51
|
Arai T, Araya T, Sasaki D, Taniguchi A, Sato T, Sohma Y, Kanai M. Rational Design and Identification of a Non-Peptidic Aggregation Inhibitor of Amyloid-β Based on a Pharmacophore Motif Obtained fromcyclo[-Lys-Leu-Val-Phe-Phe-]. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
52
|
Arai T, Araya T, Sasaki D, Taniguchi A, Sato T, Sohma Y, Kanai M. Rational Design and Identification of a Non-Peptidic Aggregation Inhibitor of Amyloid-β Based on a Pharmacophore Motif Obtained fromcyclo[-Lys-Leu-Val-Phe-Phe-]. Angew Chem Int Ed Engl 2014; 53:8236-9. [DOI: 10.1002/anie.201405109] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/20/2014] [Indexed: 11/10/2022]
|
53
|
McKoy AF, Chen J, Schupbach T, Hecht MH. Structure-activity relationships for a series of compounds that inhibit aggregation of the Alzheimer's peptide, Aβ42. Chem Biol Drug Des 2014; 84:505-12. [PMID: 24751138 DOI: 10.1111/cbdd.12341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 02/26/2014] [Accepted: 03/31/2014] [Indexed: 12/15/2022]
Abstract
Inhibiting aggregation of the amyloid-beta (Aβ) peptide may be an effective strategy for combating Alzheimer's disease. As the high-resolution structure of the toxic Aβ aggregate is unknown, rational design of small molecule inhibitors is not possible, and inhibitors are best isolated by high-throughput screening. We applied high-throughput screening to a collection of 65,000 compounds to identify compound D737 as an inhibitor of Aβ aggregation. D737 diminished the formation of oligomers and fibrils, and reduced Aβ42-induced cytotoxicity. Most importantly, D737 increased the life span and locomotive ability of transgenic flies in a Drosophila melanogaster model of Alzheimer's disease (J Biol Chem, 287, 2012, 38992). To explore the chemical features that make D737 an effective inhibitor of Aβ42 aggregation and toxicity, we tested a small collection of eleven analogues of D737. Overall, the ability of a compound to inhibit Aβ aggregation was a good predictor of its efficacy in prolonging the life span and locomotive ability of transgenic flies expressing human Aβ42 in the central nervous system. Two compounds (D744 and D830) with fluorine substitutions on an aromatic ring were effective inhibitors of Aβ42 aggregation and increased the longevity of transgenic flies beyond that observed for the parent compound, D737.
Collapse
Affiliation(s)
- Angela F McKoy
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | | | | | | |
Collapse
|
54
|
Zhou ZL, Ho Y, Liu HL, Elumalai P, Chen WH. Computer-aided discovery of novel non-peptide inhibitors against amyloid-beta (Aβ) peptide aggregation for treating Alzheimer's disease. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.910600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
55
|
Madine J, Davies HA, Hughes E, Middleton DA. Heparin promotes the rapid fibrillization of a peptide with low intrinsic amyloidogenicity. Biochemistry 2013; 52:8984-92. [PMID: 24279288 DOI: 10.1021/bi401231u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid deposits in vivo are complex mixtures composed of protein fibrils and nonfibrillar components, including polysaccharides of the glycosaminoglycan (GAG) class. It has been widely documented that GAGs influence the initiation and progress of self-assembly by several disease-associated amyloidogenic proteins and peptides in vitro. Here we investigated whether the GAG heparin can serve as a cofactor to induce amyloid-like fibril formation in a peptide predicted to have a weak propensity to aggregate and not associated with amyloid disorders. We selected the 23-residue peptide PLB(1-23), which corresponds to the acetylated cytoplasmic domain of the phospholamban transmembrane protein. PLB(1-23) remains unfolded in aqueous solution for >24 h and does not bind thioflavin T over this time period, in agreement with computer predictions that the peptide has a very low intrinsic amyloidogenicity. In the presence of low-molecular mass (5 kDa) heparin, which binds PLB(1-23) with micromolar affinity, the peptide undergoes spontaneous and rapid assembly into amyloid-like fibrils, the effect being more pronounced at pH 5.5 than at pH 7.4. At the lower pH, peptide aggregation is accompanied by a transition to a β-sheet rich structure. These results are consistent with the polyanionic heparin serving as a scaffold to enhance aggregation by aligning the peptide molecules in the correct orientation and with the appropriate periodicity. PLB(1-23) is toxic to cells when added in isolation, and promotion of fibril formation by heparin can reduce the toxicity of this peptide, consistent with the notion that amyloid-like fibrils represent a benign end stage of fibrillization. This work provides insight into the role that heparin and other glycosaminoglycans may play in amyloid formation and provides therapeutic avenues targeting the reduction of cytotoxicity of species along the amyloid formation pathway.
