51
|
Heger Z, Kominkova M, Cernei N, Krejcova L, Kopel P, Zitka O, Adam V, Kizek R. Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology. Electrophoresis 2014; 35:3290-301. [DOI: 10.1002/elps.201400166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/23/2014] [Accepted: 08/11/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Zbynek Heger
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Marketa Kominkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Ludmila Krejcova
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
52
|
Qian J, Yao B, Wu C. Fluorescence resonance energy transfer detection methods: Sensitized emission and acceptor bleaching. Exp Ther Med 2014; 8:1375-1380. [PMID: 25289026 PMCID: PMC4186368 DOI: 10.3892/etm.2014.1928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022] Open
Abstract
The present study compared the advantages and disadvantages of fluorescence resonance energy transfer (FRET) determination technologies, namely, sensitized emission (SE) and acceptor bleaching (AB), in order to analyze the applicability of SE and AB for studies investigating particularly interesting new cysteine histidine-rich protein 1 (PINCH1)/integrin-linked kinase (ILK) interaction. HeLa cells were transfected with cyan fluorescent protein (CFP)-PINCH1 and yellow fluorescent protein (YFP)-ILK to establish a PINCH1/ILK interaction examination model. PINCH1/ILK interactions in different parts of the cells were also examined by SE and AB. The FRET determination technologies SE and AB were able to examine PINCH1/ILK interaction. SE was more sensitive for FRET determination and thus had greater reliability. Therefore, SE is highly commended for membrane protein-protein interaction studies.
Collapse
Affiliation(s)
- Jie Qian
- School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Bingbo Yao
- School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Chuanyue Wu
- School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China ; South University of Science and Technology of China, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
53
|
Newman RH, Zhang J, Zhu H. Toward a systems-level view of dynamic phosphorylation networks. Front Genet 2014; 5:263. [PMID: 25177341 PMCID: PMC4133750 DOI: 10.3389/fgene.2014.00263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/16/2014] [Indexed: 11/13/2022] Open
Abstract
To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks.
Collapse
Affiliation(s)
- Robert H Newman
- Department of Biology, North Carolina Agricultural and Technical State University Greensboro, NC, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; High-Throughput Biology Center, Institute for Basic Biomedical Sciences, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
54
|
Chakraborty S, Núñez D, Hu SY, Domingo MP, Pardo J, Karmenyan A, Chiou A. FRET based quantification and screening technology platform for the interactions of leukocyte function-associated antigen-1 (LFA-1) with intercellular adhesion molecule-1 (ICAM-1). PLoS One 2014; 9:e102572. [PMID: 25032811 PMCID: PMC4102529 DOI: 10.1371/journal.pone.0102572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/19/2014] [Indexed: 11/29/2022] Open
Abstract
The interaction between leukocyte function-associated antigen-1(LFA-1) and intercellular adhesion molecule-1 (ICAM-1) plays a pivotal role in cellular adhesion including the extravasation and inflammatory response of leukocytes, and also in the formation of immunological synapse. However, irregular expressions of LFA-1 or ICAM-1 or both may lead to autoimmune diseases, metastasis cancer, etc. Thus, the LFA-1/ICAM-1 interaction may serve as a potential therapeutic target for the treatment of these diseases. Here, we developed one simple 'in solution' steady state fluorescence resonance energy transfer (FRET) technique to obtain the dissociation constant (Kd) of the interaction between LFA-1 and ICAM-1. Moreover, we developed the assay into a screening platform to identify peptides and small molecules that inhibit the LFA-1/ICAM-1 interaction. For the FRET pair, we used Alexa Fluor 488-LFA-1 conjugate as donor and Alexa Fluor 555-human recombinant ICAM-1 (D1-D2-Fc) as acceptor. From our quantitative FRET analysis, the Kd between LFA-1 and D1-D2-Fc was determined to be 17.93±1.34 nM. Both the Kd determination and screening assay were performed in a 96-well plate platform, providing the opportunity to develop it into a high-throughput assay. This is the first reported work which applies FRET based technique to determine Kd as well as classifying inhibitors of the LFA-1/ICAM-1 interaction.
