51
|
Sanborn RE, Schneiders FL, Senan S, Gadgeel SM. Beyond Checkpoint Inhibitors: Enhancing Antitumor Immune Response in Lung Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-14. [PMID: 35671433 DOI: 10.1200/edbk_350967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The introduction of immune checkpoint inhibitors has dramatically changed the treatment landscape and improved survival for many patients with thoracic malignancies. Although some patients may experience prolonged survival benefit with immune checkpoint inhibitors, a majority do not experience disease control or benefit, supporting the need for research and development of improved approaches for facilitating immune recognition. Additionally, many patients will experience toxicity with the current approaches to immunotherapy, supporting the need for developing treatment strategies with less risk of adverse events. An extensive array of different strategies are currently under investigation, including novel combinations of checkpoint inhibitors or immunotherapies; novel agents beyond checkpoint inhibitors (e.g., bispecific antibodies, vaccine strategies, cytokine therapies); and different approaches for use of radiation to augment systemic immunotherapy agents. With each strategy, researchers are evaluating the potential for augmenting antitumor responses and ensuring more sustained antitumor effects. This article highlights areas of active research, reviewing the rationale for different investigative strategies, as well as currently available clinical data.
Collapse
Affiliation(s)
- Rachel E Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR
| | | | - Suresh Senan
- Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | |
Collapse
|
52
|
Bronte G, Petracci E, De Matteis S, Canale M, Zampiva I, Priano I, Cravero P, Andrikou K, Burgio MA, Ulivi P, Delmonte A, Crinò L. High Levels of Circulating Monocytic Myeloid-Derived Suppressive-Like Cells Are Associated With the Primary Resistance to Immune Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer: An Exploratory Analysis. Front Immunol 2022; 13:866561. [PMID: 35493483 PMCID: PMC9043492 DOI: 10.3389/fimmu.2022.866561] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022] Open
Abstract
BackgroundImmunotherapy has become the standard of care for non-small cell lung cancer (NSCLC) patients. Some patients experience primary resistance to immunotherapy. Currently, we lack a marker of resistance to immunotherapy. Myeloid-derived suppressive-like cells (MDSCs) can reduce tumor response rate and survival outcomes.MethodsThis is an exploratory prospective observational study on metastatic NSCLC patients starting immunotherapy. Baseline peripheral blood samples were collected. Monocytic (M)-MDSCs were analyzed by flow cytometry. The main clinical outcomes were tumor response, progression-free survival (PFS), and overall survival (OS). The association between MDSC levels and tumor response was assessed. The association of PFS with OS was investigated using the Kaplan–Meier method and the Cox proportional hazards model.ResultsTwenty-two patients were included. The median M-MDSC value was higher in patients with progressive disease than patients with stable disease or partial response, p = 0.045. The median MDSC value in the overall population was 1.9. We found worse PFS (HR = 2.51; p = 0.046) and OS (HR = 2.68; p = 0.042) in patients with M-MDSC values higher than the median.ConclusionsIn this exploratory analysis, high M-MDSC levels are strongly associated with primary resistance to immunotherapy. If validated in larger studies, MDSC levels in blood samples could help to select NSCLC patients for higher benefit from immunotherapy.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- *Correspondence: Giuseppe Bronte,
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Serena De Matteis
- Unit of Immunobiology of Transplants and Advanced Cellular Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Canale
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Ilaria Zampiva
- Section of Oncology, Department of Medicine, University of Verona; Centro Ricerche Cliniche di Verona (CRC), Verona, Italy
| | - Ilaria Priano
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Paola Cravero
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Kalliopi Andrikou
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marco Angelo Burgio
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
53
|
