52
|
Abstract
PURPOSE OF REVIEW It is well established that the antiphospholipid syndrome (APS) is caused by antiphospholipid antibodies (aPL). While several underlying mechanisms have been described in the past, many open questions remain. Here, we will review data on endosomal signaling and, in particular, redox signaling in APS. RECENT FINDINGS Endosomal redox signaling has been implicated in several cellular processes including signaling of proinflammatory cytokines. We have shown that certain aPL can activate endosomal NADPH-oxidase (NOX) in several cell types followed by induction of proinflammatory and procoagulant cellular responses in vitro. Involvement of endosomes in aPL signaling has also been reported by others. In wild-type mice but not in NOX-deficient mice, aPL accelerate venous thrombus formation underscoring the relevance of endosomal NOX. Furthermore, hydroxychloroquine (HCQ) inhibits activation of endosomal NOX and prevents thrombus formation in aPL-treated mice. Endosomal redox signaling is an important novel mechanism involved in APS pathogenesis. This makes endosomes a potential target for future treatment approaches of APS.
Collapse
|
53
|
Casanova JE, Winckler B. A new Rab7 effector controls phosphoinositide conversion in endosome maturation. J Cell Biol 2017; 216:2995-2997. [PMID: 28928133 PMCID: PMC5626559 DOI: 10.1083/jcb.201709034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Casanova and Winckler discuss Liu et al.’s recent finding that WDR91 coordinates Rab and phosphoinositide conversion during endosome maturation in neurons. Endosome maturation requires a coordinated change in the Rab GTPase and phosphoinositide composition of the endosomal membrane. In this issue, Liu et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201705151) identify WDR91 as a ubiquitous Rab7 effector that inhibits phosphatidylinositol 3-kinase activity on endosomes and is critical for endosome maturation, viability, and dendrite growth of neurons in vivo.
Collapse
Affiliation(s)
- James E Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| |
Collapse
|
54
|
Liu K, Xing R, Jian Y, Gao Z, Ma X, Sun X, Li Y, Xu M, Wang X, Jing Y, Guo W, Yang C. WDR91 is a Rab7 effector required for neuronal development. J Cell Biol 2017; 216:3307-3321. [PMID: 28860274 PMCID: PMC5626554 DOI: 10.1083/jcb.201705151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Early-to-late endosome conversion involves switching of early endosomes Rab5 and PtdIns3P to late endosomes Rab7 and PtdIns(3,5)P2. Liu et al. identify WDR91 as a Rab7 effector that couples Rab switching with PtdIns3P down-regulation on endosomes and show that WDR91 is essential for neuronal development. Early-to-late endosome conversion, which is essential for delivery of endosomal cargoes to lysosomes, requires switching of early endosome–specific Rab5 and PtdIns3P to late endosome–specific Rab7 and PtdIns(3,5)P2. In this study, we identify the WD40-repeat protein WDR91 as a Rab7 effector that couples Rab switching with PtdIns3P down-regulation on endosomes. Loss of WDR91 greatly increases endosomal PtdIns3P levels, arresting endosomes at an intermediate stage and blocking endosomal–lysosomal trafficking. WDR91 is recruited to endosomes by interacting with active guanosine triphosophate–Rab7 and inhibits Rab7-associated phosphatidylinositol 3-kinase activity. In mice, global Wdr91 knockout causes neonatal death, whereas brain-specific Wdr91 inactivation impairs brain development and causes postnatal death. Mouse neurons lacking Wdr91 accumulate giant intermediate endosomes and exhibit reduced neurite length and complexity. These phenotypes are rescued by WDR91 but not WDR91 mutants that cannot interact with Rab7. Thus, WDR91 serves as a Rab7 effector that is essential for neuronal development by facilitating endosome conversion in the endosome–lysosome pathway.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Ruxiao Xing
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Youli Jian
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyang Gao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinli Ma
- Graduate University of Chinese Academy of Sciences, Beijing, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Sun
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Meng Xu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Yudong Jing
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China .,State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
55
|
Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets. Mol Cell Neurosci 2017; 82:66-75. [PMID: 28461220 DOI: 10.1016/j.mcn.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/17/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022] Open
Abstract
Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a-/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior.
Collapse
|