Collapse
Affiliation(s)
- Jillian Madine
- Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | | | |
Collapse
|
56
|
Discovery of dihydrochalcone as potential lead for Alzheimer's disease: in silico and in vitro study. PLoS One 2013; 8:e79151. [PMID: 24260164 PMCID: PMC3832475 DOI: 10.1371/journal.pone.0079151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/18/2013] [Indexed: 01/06/2023] Open
Abstract
By the virtual screening method we have screened out Dihydrochalcone as a top-lead for the Alzheimer’s disease using the database of about 32364 natural compounds. The binding affinity of this ligand to amyloid beta (A) fibril has been thoroughly studied by computer simulation and experiment. Using the Thioflavin T (ThT) assay we have obtained the inhibition constant IC50 M. This result is in good agreement with the estimation of the binding free energy obtained by the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulation with the force field CHARMM 27 and water model TIP3P. Cell viability assays indicated that Dihydrochalcone could effectively reduce the cytotoxicity induced by A. Thus, both in silico and in vitro studies show that Dihydrochalcone is a potential drug for the Alzheimers disease.
Collapse
|
57
|
Bramanti E, Fulgentini L, Bizzarri R, Lenci F, Sgarbossa A. β-Amyloid amorphous aggregates induced by the small natural molecule ferulic acid. J Phys Chem B 2013; 117:13816-21. [PMID: 24168390 DOI: 10.1021/jp4079986] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an emerging interest in small natural molecules for their potential therapeutic use in neurodegenerative disorders like Alzheimer's disease (AD). Ferulic acid (FA), an antioxidant phenolic compound present in fruit and vegetables, has been proposed as an inhibitor of beta amyloid (Aβ) pathological aggregation. Using fluorescence and Fourier transform infrared spectroscopy, electrophoresis techniques, chromatographic analysis, and confocal microscopy, we investigated the effects of FA in the early stages of Aβ fibrillogenesis in vitro. Our results show that FA interacts promptly with Aβ monomers/oligomers, interfering since the beginning with its self-assembly and finally forming amorphous aggregates more prone to destabilization. These findings highlight the molecular basis underlying FA antiamyloidogenic activity in AD.
Collapse
Affiliation(s)
- Emilia Bramanti
- Istituto dei Composti Organo-Metallici, ‡Istituto di Biofisica, and §Istituto Nazionale di Ottica, CNR , U.O. Pisa, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | | | | | | | | |
Collapse
|
58
|
Berhanu WM, Masunov AE. Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors. J Biomol Struct Dyn 2013; 32:1651-69. [PMID: 24028418 DOI: 10.1080/07391102.2013.832635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amyloid oligomers are considered to play essential roles in the pathogenesis of amyloid-related degenerative diseases including type 2 diabetes. Using an explicit solvent all atomic MD simulation, we explored the stability, conformational dynamics and association force of different single-layer models of the full-length wild-type and glycine mutants of amylin (pentamer) obtained from a recent high resolution fibril model. The RMSF profile shows enhanced flexibility in the disorder (Lys1-Cys7) and turn region (Ser19-Gly23), along with smallest fluctuation at the residues (Asn14-Phe15-Leu16-Val17-His18) of β1 region and (Ala25-Ile26-Leu27-Ser28-Ser29) of the β2 region. We obtained a significant difference in backbone RMSD between the wild-type and the mutants, indicating that mutations affected the stability of the peptide. The RMSD and RMSF profiles indicate the edge and loop residues are the primary contributors to the overall conformational changes. The degree of structural similarity between the oligomers in the simulation and the fibril conformation is proposed as the possible explanation for experimentally observed shortening of the nucleation lag phase of amylin with oligomer seeding. On the basis of structure-stability findings, the β1 and β2 portions are optimal target for further anti-amyloid drug design. The MM-PBSA binding energy calculation reveals the binding of amylin: amylin strands in single layer is dominated by contributions from van der Waals interactions. The non-polar solvation term is also found to be favorable. While the electrostatic interactions and polar solvation energy was found to be favorable for the interaction for the larger aggregate and unfavorable for the smaller aggregates. A per-residue decomposition of the binding free energy has been performed to identify the residues contributing most to the self-association free energy. Residues found in the β-sheet regions were found to be key residue making the largest favorable contributions to the single-layer association. The result from our simulation could be used in rational design of new amylinomimetic agent, amylin aggregation inhibitors and amylin-specific biomarkers.
Collapse
Affiliation(s)
- Workalemahu Mikre Berhanu
- a NanoScience Technology Center and Department of Chemistry , University of Central Florida , Orlando , FL , 32826 , USA
| | | |
Collapse
|
59
|
Bhattacharjee P, Bhattacharyya D. Factor V activator from Daboia russelli russelli venom destabilizes β-amyloid aggregate, the hallmark of Alzheimer disease. J Biol Chem 2013; 288:30559-30570. [PMID: 23986449 DOI: 10.1074/jbc.m113.511410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formation of plaque by fibrils of β-amyloid (Aβ) peptide in the brain is the characteristic feature of Alzheimer disease (AD). Inhibition of the process of aggregate formation from Aβ-monomer and destabilization of the aggregate could be useful for prevention and propagation of the disease respectively. Russell's viper venom (RVV) contains protein(s) that destabilize Aβ aggregates as revealed from the thioflavin T assay. The active component was identified as factor V activator (RVV-V). Among the possible mechanisms of destabilization, RVV-V-mediated proteolysis was ruled out from mass spectrometric data and the thioflavin T assay. The alternate hypothesis that small peptides derived from RVV-V destabilize the aggregate is better supported by experimental results. Six small peptides were synthesized using RVV-V as the template, and three unrelated peptides were synthesized to serve as controls. Destabilization of Aβ aggregate by these peptides was studied using spectrofluorometric assays, atomic force microscopy, transmission electron microscopy, and confocal microscopy. Among the peptides, CTNIF and the mixture of the six peptides were most potent in converting the aggregates to the monomeric state and thus, preventing cytotoxicity in SH-SY5Y human neuroblastoma cells. The control peptides failed to show similar effects. Moreover, some of these peptides are stable in blood for 24 h. Therefore, these venom-derived peptides offer an encouraging opportunity to prevent amyloidosis and may provide information to combat AD.