Zhao A, Li F, Wei C, Zhou Z, Luo X, Wu H, Ning C, Liu W, Li D, Lin D, Liu S, Zhang G, Gao J. TNFɑ Antagonist in Combination with PD-1 Blocker to Prevent or Retard Malignant Transformation of B[a]P-induced Chronic Lung Inflammation. Carcinogenesis 2022; 43:445-456. [PMID: 35230387 DOI: 10.1093/carcin/bgac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a typical complete carcinogen in tobacco, but its mechanism of inducing the development of chronic pneumonia and consequent lung cancer is unclear. Here we elucidated the role of myeloid-derived suppressor cells (MDSCs) in developing B[a]P-induced chronic lung inflammation and efficacy of immunotherapy in preventing subsequent malignant transformation. Our study showed that as B[a]P could induce the accumulation of MDSCs in lung tissues and enhance the immunosuppressive effect regulated by cytokines and metabolites, thereby promoting the formation of immunosuppressive microenvironment, where effector T cells were exhausted, NK cells were dysfunctional, regulatory T (Treg) cells were expanded, polarized alveolar macrophages were transformed from M1 to M2. Subsequently, we performed the immunotherapy to block TNFɑ only or both TNFɑ and PD-1 at the early- or middle-stage of B[a]P-induced chronic lung inflammation to ameliorate the immunosuppressive microenvironment. We found that TNFɑ antagonist alone or with PD-1 blocker was shown to exert therapeutic effects on malignant transformation at the early stage of B[a]P-induced chronic lung inflammation. Taken together, our findings demonstrated that B[a]P-induced chronic lung inflammation resulted in the accumulation of MDSCs in lung tissues and exercise their immunosuppressive functions, thereby developing an immunosuppressive microenvironment, thus TNFɑ antagonist alone or with PD-1 blocker could prevent or retard the malignant transformation of B[a]P-induced chronic lung inflammation.
Collapse
Affiliation(s)
- Ai Zhao
- Department of Hematology, Shunde Hospital, Southern Medical University; Foshan, Guangdong, China.,Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Fanfan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China.,Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Cheng Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Zhujun Zhou
- Medical laboratory, Tianmen First People's Hospital; Tianmen, Hubei, China
| | - Xianqiang Luo
- Medical laboratory, The First Affiliated Hospital of Nanchang University; Nanchang, Jiangxi, China
| | - Haiming Wu
- Medical laboratory, Xiamen Children's Hospital; Xiamen, Fujian, China
| | - Chunhong Ning
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Wanyu Liu
- Medical laboratory, Zhumadian Central Hospital; Zhumadian, Henan, China
| | - Dong Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China
| | - Danni Lin
- Harvard Medical School; Boston, MA, United States
| | - Shuwen Liu
- Department of Hematology, Shunde Hospital, Southern Medical University; Foshan, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University; Guangzhou, Guangdong, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University; Hangzhou, Zhejiang, China
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University; Wenzhou, Zhejiang, China.,Zhejiang Qixin Biotech; Wenzhou, Zhejiang, China
| |
Collapse
|
54
|
Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers (Basel) 2022; 14:cancers14030510. [PMID: 35158779 PMCID: PMC8833347 DOI: 10.3390/cancers14030510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immunotherapy is achieving impressive results in the treatment of several cancers. While the main strategies aim to re-invigorate the specific lymphocyte anti-tumor response, many studies underline that altered myeloid cell frequency and functions can dramatically interfere with the responsiveness to cancer therapies. Therefore, many novel strategies targeting TAMs and MDSCs in combination with classical treatments are under continuous evolution at both pre-clinical and clinical levels, showing encouraging results. Herein, we depict a comprehensive overview of myeloid cell generation and function in a cancer setting, and the most relevant strategies for their targeting that are currently in clinical use or under pre-clinical development. Abstract In recent years, the immune system has emerged as a critical regulator of tumor development, progression and dissemination. Advanced therapeutic approaches targeting immune cells are currently under clinical use and improvement for the treatment of patients affected by advanced malignancies. Among these, anti-PD1/PD-L1 and anti-CTLA4 immune checkpoint inhibitors (ICIs) are the most effective immunotherapeutic drugs at present. In spite of these advances, great variability in responses to therapy exists among patients, probably due to the heterogeneity of both cancer cells and immune responses, which manifest in diverse forms in the tumor microenvironment (TME). The variability of the immune profile within TME and its prognostic significance largely depend on the frequency of the infiltrating myeloid cells, which often represent the predominant population, characterized by high phenotypic heterogeneity. The generation of heterogeneous myeloid populations endowed with tumor-promoting activities is typically promoted by growing tumors, indicating the sequential levels of myeloid reprogramming as possible antitumor targets. This work reviews the current knowledge on the events governing protumoral myelopoiesis, analyzing the mechanisms that drive the expansion of major myeloid subsets, as well as their functional properties, and highlighting recent translational strategies for clinical developments.
