- Stefan Wagner
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Matteo Accorsi
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| |
Collapse
|
52
|
Thaiwong T, Sirivisoot S, Takada M, Yuzbasiyan-Gurkan V, Kiupel M. Gain-of-function mutation inPTPN11in histiocytic sarcomas of Bernese Mountain Dogs. Vet Comp Oncol 2017; 16:220-228. [DOI: 10.1111/vco.12357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Affiliation(s)
- T. Thaiwong
- Veterinary Diagnostic Laboratory; Michigan State University; Lansing Michigan
| | - S. Sirivisoot
- Veterinary Diagnostic Laboratory; Michigan State University; Lansing Michigan
- Department of Pathology, Faculty of Veterinary Sciences; Chulalongkorn University; Bangkok Thailand
| | - M. Takada
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| | - V. Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| | - M. Kiupel
- Veterinary Diagnostic Laboratory; Michigan State University; Lansing Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| |
Collapse
|
53
|
Frankson R, Yu ZH, Bai Y, Li Q, Zhang RY, Zhang ZY. Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Cancer Res 2017; 77:5701-5705. [PMID: 28855209 DOI: 10.1158/0008-5472.can-17-1510] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Abstract
Protein tyrosine phosphatases (PTP) are exciting and novel targets for cancer drug discovery that work in concert with protein tyrosine kinases (PTK) in controlling cellular homeostasis. Given the activating role that some PTKs play in initiating growth factor-mediated cellular processes, PTPs are usually perceived as the negative regulators of these events and therefore tumor suppressive in nature. However, mounting evidence indicate that PTPs do not always antagonize the activity of PTKs in regulating tyrosine phosphorylation, but can also play dominant roles in the initiation and progression of signaling cascades that regulate cell functions. It follows, therefore, that PTP malfunction can actively contribute to a host of human disorders, in particular, cancer, metabolic syndromes, and autoimmune diseases. The Src homology domain containing phosphatase 2 (SHP2) and the three-membered family of phosphatases of regenerating liver (PRL) are infamously oncogenic members of the PTP superfamily. Both are established regulators of major cancer pathways such as Ras/ERK1/2, Src, JAK/STAT, JNK, NF-κB, and PTEN/PI3K/AKT. Furthermore, upregulation, mutation, or other dysregulation of these PTPs has been positively correlated with cancer initiation and progression. This review will provide topical coverage of target validation and drug discovery efforts made in targeting these oncogenic PTPs as compelling candidates for cancer therapy. Cancer Res; 77(21); 5701-5. ©2017 AACR.
Collapse
Affiliation(s)
- Rochelle Frankson
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Zhi-Hong Yu
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Yunpeng Bai
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Qinglin Li
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Ruo-Yu Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and Chemistry, Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
54
|
Shp2 regulates migratory behavior and response to EGFR-TKIs through ERK1/2 pathway activation in non-small cell lung cancer cells. Oncotarget 2017; 8:91123-91133. [PMID: 29207630 PMCID: PMC5710910 DOI: 10.18632/oncotarget.20249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
In the clinical treatment of lung cancer, therapy failure is mainly caused by cancer metastasis and drug resistance. Here, we investigated whether the tyrosine phosphatase Shp2 is involved in the development of metastasis and drug resistance in non-small cell lung cancer (NSCLC). Shp2 was overexpressed in a subset of lung cancer tissues, and Shp2 knockdown in lung cancer cells inhibited cell proliferation and migration, downregulated c-Myc and fibronectin expression, and upregulated E-cadherin expression. In H1975 cells, which carry double mutations (L858R + T790M) in epidermal growth factor receptor (EGFR) that confers resistance toward the tyrosine kinase inhibitor gefitinib, Shp2 knockdown increased cellular sensitivity to gefitinib; conversely, in H292 cells, which express wild-type EGFR and are sensitive to gefitinib, Shp2 overexpression increased cellular resistance to gefitinib. Moreover, by overexpressing Shp2 or using U0126, a small-molecule inhibitor of extracellular signal-regulated kinase 1/2 (ERK1/2), we demonstrated that Shp2 inhibited E-cadherin expression and enhanced the expression of fibronectin and c-Myc through activation of the ERK1/2 pathway. Our findings reveal that Shp2 is overexpressed in clinical samples of NSCLC and that Shp2 knockdown reduces the proliferation and migration of lung cancer cells, and further suggest that co-inhibition of EGFR and Shp2 is an effective approach for overcoming EGFR T790M mutation acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Thus, we propose that Shp2 could serve as a new biomarker in the treatment of NSCLC.