Collapse
Affiliation(s)
- Payel Bhattacharjee
- From the Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India.
| | - Debasish Bhattacharyya
- From the Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
60
|
Li G, Pomès R. Binding mechanism of inositol stereoisomers to monomers and aggregates of Aβ(16-22). J Phys Chem B 2013; 117:6603-13. [PMID: 23627280 DOI: 10.1021/jp311350r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease with no cure. A potential therapeutic approach is to prevent or reverse the amyloid formation of Aβ42, a key pathological hallmark of AD. We examine the molecular basis for stereochemistry-dependent inhibition of the formation of Aβ fibrils in vitro by a polyol, scyllo-inositol. We present molecular dynamics simulations of the monomeric, disordered aggregate, and protofibrillar states of Aβ(16-22), an amyloid-forming peptide fragment of full-length Aβ, successively with and without scyllo-inositol and its inactive stereoisomer chiro-inositol. Both stereoisomers bind monomers and disordered aggregates with similar affinities of 10-120 mM, whereas binding to β-sheet-containing protofibrils yields affinities of 0.2-0.5 mM commensurate with in vitro inhibitory concentrations of scyllo-inositol. Moreover, scyllo-inositol displays a higher binding specificity for phenylalanine-lined grooves on the protofibril surface, suggesting that scyllo-inositol coats the surface of Aβ protofibrils and disrupts their lateral stacking into amyloid fibrils.
Collapse
Affiliation(s)
- Grace Li
- Department of Biochemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| | | |
Collapse
|
61
|
Zhang L, Kai T, Sun Z, Hao Y, Tu Q, Zhou F. A Ferrocene-Tagged Amyloid-β Fragment for Rapid Screening of Aggregation Inhibitors from Natural Compounds by HPLC-Electrochemical Detection. ELECTROANAL 2013. [DOI: 10.1002/elan.201300025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
62
|
Ngo ST, Li MS. Top-leads from natural products for treatment of Alzheimer's disease: docking and molecular dynamics study. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.718769] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
63
|
Stevens CB, Hanna JM, Lammi RK. Synthesis of tetrahydroxybiphenyls and tetrahydroxyterphenyls and their evaluation as amyloid-β aggregation inhibitors. Bioorg Med Chem Lett 2013; 23:1703-6. [PMID: 23403086 PMCID: PMC3594554 DOI: 10.1016/j.bmcl.2013.01.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/04/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
3,3',4,4'-Tetrahydroxybiphenyl and three isomeric 3,3″,4,4″-tetrahydroxyterphenyls with varying geometries around the central phenyl ring have been synthesized and evaluated for their in vitro activity against aggregation of Alzheimer's amyloid-β peptide (Aβ). Results from Congo red spectral-shift assays reveal that all four compounds successfully inhibit association of Aβ monomers. For the tetrahydroxyterphenyls, efficacy varies with linker geometry: the ortho-arrangement affords the most successful inhibition and the para-geometry the least, perhaps due to differing abilities of these compounds to bind Aβ. Of the four small molecules studied, 3,3',4,4'-tetrahydroxybiphenyl is the most effective inhibitor, reducing Aβ aggregation by 50% when present in stoichiometric concentrations.
Collapse
Affiliation(s)
- Craig B. Stevens
- Department of Chemistry, Physics, and Geology, Winthrop University, 101 Sims Science Building, Rock Hill, SC 29733
| | - James M. Hanna
- Department of Chemistry, Physics, and Geology, Winthrop University, 101 Sims Science Building, Rock Hill, SC 29733
| | - Robin K. Lammi
- Department of Chemistry, Physics, and Geology, Winthrop University, 101 Sims Science Building, Rock Hill, SC 29733
| |
Collapse
|
64
|
Wong HE, Irwin JA, Kwon I. Halogenation generates effective modulators of amyloid-Beta aggregation and neurotoxicity. PLoS One 2013; 8:e57288. [PMID: 23468958 PMCID: PMC3585355 DOI: 10.1371/journal.pone.0057288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
Halogenation of organic compounds plays diverse roles in biochemistry, including selective chemical modification of proteins and improved oral absorption/blood-brain barrier permeability of drug candidates. Moreover, halogenation of aromatic molecules greatly affects aromatic interaction-mediated self-assembly processes, including amyloid fibril formation. Perturbation of the aromatic interaction caused by halogenation of peptide building blocks is known to affect the morphology and other physical properties of the fibrillar structure. Consequently, in this article, we investigated the ability of halogenated ligands to modulate the self-assembly of amyloidogenic peptide/protein. As a model system, we chose amyloid-beta peptide (Aβ), which is implicated in Alzheimer’s disease, and a novel modulator of Aβ aggregation, erythrosine B (ERB). Considering that four halogen atoms are attached to the xanthene benzoate group in ERB, we hypothesized that halogenation of the xanthene benzoate plays a critical role in modulating Aβ aggregation and cytotoxicity. Therefore, we evaluated the modulating capacities of four ERB analogs containing different types and numbers of halogen atoms as well as fluorescein as a negative control. We found that fluorescein is not an effective modulator of Aβ aggregation and cytotoxicity. However, halogenation of either the xanthenes or benzoate ring of fluorescein substantially enhanced the inhibitory capacity on Aβ aggregation. Such Aβ aggregation inhibition by ERB analogs except rose bengal correlated well to the inhibition of Aβ cytotoxicity. To our knowledge, this is the first report demonstrating that halogenation of aromatic rings substantially enhance inhibitory capacities of small molecules on Aβ-associated neurotoxicity via Aβ aggregation modulation.