Collapse
|
55
|
Cheng JN, Yuan YX, Zhu B, Jia Q. Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Front Cell Dev Biol 2022; 9:740827. [PMID: 35004667 PMCID: PMC8733653 DOI: 10.3389/fcell.2021.740827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature myeloid cells, has a pivotal role in negatively regulating immune response, promoting tumor progression, creating pre-metastases niche, and weakening immunotherapy efficacy. The underlying mechanisms are complex and diverse, including immunosuppressive functions (such as inhibition of cytotoxic T cells and recruitment of regulatory T cells) and non-immunological functions (mediating stemness and promoting angiogenesis). Moreover, MDSC may predict therapeutic response as a poor prognosis biomarker among multiple tumors. Accumulating evidence indicates targeting MDSC can reverse immunosuppressive tumor microenvironment, and improve therapeutic response either single or combination with immunotherapy. This review summarizes the phenotype and definite mechanisms of MDSCs in tumor progression, and provide new insights of targeting strategies regarding to their clinical applications.
Collapse
Affiliation(s)
- Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Yi-Xiao Yuan
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China.,Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| |
Collapse
|
56
|
Boral B, Ballı HT, Sözütok S, Pehlivan UA, Aikimbaev K. Clinical and prognostic significance of CD14 (+) HLA-DR (-/low) myeloid-derived suppressor cells in patients with hepatocellular carcinoma received transarterial radioembolization with Yttrium-90. Scand J Immunol 2021; 95:e13132. [PMID: 34936119 DOI: 10.1111/sji.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/21/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. For unresectable HCC, transarterial radioembolization (TARE) with Yttrium-90 is a widely used treatment. The aim of this study was to investigate whether monocytic myeloid-derived suppressor cells (M-MDSC) and CD39+ T cells can be non-invasive predictive biomarkers of radiological response and prognosis in patients with HCC treated with TARE. This study was conducted on 39 patients with HCC who were treated with TARE between August 2018 and December 2019 and the control group consisted of 23 healthy volunteers. CD4+, CD8+, CD39+ T cells, Natural killer (NK) cells, myeloid cells (MC) and M-MDSC parameters are examined in the course of TARE treatment with student t test and Kaplan-Meier method. There were statistically significant differences in M-MDSC, CD39+ T cells and MC values between healthy controls and HCC patients. A statistically significant difference was found in M-MDSC and CD4+ T cells values in the HCC patient group who responded to the treatment compared to those who did not. Survival analysis found that patients with lower frequencies (under 3.81%) of M-MDSC showed more prominent differences of overall survival (OS) compared to patients with all high groups. We found that M-MDSC in the peripheral blood might be a useful non-invasive biomarker to predict OS. We have shown for the first time that M-MDSC is correlated with treatment response in HCC patients treated with TARE. Additionally, we have found that the percentage of CD39+ T cells is high in HCC patients and these cells are positively correlated with M-MDSC.
Collapse
Affiliation(s)
- Barış Boral
- Department of Immunology, Adana Health Practice and Research Center, University of Health Sciences, Adana, Turkey
| | | | - Sinan Sözütok
- Department of Radiology, Çukurova University School of Medicine, Adana, Turkey
| | - Umur Anıl Pehlivan
- Department of Radiology, Çukurova University School of Medicine, Adana, Turkey
| | - Kairgeldy Aikimbaev
- Department of Radiology, Çukurova University School of Medicine, Adana, Turkey
| |
Collapse
|
57
|
Grover A, Sanseviero E, Timosenko E, Gabrilovich DI. Myeloid-Derived Suppressor Cells: A Propitious Road to Clinic. Cancer Discov 2021; 11:2693-2706. [PMID: 34635571 DOI: 10.1158/2159-8290.cd-21-0764] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important regulators of immune responses in cancer. They represent a relatively stable form of pathologic activation of neutrophils and monocytes and are characterized by distinct transcriptional, biochemical, functional, and phenotypical features. The close association of MDSCs with clinical outcomes in cancer suggests that these cells can be an attractive target for therapeutic intervention. However, the complex nature of MDSC biology represents a substantial challenge for the development of selective therapies. Here, we discuss the mechanisms regulating MDSC development and fate and recent research advances that have demonstrated opportunities for therapeutic regulation of these cells. SIGNIFICANCE: MDSCs are attractive therapeutic targets because of their close association with negative clinical outcomes in cancer and established biology as potent immunosuppressive cells. However, the complex nature of MDSC biology presents a substantial challenge for therapeutic targeting. In this review, we discuss those challenges and possible solutions.