Collapse
|
55
|
Berg A, Berg T. A small-molecule screen identifies the antitrypanosomal agent suramin and analogues NF023 and NF449 as inhibitors of STAT5a/b. Bioorg Med Chem Lett 2017. [DOI: 10.1016/j.bmcl.2017.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
56
|
Hu T, Sprague ER, Fodor M, Stams T, Clark KL, Cowan-Jacob SW. The impact of structural biology in medicine illustrated with four case studies. J Mol Med (Berl) 2017; 96:9-19. [PMID: 28669027 DOI: 10.1007/s00109-017-1565-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/18/2022]
Abstract
The contributions of structural biology to drug discovery have expanded over the last 20 years from structure-based ligand optimization to a broad range of clinically relevant topics including the understanding of disease, target discovery, screening for new types of ligands, discovery of new modes of action, addressing clinical challenges such as side effects or resistance, and providing data to support drug registration. This expansion of scope is due to breakthroughs in the technology, which allow structural information to be obtained rapidly and for more complex molecular systems, but also due to the combination of different technologies such as X-ray, NMR, and other biophysical methods, which allows one to get a more complete molecular understanding of disease and ways to treat it. In this review, we provide examples of the types of impact molecular structure information can have in the clinic for both low molecular weight and biologic drug discovery and describe several case studies from our own work to illustrate some of these contributions.
Collapse
Affiliation(s)
- Tiancen Hu
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | | | - Michelle Fodor
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Travis Stams
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Kirk L Clark
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | | |
Collapse
|
57
|
Griger J, Schneider R, Lahmann I, Schöwel V, Keller C, Spuler S, Nazare M, Birchmeier C. Loss of Ptpn11 (Shp2) drives satellite cells into quiescence. eLife 2017; 6:21552. [PMID: 28463680 PMCID: PMC5441871 DOI: 10.7554/elife.21552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/29/2017] [Indexed: 12/20/2022] Open
Abstract
The equilibrium between proliferation and quiescence of myogenic progenitor and stem cells is tightly regulated to ensure appropriate skeletal muscle growth and repair. The non-receptor tyrosine phosphatase Ptpn11 (Shp2) is an important transducer of growth factor and cytokine signals. Here we combined complex genetic analyses, biochemical studies and pharmacological interference to demonstrate a central role of Ptpn11 in postnatal myogenesis of mice. Loss of Ptpn11 drove muscle stem cells out of the proliferative and into a resting state during muscle growth. This Ptpn11 function was observed in postnatal but not fetal myogenic stem cells. Furthermore, muscle repair was severely perturbed when Ptpn11 was ablated in stem cells due to a deficit in stem cell proliferation and survival. Our data demonstrate a molecular difference in the control of cell cycle withdrawal in fetal and postnatal myogenic stem cells, and assign to Ptpn11 signaling a key function in satellite cell activity. DOI:http://dx.doi.org/10.7554/eLife.21552.001
Collapse
Affiliation(s)
- Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Robin Schneider
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Ines Lahmann
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Verena Schöwel
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Medical Faculty and Max Delbrück Center for Molecular Medicine Berlin, Berlin, Germany
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, United States
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Charité Medical Faculty and Max Delbrück Center for Molecular Medicine Berlin, Berlin, Germany
| | - Marc Nazare
- Medicinal Chemistry, Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
58
|