Collapse
Affiliation(s)
- H. Edward Wong
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, Unites States of America
| | - Jacob A. Irwin
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, Unites States of America
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, Unites States of America
- Institutes on Aging, University of Virginia, Charlottesville, Virginia, Unites States of America
- * E-mail:
| |
Collapse
|
65
|
Madine J, Pandya MJ, Hicks MR, Rodger A, Yates EA, Radford SE, Middleton DA. Site-Specific Identification of an Aβ Fibril-Heparin Interaction Site by Using Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
66
|
Madine J, Pandya MJ, Hicks MR, Rodger A, Yates EA, Radford SE, Middleton DA. Site-specific identification of an aβ fibril-heparin interaction site by using solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2012; 51:13140-3. [PMID: 23161730 PMCID: PMC3749465 DOI: 10.1002/anie.201204459] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/04/2012] [Indexed: 11/30/2022]
Abstract
At the surface of Aβ(1-40) amyloid fibrils that have a threefold molecular symmetry (green in the left picture) a site of interaction of the glycosaminoglycan analogue heparin (blue) was identified. The binding site consists of residues at the N terminus and the turn regions defining the apices of the triangular geometry. Heparin has a lower affinity for Aβ(1-40) fibrils having twofold molecular symmetry, thus revealing a remarkable morphological selectivity.
Collapse
Affiliation(s)
- Jillian Madine
- Institute of Integrative Biology, University of LiverpoolCrown Street, Liverpool L69 7ZB (UK) E-mail:
| | - Maya J Pandya
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of LeedsLeeds, LS2 9JT (UK)
| | - Matthew R Hicks
- Department of Chemistry, University of WarwickWarwick, CV4 7AL (UK)
| | - Alison Rodger
- Department of Chemistry, University of WarwickWarwick, CV4 7AL (UK)
| | - Edwin A Yates
- Institute of Integrative Biology, University of LiverpoolCrown Street, Liverpool L69 7ZB (UK) E-mail:
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of LeedsLeeds, LS2 9JT (UK)
| | - David A Middleton
- Institute of Integrative Biology, University of LiverpoolCrown Street, Liverpool L69 7ZB (UK) E-mail:
| |
Collapse
|
67
|
Sgarbossa A. Natural biomolecules and protein aggregation: emerging strategies against amyloidogenesis. Int J Mol Sci 2012; 13:17121-37. [PMID: 23242152 PMCID: PMC3546742 DOI: 10.3390/ijms131217121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 01/13/2023] Open
Abstract
Biomolecular self-assembly is a fundamental process in all organisms. As primary components of the life molecular machinery, proteins have a vast array of resources available to them for self-assembly in a functional structure. Protein self-assembly, however, can also occur in an aberrant way, giving rise to non-native aggregated structures responsible for severe, progressive human diseases that have a serious social impact. Different neurodegenerative disorders, like Huntington's, Alzheimer's, and spongiform encephalopathy diseases, have in common the presence of insoluble protein aggregates, generally termed "amyloid," that share several physicochemical features: a fibrillar morphology, a predominantly beta-sheet secondary structure, birefringence upon staining with the dye Congo red, insolubility in common solvents and detergents, and protease resistance. Conformational constrains, hydrophobic and stacking interactions can play a key role in the fibrillogenesis process and protein-protein and peptide-peptide interactions-resulting in self-assembly phenomena of peptides yielding fibrils-that can be modulated and influenced by natural biomolecules. Small organic molecules, which possess both hydrophilic and hydrophobic moieties able to bind to peptide/protein molecules through hydrogen bonds and hydrophobic and aromatic interactions, are potential candidates against amyloidogenesis. In this review some significant case examples will be critically discussed.
Collapse
Affiliation(s)
- Antonella Sgarbossa
- Institute of Biophysics, CNR, Italian National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
68
|
Ngo ST, Li MS. Curcumin binds to Aβ1-40 peptides and fibrils stronger than ibuprofen and naproxen. J Phys Chem B 2012; 116:10165-75. [PMID: 22877239 DOI: 10.1021/jp302506a] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Binding of curcumin, naproxen, and ibuprofen to Aβ1-40 peptide and its fibrils is studied by docking method and all-atom molecular dynamics simulations. The Gromos96 43a1 force field and simple point charge model of water have been used for molecular dynamics simulations. It is shown that if the receptor is a monomer then naproxen and ibuprofen are bound to the same place that is different from the binding position of curcumin. However all of three ligands have the same binding pocket in fibrillar structures. The binding mechanism is studied in detail showing that the van der Waals interaction between ligand and receptor dominates over the electrostatic interaction. The binding free energies obtained by the molecular mechanic-Poisson-Boltzmann surface area method indicate that curcumin displays higher binding affinity than nonsteroidal anti-inflammatory drugs. Our results are in good agreement with the experiments.
