51
|
Effect of Composition of Mg-Al-Oxide Systems on their Catalytic Properties in the Production of 2-Ethyl-1-Hexanol in Vapor-Phase Condensation of 1-Butanol in a Flow System. THEOR EXP CHEM+ 2019. [DOI: 10.1007/s11237-019-09626-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Vlasenko NV, Kyriienko PI, Yanushevska OI, Valihura KV, Soloviev SO, Strizhak PE. The Effect of Ceria Content on the Acid–Base and Catalytic Characteristics of ZrO2–CeO2 Oxide Compositions in the Process of Ethanol to n-Butanol Condensation. Catal Letters 2019. [DOI: 10.1007/s10562-019-02937-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Wang QN, Zhou BC, Weng XF, Lv SP, Schüth F, Lu AH. Hydroxyapatite nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing high C 6-12 alcohol yield. Chem Commun (Camb) 2019; 55:10420-10423. [PMID: 31407748 DOI: 10.1039/c9cc05454e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we have shown that the [Ca-O-P] sites exposed on hydroxyapatite are clearly responsible for C-C formation in ethanol direct-coupling, and their high density accelerates the C-C coupling rate and boosts C6-12 alcohol production. Notably, nanowire-like hydroxyapatite exhibited 30.4% selectivity to n-butanol and 63.9% selectivity to C6-12OH at a conversion of 45.7% at 325 °C, and thereby close to 30% yield of C6-12OH, which is greatly higher than that using the state-of-the-art catalysts (6%).
Collapse
Affiliation(s)
- Qing-Nan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | |
Collapse
|
54
|
Wang QN, Weng XF, Zhou BC, Lv SP, Miao S, Zhang D, Han Y, Scott SL, Schüth F, Lu AH. Direct, Selective Production of Aromatic Alcohols from Ethanol Using a Tailored Bifunctional Cobalt–Hydroxyapatite Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02566] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qing-Nan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Xue-Fei Weng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Bai-Chuan Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Shao-Pei Lv
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Shu Miao
- Dalian National Laboratory of Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Daliang Zhang
- Imaging and Characterization Core Laboratory, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yu Han
- Imaging and Characterization Core Laboratory, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Susannah L. Scott
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Ferdi Schüth
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|
55
|
Liang Z, Jiang D, Fang G, Leng W, Tu P, Tong Y, Liu L, Ni J, Li X. Catalytic Enhancement of Aldol Condensation by Oxygen Vacancy on CeO
2
Catalysts. ChemistrySelect 2019. [DOI: 10.1002/slct.201900712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhe Liang
- Institute of Industrial CatalysisZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Dahao Jiang
- Institute of Industrial CatalysisZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Geqian Fang
- Institute of Industrial CatalysisZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Wenhua Leng
- Institute of Industrial CatalysisZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Pengxiang Tu
- Institute of Industrial CatalysisZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Yuqin Tong
- Institute of Industrial CatalysisZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Liu Liu
- Institute of Industrial CatalysisZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Jun Ni
- Institute of Industrial CatalysisZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| | - Xiaonian Li
- Institute of Industrial CatalysisZhejiang University of Technology, 18 Chaowang Road, Hangzhou P.R.China
| |
Collapse
|
56
|
Grim RG, To AT, Farberow CA, Hensley JE, Ruddy DA, Schaidle JA. Growing the Bioeconomy through Catalysis: A Review of Recent Advancements in the Production of Fuels and Chemicals from Syngas-Derived Oxygenates. ACS Catal 2019. [DOI: 10.1021/acscatal.8b03945] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- R. Gary Grim
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Anh T. To
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Carrie A. Farberow
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jesse E. Hensley
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Daniel A. Ruddy
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Joshua A. Schaidle
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
57
|
Eagan NM, Kumbhalkar MD, Buchanan JS, Dumesic JA, Huber GW. Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0084-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
58
|
Kolesinska B, Fraczyk J, Binczarski M, Modelska M, Berlowska J, Dziugan P, Antolak H, Kaminski ZJ, Witonska IA, Kregiel D. Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E350. [PMID: 30678076 PMCID: PMC6384976 DOI: 10.3390/ma12030350] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/05/2022]
Abstract
Butanol has similar characteristics to gasoline, and could provide an alternative oxygenate to ethanol in blended fuels. Butanol can be produced either via the biotechnological route, using microorganisms such as clostridia, or by the chemical route, using petroleum. Recently, interest has grown in the possibility of catalytic coupling of bioethanol into butanol over various heterogenic systems. This reaction has great potential, and could be a step towards overcoming the disadvantages of bioethanol as a sustainable transportation fuel. This paper summarizes the latest research on butanol synthesis for the production of biofuels in different biotechnological and chemical ways; it also compares potentialities and limitations of these strategies.