Shp2 Inhibits Proliferation of Esophageal Squamous Cell Cancer via Dephosphorylation of Stat3. Int J Mol Sci 2017; 18:ijms18010134. [PMID: 28085101 PMCID: PMC5297767 DOI: 10.3390/ijms18010134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Shp2 (Src-homology 2 domain-containing phosphatase 2) was originally reported as an oncogene in kinds of solid tumors and hematologic malignancies. However, recent studies indicated that Shp2 may act as tumor suppressors in several tumor types. We investigated the function of Shp2 in esophageal squamous cell cancer (ESCC). The expression level of Shp2 was analyzed in tumor tissues in comparison with adjacent normal tissues of ESCC patients by immunohistochemistry and Western blot. Shp2 was knocked down by Short hairpin RNA to evaluate its function in ESCC cell lines. The relationship between Shp2 and p-Stat3 (signal transducer and activator of transcription 3) in human ESCC tissues was statistically examined. A significant low expression of Shp2 was found in ESCC tissues. Low expression of Shp2 was related to poorer overall survival in patients from The Cancer Genome Atlas (TCGA) dataset. Knockdown of Shp2 increased the growth of ESCC cell lines both in vivo and vitro. Activation of Stat3 (p-Stat3) was induced by Shp2 depletion. Expression of p-Stat3 was negatively correlated with Shp2 expression in ESCC tissues. Furthermore, knockdown of Shp2 attenuated cisplatin-sensitivity of ESCC cells. Shp2 might suppress the proliferation of ESCC by dephosphorylation of p-Stat3 and represents a novel research field for targeted therapy.
Collapse
|
59
|
C-type lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells. Proc Natl Acad Sci U S A 2017; 114:E540-E549. [PMID: 28069953 DOI: 10.1073/pnas.1613254114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immune response against pathogens is a tightly regulated process that must ensure microbial control while preserving integrity of the infected organs. Tuberculosis (TB) is a paramount example of a chronic infection in which antimicrobial immunity is protective in the vast majority of infected individuals but can become detrimental if not finely tuned. Here, we report that C-type lectin dendritic cell (DC) immunoreceptor (DCIR), a key component in DC homeostasis, is required to modulate lung inflammation and bacterial burden in TB. DCIR is abundantly expressed in pulmonary lesions in Mycobacterium tuberculosis-infected nonhuman primates during both latent and active disease. In mice, we found that DCIR deficiency impairs STAT1-mediated type I IFN signaling in DCs, leading to increased production of IL-12 and increased differentiation of T lymphocytes toward Th1 during infection. As a consequence, DCIR-deficient mice control M. tuberculosis better than WT animals but also develop more inflammation characterized by an increased production of TNF and inducible NOS (iNOS) in the lungs. Altogether, our results reveal a pathway by which a C-type lectin modulates the equilibrium between infection-driven inflammation and pathogen's control through sustaining type I IFN signaling in DCs.
Collapse
|
60
|
Chen C, Liang F, Chen B, Sun Z, Xue T, Yang R, Luo D. Identification of demethylincisterol A 3 as a selective inhibitor of protein tyrosine phosphatase Shp2. Eur J Pharmacol 2017; 795:124-133. [DOI: 10.1016/j.ejphar.2016.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022]
|
61
|
Zhang RY, Yu ZH, Zeng L, Zhang S, Bai Y, Miao J, Chen L, Xie J, Zhang ZY. SHP2 phosphatase as a novel therapeutic target for melanoma treatment. Oncotarget 2016; 7:73817-73829. [PMID: 27650545 PMCID: PMC5342016 DOI: 10.18632/oncotarget.12074] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Melanoma ranks among the most aggressive and deadly human cancers. Although a number of targeted therapies are available, they are effective only in a subset of patients and the emergence of drug resistance often reduces durable responses. Thus there is an urgent need to identify new therapeutic targets and develop more potent pharmacological agents for melanoma treatment. Herein we report that SHP2 levels are frequently elevated in melanoma, and high SHP2 expression is significantly associated with more metastatic phenotype and poorer prognosis. We show that SHP2 promotes melanoma cell viability, motility, and anchorage-independent growth, through activation of both ERK1/2 and AKT signaling pathways. We demonstrate that SHP2 inhibitor 11a-1 effectively blocks SHP2-mediated ERK1/2 and AKT activation and attenuates melanoma cell viability, migration and colony formation. Most importantly, SHP2 inhibitor 11a-1 suppresses xenografted melanoma tumor growth, as a result of reduced tumor cell proliferation and enhanced tumor cell apoptosis. Taken together, our data reveal SHP2 as a novel target for melanoma and suggest SHP2 inhibitors as potential novel therapeutic agents for melanoma treatment.