Collapse
Affiliation(s)
- Son Tung Ngo
- Institute for Computational Science and Technology , 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, and
| | | |
Collapse
|
69
|
Kroth H, Ansaloni A, Varisco Y, Jan A, Sreenivasachary N, Rezaei-Ghaleh N, Giriens V, Lohmann S, López-Deber MP, Adolfsson O, Pihlgren M, Paganetti P, Froestl W, Nagel-Steger L, Willbold D, Schrader T, Zweckstetter M, Pfeifer A, Lashuel HA, Muhs A. Discovery and structure activity relationship of small molecule inhibitors of toxic β-amyloid-42 fibril formation. J Biol Chem 2012; 287:34786-800. [PMID: 22891248 DOI: 10.1074/jbc.m112.357665] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence implicates Aβ peptides self-assembly and fibril formation as crucial events in the pathogenesis of Alzheimer disease. Thus, inhibiting Aβ aggregation, among others, has emerged as a potential therapeutic intervention for this disorder. Herein, we employed 3-aminopyrazole as a key fragment in our design of non-dye compounds capable of interacting with Aβ42 via a donor-acceptor-donor hydrogen bond pattern complementary to that of the β-sheet conformation of Aβ42. The initial design of the compounds was based on connecting two 3-aminopyrazole moieties via a linker to identify suitable scaffold molecules. Additional aryl substitutions on the two 3-aminopyrazole moieties were also explored to enhance π-π stacking/hydrophobic interactions with amino acids of Aβ42. The efficacy of these compounds on inhibiting Aβ fibril formation and toxicity in vitro was assessed using a combination of biophysical techniques and viability assays. Using structure activity relationship data from the in vitro assays, we identified compounds capable of preventing pathological self-assembly of Aβ42 leading to decreased cell toxicity.
Collapse
Affiliation(s)
- Heiko Kroth
- AC Immune SA, PSE Building B, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Hamley IW. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem Rev 2012; 112:5147-92. [DOI: 10.1021/cr3000994] [Citation(s) in RCA: 708] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- I. W. Hamley
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD,
U.K
| |
Collapse
|
71
|
Zheng X, Gessel MM, Wisniewski ML, Viswanathan K, Wright DL, Bahr BA, Bowers MT. Z-Phe-Ala-diazomethylketone (PADK) disrupts and remodels early oligomer states of the Alzheimer disease Aβ42 protein. J Biol Chem 2012; 287:6084-8. [PMID: 22253440 DOI: 10.1074/jbc.c111.328575] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oligomerization of the amyloid-β protein (Aβ) is an important event in Alzheimer disease (AD) pathology. Developing small molecules that disrupt formation of early oligomeric states of Aβ and thereby reduce the effective amount of toxic oligomers is a promising therapeutic strategy for AD. Here, mass spectrometry and ion mobility spectrometry were used to investigate the effects of a small molecule, Z-Phe-Ala-diazomethylketone (PADK), on the Aβ42 form of the protein. The mass spectrum of a mixture of PADK and Aβ42 clearly shows that PADK binds directly to Aβ42 monomers and small oligomers. Ion mobility results indicate that PADK not only inhibits the formation of Aβ42 dodecamers, but also removes preformed Aβ42 dodecamers from the solution. Electron microscopy images show that PADK inhibits Aβ42 fibril formation in the solution. These results are consistent with a previous study that found that PADK has protective effects in an AD transgenic mouse model. The study of PADK and Aβ42 provides an example of small molecule therapeutic development for AD and other amyloid diseases.
Collapse
Affiliation(s)
- Xueyun Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Li G, Rauscher S, Baud S, Pomès R. Binding of inositol stereoisomers to model amyloidogenic peptides. J Phys Chem B 2011; 116:1111-9. [PMID: 22091989 DOI: 10.1021/jp208567n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The self-aggregation of proteins into amyloid fibrils is a pathological hallmark of numerous incurable diseases such as Alzheimer's disease. scyllo-Inositol is a stereochemistry-dependent in vitro inhibitor of amyloid formation. As the first step to elucidate its mechanism of action, we present molecular dynamics simulations of scyllo-inositol and its inactive stereoisomer, chiro-inositol, with simple peptide models, alanine dipeptide (ADP) and (Gly-Ala)(4). We characterize molecular interactions and compute equilibrium binding constants between inositol and ADP as well as, successively, monomers, amorphous aggregates, and fibril-like β-sheet aggregates of (Gly-Ala)(4). Inositol interacts weakly with all peptide systems considered, with millimolar to molar affinities, and displaces the conformational equilibria of ADP but not of the (Gly-Ala)(4) systems. However, scyllo- and chiro-inositol adopt different binding modes on the surface of β-sheet aggregates. These results suggest that inositol does not inhibit amyloid formation by breaking up preformed aggregates but rather by binding to the surface of prefibrillar aggregates.