Collapse
Affiliation(s)
- Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Michal Binczarski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Magdalena Modelska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Joanna Berlowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biochemistry and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Piotr Dziugan
- Institute of Fermentation Technology and Microbiology, Faculty of Biochemistry and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Biochemistry and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Izabela A Witonska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Dorota Kregiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biochemistry and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| |
Collapse
|
59
|
Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts. Catalysts 2019. [DOI: 10.3390/catal9010066] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in ethanol production from renewable natural sources in Thailand has been receiving much attention as an alternative form of energy. The low-cost accessibility of ethanol has been seen as an interesting topic, leading to the extensive study of the formation of distinct chemicals, such as ethylene, diethyl ether, acetaldehyde, and ethyl acetate, starting from ethanol as a raw material. In this paper, ethanol dehydrogenation to acetaldehyde in a one-step reaction was investigated by using commercial activated carbon with four different metal-doped catalysts. The reaction was conducted in a packed-bed micro-tubular reactor under a temperature range of 250–400 °C. The best results were found by using the copper doped on an activated carbon catalyst. Under this specified condition, ethanol conversion of 65.3% with acetaldehyde selectivity of 96.3% at 350 °C was achieved. This was probably due to the optimal acidity of copper doped on the activated carbon catalyst, as proven by the temperature-programmed desorption of ammonia (NH3-TPD). In addition, the other three catalyst samples (activated carbon, ceria, and cobalt doped on activated carbon) also favored high selectivity to acetaldehyde (>90%). In contrast, the nickel-doped catalyst was found to be suitable for ethylene production at an operating temperature of 350 °C.
Collapse
|
60
|
Wang D, Liu Z, Liu Q. Efficient conversion of ethanol to 1-butanol and C5–C9 alcohols over calcium carbide. RSC Adv 2019; 9:18941-18948. [PMID: 35516851 PMCID: PMC9065079 DOI: 10.1039/c9ra02568e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
Production of 1-butanol or alcohols with 4–9 carbon atoms (C4–C9 alcohols) from widely available bio-ethanol has attracted much interest in recent years in academia and industry of renewable chemicals and liquid fuels. This work discloses for the first time that calcium carbide (CaC2) has a superior catalytic activity in condensation of ethanol to C4–C9 alcohols at 275–300 °C. The 1-butanol yield reached up to 24.5% with ethanol conversion of 62.4% at the optimized conditions. The by-products are mainly alcohols with 5–9 carbons besides 2-butanol, and the total yield of all the alcohols reached up to 56.3%. The reaction route was investigated through controlled experiments and quantitative analysis of the products. Results indicated that two reaction routes, aldol-condensation and self-condensation, took place simultaneously. The aldol-condensation route involves coupling of ethanol with acetaldehyde (formed from ethanol dehydrogenation) to form 2-butenol, which is subsequently hydrogenated to 1-butanol. The alkynyl moiety in CaC2 plays an important role in the catalytic pathways of both routes and affords the good activity of CaC2. CaC2 is converted to acetylene [C2H2] and calcium hydroxide [Ca(OH)2] simultaneously by the H2O that was generated from the condensation of alcohols. Efficient synthesis of 1-butanol and C5–C9 alcohols from widely available bio-ethanol over CaC2 and reaction mechanism were investigated in this work.![]()
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Zhenyu Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Qingya Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|
61
|
Jiang D, Fang G, Tong Y, Wu X, Wang Y, Hong D, Leng W, Liang Z, Tu P, Liu L, Xu K, Ni J, Li X. Multifunctional Pd@UiO-66 Catalysts for Continuous Catalytic Upgrading of Ethanol to n-Butanol. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04014] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dahao Jiang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Geqian Fang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yuqin Tong
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xianyuan Wu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yifan Wang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dongsen Hong
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wenhua Leng
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhe Liang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pengxiang Tu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liu Liu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kaiyue Xu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jun Ni
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaonian Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
62
|
Sun Z, Barta K. Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chem Commun (Camb) 2018; 54:7725-7745. [PMID: 29926013 DOI: 10.1039/c8cc02937g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structural complexity of lignocellulose offers unique opportunities for the development of entirely new, energy efficient and waste-free pathways in order to obtain valuable bio-based building blocks. Such sustainable catalytic methods - specifically tailored to address the efficient conversion of abundant renewable starting materials - are necessary to successfully compete, in the future, with fossil-based multi-step processes. In this contribution we give a summary of recent developments in this field and describe our "cleave and couple" strategy, where "cleave" refers to the catalytic deconstruction of lignocellulose to aromatic and aliphatic alcohol intermediates, and "couple" involves the development of novel, sustainable transformations for the formation of C-C and C-N bonds in order to obtain a range of attractive products from lignocellulose.
Collapse
Affiliation(s)
- Zhuohua Sun
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | | |
Collapse
|
63
|
Quesada J, Faba L, Díaz E, Ordóñez S. Copper-Basic Sites Synergic Effect on the Ethanol Dehydrogenation and Condensation Reactions. ChemCatChem 2018. [DOI: 10.1002/cctc.201800517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jorge Quesada
- Department of Chemical and Environmental Engineering; University of Oviedo; Av. Julián Clavería s/n, Oviedo 33006 Spain
| | - Laura Faba
- Department of Chemical and Environmental Engineering; University of Oviedo; Av. Julián Clavería s/n, Oviedo 33006 Spain
| | - Eva Díaz
- Department of Chemical and Environmental Engineering; University of Oviedo; Av. Julián Clavería s/n, Oviedo 33006 Spain
| | - Salvador Ordóñez
- Department of Chemical and Environmental Engineering; University of Oviedo; Av. Julián Clavería s/n, Oviedo 33006 Spain
| |
Collapse
|