Collapse
Affiliation(s)
- Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Lifan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Lan Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Jingwu Xie
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
62
|
Guo X, Ma W, Xue D, Wang C, Xiao J. Palladium-Catalyzed Ylidyl-Carbonylation of Aryl Halides To Produce α-Acylphosphoranes. Org Lett 2016; 18:4824-4827. [PMID: 27611964 DOI: 10.1021/acs.orglett.6b02278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient synthesis of α-acylphosphoranes by palladium-catalyzed carbonylation of aryl iodides with carbon monoxide and stabilized phosphonium ylides has been developed. Featuring 44 examples, the protocol displayed a wide substrate scope under mild reaction conditions, showcasing its potential in synthetic organic chemistry.
Collapse
Affiliation(s)
- Xiaojun Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an, 710062, China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an, 710062, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an, 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an, 710062, China
| | - Jianliang Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an, 710062, China.,Department of Chemistry, University of Liverpool , Liverpool, L69 7ZD, United Kingdom
| |
Collapse
|
63
|
Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood 2016; 128:1226-33. [PMID: 27458004 DOI: 10.1182/blood-2016-02-698092] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, targeted sequencing to screen 50 multidrug refractory multiple myeloma (rMM) patients was performed by using the Multiple Myeloma Mutation Panel. Patients were pretreated with both immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs), and 88%, 78%, and 68% were refractory to an IMiD, a PI, or both, respectively. The majority of patients had progressive (82%) or refractory (78%) disease immediately before sampling, with 43% being IMiD refractory and 46% being PI refractory in the most recent line of therapy. Compared with newly diagnosed MM, an increased prevalence of mutations in the Ras pathway genes KRAS, NRAS, and/or BRAF (72%), as well as TP53 (26%), CRBN (12%), and CRBN pathway genes (10%) was observed. Longitudinal analyses performed in 3 patients with CRBN mutations at time of IMiD resistance confirmed that these mutations were undetectable at earlier, IMiD-sensitive time points. Furthermore, the functional introduction of these mutations in MM cells conferred lenalidomide resistance in vitro. These data indicate a differential genetic landscape in rMM associated with drug response.
Collapse
|
64
|
Zhang B, Du YL, Lu W, Yan XY, Yang Q, Yang W, Luo JH. Increased Activity of Src Homology 2 Domain Containing Phosphotyrosine Phosphatase 2 (Shp2) Regulates Activity-dependent AMPA Receptor Trafficking. J Biol Chem 2016; 291:18856-66. [PMID: 27417137 DOI: 10.1074/jbc.m116.714501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
Long term synaptic plasticity, such as long term potentiation (LTP), has been widely accepted as a cellular mechanism underlying memory. Recently, it has been unraveled that Shp2 plays a role in synaptic plasticity and memory in Drosophila and mice, revealing significant and conserved effects of Shp2 in cognitive function. However, the exact mechanism underlying this function of Shp2 in synaptic plasticity and memory still remains elusive. Here, we examine the regulation of Shp2 in hippocampal LTP and contextual fear conditioning. We find that Shp2 is rapidly recruited into spines after LTP induction. Furthermore, the phosphorylation level of Shp2 at Tyr-542 is elevated after LTP stimuli either in cultured hippocampal neurons or acute slices. Notably, contextual fear conditioning also regulates the phosphorylation level of Shp2 at Tyr-542, suggesting fine-tuned regulation of Shp2 in LTP and memory formation. By using a Shp2-specific inhibitor and adeno-associated virus-Cre mediated Shp2 knock-out in cultured neurons, we provide evidence that the phosphatase activity of Shp2 is critical for activity-dependent AMPA receptor surface trafficking. Collectively, our results have revealed a regulatory mechanism of Shp2 underlying LTP and memory, broadening our understanding of Shp2 in cognitive function.