Collapse
Affiliation(s)
- Grace Li
- Department of Biochemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| | | | | | | |
Collapse
|
73
|
Convertino M, Vitalis A, Caflisch A. Disordered binding of small molecules to Aβ(12-28). J Biol Chem 2011; 286:41578-41588. [PMID: 21969380 PMCID: PMC3308868 DOI: 10.1074/jbc.m111.285957] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/23/2011] [Indexed: 11/06/2022] Open
Abstract
In recent years, an increasing number of small molecules and short peptides have been identified that interfere with aggregation and/or oligomerization of the Alzheimer β-amyloid peptide (Aβ). Many of them possess aromatic moieties, suggesting a dominant role for those in interacting with Aβ along various stages of the aggregation process. In this study, we attempt to elucidate whether interactions of such aromatic inhibitors with monomeric Aβ(12-28) point to a common mechanism of action by performing atomistic molecular dynamics simulations at equilibrium. Our results suggest that, independently of the presence of inhibitors, monomeric Aβ(12-28) populates a partially collapsed ensemble that is largely devoid of canonical secondary structure at 300 K and neutral pH. The small molecules have different affinities for Aβ(12-28) that can be partially rationalized by the balance of aromatic and charged moieties constituting the molecules. There are no predominant binding modes, although aggregation inhibitors preferentially interact with the N-terminal portion of the fragment (residues 13-20). Analysis of the free energy landscape of Aβ(12-28) reveals differences highlighted by altered populations of a looplike conformer in the presence of inhibitors. We conclude that intrinsic disorder of Aβ persists at the level of binding small molecules and that inhibitors can significantly alter properties of monomeric Aβ via multiple routes of differing specificity.
Collapse
Affiliation(s)
- Marino Convertino
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Vitalis
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
74
|
Wong HE, Qi W, Choi HM, Fernandez EJ, Kwon I. A safe, blood-brain barrier permeable triphenylmethane dye inhibits amyloid-β neurotoxicity by generating nontoxic aggregates. ACS Chem Neurosci 2011; 2:645-57. [PMID: 22860159 PMCID: PMC3369715 DOI: 10.1021/cn200056g] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 09/06/2011] [Indexed: 01/15/2023] Open
Abstract
Growing evidence suggests that on-pathway amyloid-β (Aβ) oligomers are primary neurotoxic species and have a direct correlation with the onset of Alzheimer's disease (AD). One promising therapeutic strategy to block AD progression is to reduce the levels of these neurotoxic Aβ species using small molecules. While several compounds have been shown to modulate Aβ aggregation, compounds with such activity combined with safety and high blood-brain barrier (BBB) permeability have yet to be reported. Brilliant Blue G (BBG) is a close structural analogue of a U.S. Food and Drug Administration (FDA)-approved food dye and has recently garnered prominent attention as a potential drug to treat spinal cord injury due to its neuroprotective effects along with BBB permeability and high degree of safety. In this work, we demonstrate that BBG is an effective Aβ aggregation modulator, which reduces Aβ-associated cytotoxicity in a dose-dependent manner by promoting the formation of off-pathway, nontoxic aggregates. Comparative studies of BBG and three structural analogues, Brilliant Blue R (BBR), Brilliant Blue FCF (BBF), and Fast Green FCF (FGF), revealed that BBG is most effective, BBR is moderately effective, and BBF and FGF are least effective in modulating Aβ aggregation and cytotoxicity. Therefore, the two additional methyl groups of BBG and other structural differences between the congeners are important in the interaction of BBG with Aβ leading to formation of nontoxic Aβ aggregates. Our findings support the hypothesis that generating nontoxic aggregates using small molecule modulators is an effective strategy for reducing Aβ cytotoxicity. Furthermore, key structural features of BBG identified through structure-function studies can open new avenues into therapeutic design for combating AD.