Collapse
Affiliation(s)
- Amit Grover
- AstraZeneca, ICC, Early Oncology, R&D, Cambridge, United Kingdom
| | | | - Elina Timosenko
- AstraZeneca, ICC, Early Oncology, R&D, Cambridge, United Kingdom
| | | |
Collapse
|
58
|
The Enigma of Low-Density Granulocytes in Humans: Complexities in the Characterization and Function of LDGs during Disease. Pathogens 2021; 10:pathogens10091091. [PMID: 34578124 PMCID: PMC8470838 DOI: 10.3390/pathogens10091091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Low-density granulocytes (LDGs) have been characterized as important immune cells during healthy and disease states in humans, including microbial infections, cancer, and autoimmune dysfunction. However, the classification of this cell type is similar to other immune cells (e.g., neutrophils, myeloid-derived suppressor cells) and ambiguous functional standards have rendered LDG identification and isolation daunting. Furthermore, most research involving LDGs has mainly focused on adult cells and subjects, leaving increased uncertainty surrounding younger populations, especially in vulnerable neonatal groups where LDG numbers are elevated. This review aims to bring together the current research in the field of LDG biology in the context of immunity to disease, with a focus on infection. In addition, we propose to highlight the gaps in the field that, if filled, could improve upon isolation techniques and functional characterizations for LDGs separate from neutrophils and myeloid-derived suppressor cells (MDSCs). This will not only enhance understanding of LDGs during disease processes and how they differ from other cell types but will also aid in the interpretation of comparative studies and results with the potential to inform development of novel therapeutics to improve disease states in patients.
Collapse
|
59
|
Shen R, Postow MA, Adamow M, Arora A, Hannum M, Maher C, Wong P, Curran MA, Hollmann TJ, Jia L, Al-Ahmadie H, Keegan N, Funt SA, Iyer G, Rosenberg JE, Bajorin DF, Chapman PB, Shoushtari AN, Betof AS, Momtaz P, Merghoub T, Wolchok JD, Panageas KS, Callahan MK. LAG-3 expression on peripheral blood cells identifies patients with poorer outcomes after immune checkpoint blockade. Sci Transl Med 2021; 13:13/608/eabf5107. [PMID: 34433638 DOI: 10.1126/scitranslmed.abf5107] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/17/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
Immune checkpoint blocking antibodies are a cornerstone in cancer treatment; however, they benefit only a subset of patients and biomarkers to guide immune checkpoint blockade (ICB) treatment choices are lacking. We designed this study to identify blood-based correlates of clinical outcome in ICB-treated patients. We performed immune profiling of 188 ICB-treated patients with melanoma using multiparametric flow cytometry to characterize immune cells in pretreatment peripheral blood. A supervised statistical learning approach was applied to a discovery cohort to classify phenotypes and determine their association with survival and treatment response. We identified three distinct immune phenotypes (immunotypes), defined in part by the presence of a LAG-3+CD8+ T cell population. Patients with melanoma with a LAG+ immunotype had poorer outcomes after ICB with a median survival of 22.2 months compared to 75.8 months for those with the LAG- immunotype (P = 0.031). An independent cohort of 94 ICB-treated patients with urothelial carcinoma was used for validation where LAG+ immunotype was significantly associated with response (P = 0.007), survival (P < 0.001), and progression-free survival (P = 0.004). Multivariate Cox regression and stratified analyses further showed that the LAG+ immunotype was an independent marker of outcome when compared to known clinical prognostic markers and previously described markers for the clinical activity of ICB, PD-L1, and tumor mutation burden. The pretreatment peripheral blood LAG+ immunotype detects patients who are less likely to benefit from ICB and suggests a strategy for identifying actionable immune targets for further investigation.