Collapse
Affiliation(s)
- Bin Zhang
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong-Lan Du
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen Lu
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xun-Yi Yan
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qian Yang
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei Yang
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian-Hong Luo
- From the Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
65
|
Chen YNP, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, Antonakos B, Chen CHT, Chen Z, Cooke VG, Dobson JR, Deng Z, Fei F, Firestone B, Fodor M, Fridrich C, Gao H, Grunenfelder D, Hao HX, Jacob J, Ho S, Hsiao K, Kang ZB, Karki R, Kato M, Larrow J, La Bonte LR, Lenoir F, Liu G, Liu S, Majumdar D, Meyer MJ, Palermo M, Perez L, Pu M, Price E, Quinn C, Shakya S, Shultz MD, Slisz J, Venkatesan K, Wang P, Warmuth M, Williams S, Yang G, Yuan J, Zhang JH, Zhu P, Ramsey T, Keen NJ, Sellers WR, Stams T, Fortin PD. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016; 535:148-52. [DOI: 10.1038/nature18621] [Citation(s) in RCA: 657] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/26/2016] [Indexed: 01/20/2023]
|
66
|
Zheng J, Huang S, Huang Y, Song L, Yin Y, Kong W, Chen X, Ouyang X. Expression and prognosis value of SHP2 in patients with pancreatic ductal adenocarcinoma. Tumour Biol 2015; 37:7853-9. [PMID: 26695153 DOI: 10.1007/s13277-015-4675-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
SHP2 is an src homology (SH) 2 domain-containing protein tyrosine phosphatase (PTP). SHP2 implicitly contributes to tumorigenesis, but the role of SHP2 in pancreatic ductal adenocarcinoma is still unknown. The purpose of this study was to evaluate the prognostic significance and associated expression of SHP2 in pancreatic ductal adenocarcinoma (PDAC) patients. We used immunohistochemistry to assess the protein expression levels of SHP2 in 79 PDAC specimens. The correlations between SHP2 expression and various clinicopathological features were evaluated by Pearson's chi-square (χ (2)) test, Fisher's exact test, and Spearman's rank. Univariate and multivariate Cox regression analyses were used to identify correlations between the immunohistochemical data for SHP2 expression and the clinicopathologic characteristics in PDAC. Kaplan-Meier survival analysis was used to demonstrate the relation between overall survival and the expression of SHP2. Immunohistochemistry revealed significantly higher rates of high SHP2 expression in PDAC tissues (55.7 %) versus adjacent non-cancer tissues (10.1 %) (P < 0.05). Expression of SHP2 was only significantly correlated with histological differentiation (P = 0.033) and vital status (P = 0.025). Patients with high SHP2 expression had shorter overall survival times compared to those with low SHP2 expression (P = 0.000). Multivariate Cox regression analysis revealed that SHP2 overexpression was an independent prognostic factor in PDAC (P = 0.012). Our study demonstrated for the first time that higher expression of SHP2 might be involved in the progression of pancreatic ductal adenocarcinoma, suggesting that SHP2 may be a potential prognostic marker and target for therapy.