Collapse
Affiliation(s)
- H Edward Wong
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22911, USA
| | | | | | | | | |
Collapse
|
75
|
Wong HE, Kwon I. Xanthene food dye, as a modulator of Alzheimer's disease amyloid-beta peptide aggregation and the associated impaired neuronal cell function. PLoS One 2011; 6:e25752. [PMID: 21998691 PMCID: PMC3187789 DOI: 10.1371/journal.pone.0025752] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/09/2011] [Indexed: 12/24/2022] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of dementia. AD is a degenerative brain disorder that causes problems with memory, thinking and behavior. It has been suggested that aggregation of amyloid-beta peptide (Aβ) is closely linked to the development of AD pathology. In the search for safe, effective modulators, we evaluated the modulating capabilities of erythrosine B (ER), a Food and Drug Administration (FDA)-approved red food dye, on Aβ aggregation and Aβ-associated impaired neuronal cell function. Methodology/Principal Findings In order to evaluate the modulating ability of ER on Aβ aggregation, we employed transmission electron microscopy (TEM), thioflavin T (ThT) fluorescence assay, and immunoassays using Aβ-specific antibodies. TEM images and ThT fluorescence of Aβ samples indicate that protofibrils are predominantly generated and persist for at least 3 days. The average length of the ER-induced protofibrils is inversely proportional to the concentration of ER above the stoichiometric concentration of Aβ monomers. Immunoassay results using Aβ-specific antibodies suggest that ER binds to the N-terminus of Aβ and inhibits amyloid fibril formation. In order to evaluate Aβ-associated toxicity we determined the reducing activity of SH-SY5Y neuroblastoma cells treated with Aβ aggregates formed in the absence or in the presence of ER. As the concentration of ER increased above the stoichiometric concentration of Aβ, cellular reducing activity increased and Aβ-associated reducing activity loss was negligible at 500 µM ER. Conclusions/Significance Our findings show that ER is a novel modulator of Aβ aggregation and reduces Aβ-associated impaired cell function. Our findings also suggest that xanthene dye can be a new type of small molecule modulator of Aβ aggregation. With demonstrated safety profiles and blood-brain permeability, ER represents a particularly attractive aggregation modulator for amyloidogenic proteins associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- H. Edward Wong
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Institute on Aging, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
76
|
Han M, Liu Y, Zhang B, Qiao J, Lu W, Zhu Y, Wang Y, Zhao C. Salvianic borneol ester reduces β-amyloid oligomers and prevents cytotoxicity. PHARMACEUTICAL BIOLOGY 2011; 49:1008-1013. [PMID: 21936627 DOI: 10.3109/13880209.2011.559585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT The destabilization of β-amyloid (Aβ) peptide aggregates and the protection of functional cells are the attractive therapeutic strategies for Alzheimer's disease (AD). Some active ingredients of Salvia miltiorrhiza f. alba C.Y.Wu & H.W.Li (Lamiaceae) (SM) have attracted increasing attention for the treatment of neurodegenerative diseases. OBJECTIVE Salvianic borneol ester (SBE) is a new compound based on SM formulas. The present study was designed to examine the anti-amyloid effects and neuroprotection of SBE in vitro. MATERIALS AND METHODS The destabilizing effects of SBE and its related compounds (salvianic acid A and borneol) on preformed Aβ oligomers were measured by using fluorescence spectroscopy with thioflavin T (ThT) and the destabilizing effects of SBE were further confirmed visually by transmission electron microscopy (TEM). The neuroprotective effects of SBE against hydrogen peroxide (H(2)O(2))-induced toxicity in human neuroblastoma cells (SH-SY5Y) and motor neuron hybridoma cells (VSC 4.1) were shown by MTT assay and morphological observation. RESULTS SBE showed the most significant destabilizing effect, though the mixture of salvianic acid A and borneol also destabilized Aβ1-40 oligomers. The destabilizing activity of salvianic acid A or borneol alone was not significant. SBE destabilized Aβ1-40 oligomers in dose- and time-dependent manners and the destabilizing effect could also be seen in the photographs of TEM. Furthermore, SBE could protect SH-SY5Y cells and VSC 4.1 cells against H(2)O(2)-induced toxicity in a dose-dependent manner. DISCUSSION AND CONCLUSION SBE had the bifunctional activities of anti-amyloid and neuroprotection. It may have therapeutic potential for AD and be an alternative lead compound for developing new drugs against AD.
Collapse
Affiliation(s)
- Mei Han
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Unique example of amyloid aggregates stabilized by main chain H-bond instead of the steric zipper: molecular dynamics study of the amyloidogenic segment of amylin wild-type and mutants. J Mol Model 2011; 18:891-903. [PMID: 21625904 DOI: 10.1007/s00894-011-1030-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 03/06/2011] [Indexed: 12/19/2022]
Abstract
Most proteins do not aggregate while in their native functional states. However, they may be disturbed from their native conformation by certain change in the environment, and form unwanted oligomeric or polymeric aggregates. Recent experimental data demonstrate that soluble oligomers of amyloidogenic proteins are responsible for amyloidosis and its cytotoxicity. Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. In this study we performed in silico mutation analysis to examine the stability of the double layer five strand aggregates formed by heptapeptide NNFGAIL segment from amyline peptide. This segment is one of the shortest fragments that can form amyloid fibrils similar to those formed by the full length peptide. The mutants obtained by single glycine replacement were also studied to investigate the specificity of the dry self-complementary interface between the neighboring β-sheet layers. The molecular dynamics simulations of the aggregates run for 20 ns at 330 K, the degree of the aggregate disassembly was investigated using several geometry analysis tools: the root mean square deviations of the C(α) atoms, root mean square fluctuations per residue, twist angles, interstrand distances, fraction of the secondary structure elements, and number of H-bonds. The analysis shows that most mutations make the aggregates unstable, and their stabilities were dependent to a large extent on the position of replaced residues. Our mutational simulations are in agreement with the pervious experimental observations. We also used free binding energy calculations to determine the role of different components: nonpolar effects, electrostatics and entropy in binding. Nonpolar effects remained consistently more favorable in wild type and mutants reinforcing the importance of hydrophobic effects in protein-protein binding. While entropy systematically opposed binding in all cases, there was no clear trend in the entropy difference between wildtype and glycine mutants. Free energy decomposition shows residues situated at the interface were found to make favorable contributions to the peptide-peptide association. The study of the wild type and mutants in an explicit solvent could provide valuable insight into the future computer guided design efforts for the amyloid aggregation inhibitor.