Collapse
Affiliation(s)
| | - David Núñez
- Instituto de Carboquímica, CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
| | - Shih-Yang Hu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - María Pilar Domingo
- Instituto de Carboquímica, CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
| | - Julian Pardo
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Facultad de Ciencias, University of Zaragoza, Zaragoza, Spain
- Aragón I+D Foundation, Government of Aragon, Zaragoza, Spain
- Nanoscience Institute of Aragón, Aragón I+D Foundation, University of Zaragoza, Zaragoza, Spain
| | - Artashes Karmenyan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Eva Ma Gálvez
- Instituto de Carboquímica, CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute, Biomedical Research Centre of Aragón, Zaragoza, Spain
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
55
|
Oldach L, Zhang J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. ACTA ACUST UNITED AC 2014; 21:186-97. [PMID: 24485761 DOI: 10.1016/j.chembiol.2013.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Abstract
Fluorescence-based, genetically encodable biosensors are widely used tools for real-time analysis of biological processes. Over the last few decades, the number of available genetically encodable biosensors and the types of processes they can monitor have increased rapidly. Here, we aim to introduce the reader to general principles and practices in biosensor development and highlight ways in which biosensors can be used to illuminate outstanding questions of biological function. Specifically, we focus on sensors developed for monitoring kinase activity and use them to illustrate some common considerations for biosensor design. We describe several uses to which kinase and second-messenger biosensors have been put, and conclude with considerations for the use of biosensors once they are developed. Overall, as fluorescence-based biosensors continue to diversify and improve, we expect them to continue to be widely used as reliable and fruitful tools for gaining deeper insights into cellular and organismal function.
Collapse
Affiliation(s)
- Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Department of Oncology, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
56
|
Rivardo F, Leach TGH, Chan CS, Winstone TML, Ladner CL, Sarfo KJ, Turner RJ. Unique Photobleaching Phenomena of the Twin-Arginine Translocase Respiratory Enzyme Chaperone DmsD. Open Biochem J 2014; 8:1-11. [PMID: 24497893 PMCID: PMC3912628 DOI: 10.2174/1874091x01408010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 11/22/2022] Open
Abstract
DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for translocation. Here, we demonstrate that DmsD exhibits an irreversible photobleaching phenomenon upon 280 nm excitation irradiation. The phenomenon is due to quenching of the tryptophan residues in DmsD and is dependent on its folding and conformation. We also show that a tryptophan residue involved in DmsA signal peptide binding (W87) is important for photobleaching of DmsD. Mutation of W87, or binding of the DmsA twin-arginine signal peptide to DmsD in the pocket that includes W72, W80, and W91 significantly affects the degree of photobleaching. This study highlights the advantage of a photobleaching phenomenon to study protein folding and conformation changes within a protein that was once considered unusable in fluorescence spectroscopy.
Collapse
Affiliation(s)
- Fabrizio Rivardo
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Thorin G H Leach
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Catherine S Chan
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Tara M L Winstone
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Carol L Ladner
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Kwabena J Sarfo
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Raymond J Turner
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
57
|
Abstract
Macromolecular complexes are involved in a broad spectrum of cellular processes including protein biosynthesis, protein secretion and degradation, metabolism, DNA replication and repair, and signal transduction along with other important biological processes. The analysis of protein complexes in health and disease is important to gain insights into cellular physiology and pathophysiology. In the last few decades, research has focused on the identification and the dynamics of macromolecular complexes. Several techniques have been developed to isolate native protein complexes from cells and tissues to allow further characterization by microscopic and proteomic analysis. In the present paper, we provide a brief overview of proteomic methods that can be used to identify protein–protein interactions, focusing on recent developments to study the entire complexome of a biological sample.
Collapse
|