Collapse
Affiliation(s)
- Jiawei Zheng
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Shanshan Huang
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Yufang Huang
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Li Song
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Yin Yin
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Medical College, Xiamen University, Xiamen, China
| | - Wencui Kong
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Xiong Chen
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China.
| | - Xuenong Ouyang
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| |
Collapse
|
67
|
Prahallad A, Heynen GJJE, Germano G, Willems SM, Evers B, Vecchione L, Gambino V, Lieftink C, Beijersbergen RL, Di Nicolantonio F, Bardelli A, Bernards R. PTPN11 Is a Central Node in Intrinsic and Acquired Resistance to Targeted Cancer Drugs. Cell Rep 2015; 12:1978-85. [PMID: 26365186 DOI: 10.1016/j.celrep.2015.08.037] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/24/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023] Open
Abstract
Most BRAF (V600E) mutant melanomas are sensitive to selective BRAF inhibitors, but BRAF mutant colon cancers are intrinsically resistant to these drugs because of feedback activation of EGFR. We performed an RNA-interference-based genetic screen in BRAF mutant colon cancer cells to search for phosphatases whose knockdown induces sensitivity to BRAF inhibition. We found that suppression of protein tyrosine phosphatase non-receptor type 11 (PTPN11) confers sensitivity to BRAF inhibitors in colon cancer. Mechanistically, we found that inhibition of PTPN11 blocks signaling from receptor tyrosine kinases (RTKs) to the RAS-MEK-ERK pathway. PTPN11 suppression is lethal to cells that are driven by activated RTKs and prevents acquired resistance to targeted cancer drugs that results from RTK activation. Our findings identify PTPN11 as a drug target to combat both intrinsic and acquired resistance to several targeted cancer drugs. Moreover, activated PTPN11 can serve as a biomarker of drug resistance resulting from RTK activation.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Vectors
- Genomic Library
- High-Throughput Nucleotide Sequencing
- Humans
- Indoles/pharmacology
- Lentivirus/genetics
- MAP Kinase Signaling System
- Melanoma/drug therapy
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, Inbred NOD
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sulfonamides/pharmacology
- Transduction, Genetic
- Vemurafenib
- Xenograft Model Antitumor Assays
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Anirudh Prahallad
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Guus J J E Heynen
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Giovanni Germano
- Candiolo Cancer Institute - FPO, IRCCS, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy; FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Stefan M Willems
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Bastiaan Evers
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Loredana Vecchione
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Valentina Gambino
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Cor Lieftink
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute - FPO, IRCCS, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy; Department of Oncology, University of Torino, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute - FPO, IRCCS, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy; Department of Oncology, University of Torino, Str. prov. 142 Km 3.95, 10060 Candiolo, Torino, Italy
| | - Rene Bernards
- Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
68
|
Wagner S, Schütz A, Rademann J. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as photoactive phosphotyrosine mimetic. Bioorg Med Chem 2015; 23:2839-47. [PMID: 25907367 DOI: 10.1016/j.bmc.2015.03.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
Phosphopeptide mimetics containing the 4-phosphonocarbonyl phenylalanine (pcF) as a photo-active phosphotyrosine isoster are developed as potent, light-switchable inhibitors of the protein tyrosine phosphatase PTP1B. The photo-active inhibitors 6-10 are derived from phosphopeptide substrates and are prepared from the suitably protected pcF building block 12 by Fmoc-based solid phase peptide synthesis. All pcF-containing peptides are moderate inhibitors of PTP1B with KI values between 10 and 50μM. Irradiation of the inhibitors at 365nm in the presence of the protein PTP1B amplify the inhibitory activity of pcF-peptides up to 120-fold, switching the KI values of the best inhibitors to the sub-micromolar range. Photo-activation of the inhibitors results in the formation of triplet intermediates of the benzoylphosphonate moiety, which deactivate PTP1B following an oxidative radical mechanism. Deactivation of PTP1B proceeds without covalent crosslinking of the protein target with the photo-switched inhibitors and can be reverted by subsequent addition of reducing agent dithiothreitol (DTT).
Collapse
Affiliation(s)
- Stefan Wagner
- Freie Universität Berlin, Institute of Pharmacy, Medicinal Chemistry, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Anja Schütz
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jörg Rademann
- Freie Universität Berlin, Institute of Pharmacy, Medicinal Chemistry, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|