Collapse
|
78
|
Viet MH, Ngo ST, Lam NS, Li MS. Inhibition of Aggregation of Amyloid Peptides by Beta-Sheet Breaker Peptides and Their Binding Affinity. J Phys Chem B 2011; 115:7433-46. [DOI: 10.1021/jp1116728] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Man Hoang Viet
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Son Tung Ngo
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Sy Lam
- Computational Physics Laboratory, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu, District 5, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
79
|
Grasso G. The use of mass spectrometry to study amyloid-β peptides. MASS SPECTROMETRY REVIEWS 2011; 30:347-365. [PMID: 21500241 DOI: 10.1002/mas.20281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 05/30/2023]
Abstract
Amyloid-β peptide (Aβ) varies in size from 39 to 43 amino acids and arises from sequential β- and γ-secretase processing of the amyloid precursor protein. Whereas the non-pathological role for Aβ is yet to be established, there is no disputing that Aβ is now widely regarded as central to the development of Alzheimer's disease (AD). The so named "amyloid cascade hypothesis" states that disease progression is the result of an increased Aβ burden in affected areas of the brain. To elucidate the Aβ role in AD, many analytical approaches have been proposed as suitable tools to investigate not only the total Aβ load but also many other issues that are considered crucial for AD, such as: (i) the aggregation state in which Aβ is present; (ii) its interaction with other species or metals; (iii) its ability to induce oxidative stress; and (iv) its degradative pathways. This review provides an insight into the use of mass spectrometry (MS) in the field of Aβ investigation aimed to assess its role in AD. In particular, the different MS-based approaches applied in vitro and in vivo that can provide detailed information on the above-mentioned issues are reviewed. Moreover, the advantages offered by the MS methods over all the other techniques are highlighted, together with the recent developments and uses of combined analytical approaches to detect and characterize Aβ.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Chemistry Department, Università di Catania, Viale Andrea Doria 6, Catania 95125, Italy.
| |
Collapse
|
80
|
Han M, Liu Y, Tan Q, Zhang B, Wang W, Liu J, Zhang XJ, Wang YY, Zhang JM. Therapeutic efficacy of stemazole in a beta-amyloid injection rat model of Alzheimer's disease. Eur J Pharmacol 2011; 657:104-10. [DOI: 10.1016/j.ejphar.2011.01.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 12/22/2022]
|
81
|
Mustafi SM, Garai K, Crick SL, Baban B, Frieden C. Substoichiometric inhibition of Abeta(1-40) aggregation by a tandem Abeta(40-1-Gly8-1-40) peptide. Biochem Biophys Res Commun 2010; 397:509-12. [PMID: 20515649 PMCID: PMC2897963 DOI: 10.1016/j.bbrc.2010.05.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022]
Abstract
Abeta peptides aggregate to form insoluble and neurotoxic fibrils associated with Alzheimer's disease. Inhibition of the aggregation has been the subject of numerous studies. Here we describe a novel, substoichiometric inhibitor of Abeta(1-40) fibrillization as a tandem dimeric construct consisting of Abeta(40-1) (reverse sequence) linked to Abeta(1-40) via an eight residue glycine linker. At molar ratios of the tandem peptide to Abeta(1-40) of 1:10 to 1:25 inhibition of fibrillization, as measured by ThioflavinT, was observed. We postulate that the tandem construct binds to a fibrillar intermediate but the reverse sequence delays or prevents further monomer association.
Collapse
Affiliation(s)
- Sourajit M. Mustafi
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110
| | - Kanchan Garai
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110
| | - Scott L. Crick
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110
| | - Berevan Baban
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110
| |
Collapse
|
82
|
Berhanu WM, Masunov AE. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer. Biophys Chem 2010; 149:12-21. [DOI: 10.1016/j.bpc.2010.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/25/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
|
83
|
Carver JA, Duggan PJ, Ecroyd H, Liu Y, Meyer AG, Tranberg CE. Carboxymethylated-kappa-casein: a convenient tool for the identification of polyphenolic inhibitors of amyloid fibril formation. Bioorg Med Chem 2009; 18:222-8. [PMID: 19931462 DOI: 10.1016/j.bmc.2009.10.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/19/2022]
Abstract
Reduced and carboxymethylated-kappa-casein (RCM-kappa-CN) is a milk-derived amyloidogenic protein that readily undergoes nucleation-dependent aggregation and amyloid fibril formation via a similar pathway to disease-specific amyloidogenic peptides like amyloid beta (Abeta), which is associated with Alzheimer's disease. In this study, a series of flavonoids, many known to be inhibitors of Abeta fibril formation, were screened for their ability to inhibit RCM-kappa-CN fibrilisation, and the results were compared with literature data on Abeta inhibition. Flavonoids that had a high degree of hydroxylation and molecular planarity gave good inhibition of RCM-kappa-CN fibril formation. IC(50) values were between 10- and 200-fold higher with RCM-kappa-CN than literature results for Abeta fibril inhibition, however, with few exceptions, they showed a similar trend in potency. The convenience and reproducibility of the RCM-kappa-CN assay make it an economic alternative first screen for Abeta inhibitory activity, especially for use with large compound libraries.
Collapse
Affiliation(s)
- John A Carver
- School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|