Collapse
Affiliation(s)
- Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew Adamow
- Immune Monitoring Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Arshi Arora
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Margaret Hannum
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colleen Maher
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Phillip Wong
- Immune Monitoring Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Michael A Curran
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Travis J Hollmann
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liwei Jia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Niamh Keegan
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA
| | - Samuel A Funt
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Dean F Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Paul B Chapman
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Alexander N Shoushtari
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Allison S Betof
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Parisa Momtaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA
| | - Taha Merghoub
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.,Swim Across America/Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.,Swim Across America/Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Margaret K Callahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center New York, NY 10065, USA. .,Weill Cornell Medical College, New York, NY 10065, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
60
|
Wang P, Tang C, Liang J. [Blood-based Biomarkers in the Immune Checkpoint Inhibitor Treatment in
Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:503-512. [PMID: 34187157 PMCID: PMC8317092 DOI: 10.3779/j.issn.1009-3419.2021.102.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
以免疫检查点抑制剂(immune checkpoint inhibitors, ICI)为代表的免疫治疗改变了非小细胞肺癌(non-small cell lung cancer, NSCLC)的治疗模式,标志物指导下的免疫治疗是精准治疗的关键。基于组织的程序性死亡受体配体1(programmed cell death ligand 1, PD-L1)和肿瘤突变负荷(tumor mutational burden, TMB)是临床上广泛接受的用于指导免疫治疗的生物标志物,然而组织标本不易获取且难以克服肿瘤的时空异质性。外周血标志物作为组织检测的补充,具有取材方便、无创等优势,同时可涵盖肿瘤和宿主免疫状态两方面的信息,在NSCLC免疫治疗疗效预测及治疗反应动态监测方面的价值日益凸显。本文总结NSCLC免疫检查点抑制剂治疗相关外周血生物标志物的研究进展,旨在为开发新型的生物标志物提供参考。
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiation Oncology, Peking University International Hospital, Beijing 102206, China
| | - Chuanhao Tang
- Department of Oncology, Peking University International Hospital, Beijing 102206, China
| | - Jun Liang
- Department of Radiation Oncology, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
61
|
Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, Galluzzi L. ATP and cancer immunosurveillance. EMBO J 2021; 40:e108130. [PMID: 34121201 DOI: 10.15252/embj.2021108130] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
While intracellular adenosine triphosphate (ATP) occupies a key position in the bioenergetic metabolism of all the cellular compartments that form the tumor microenvironment (TME), extracellular ATP operates as a potent signal transducer. The net effects of purinergic signaling on the biology of the TME depend not only on the specific receptors and cell types involved, but also on the activation status of cis- and trans-regulatory circuitries. As an additional layer of complexity, extracellular ATP is rapidly catabolized by ectonucleotidases, culminating in the accumulation of metabolites that mediate distinct biological effects. Here, we discuss the molecular and cellular mechanisms through which ATP and its degradation products influence cancer immunosurveillance, with a focus on therapeutically targetable circuitries.
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Lucillia Bezu
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Qld, Australia
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| |
Collapse
|
62
|
Xia S, Wu J, Zhou W, Zhang M, Zhao K, Liu J, Tian D, Liao J. SLC7A2 deficiency promotes hepatocellular carcinoma progression by enhancing recruitment of myeloid-derived suppressors cells. Cell Death Dis 2021; 12:570. [PMID: 34108444 PMCID: PMC8190073 DOI: 10.1038/s41419-021-03853-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
The main reason for poor prognosis in hepatocellular carcinoma (HCC) patients is high metastasis and recurrence. Cancer progression depends on a tumor-supportive microenvironment. Therefore, illustrating the mechanisms of tumor immunity in underlying HCC metastasis is essential. Here, we report a novel role of solute carrier family 7 member 2 (SLC7A2), a member of the solute carrier family, in HCC metastasis. The reduction of SLC7A2 was an independent and significant risk factor for the survival of HCC patients. Upregulation of SLC7A2 decreased HCC invasion and metastasis, whereas downregulation of SLC7A2 promoted HCC invasion and metastasis. We further found that deficient SLC7A2 medicated the upregulation of CXCL1 through PI3K/Akt/NF-kκB pathway to recruit myeloid-derived suppressor cells (MDSCs), exerting tumor immunosuppressive effect. Moreover, we found that G9a-mediated di-methylation of H3K9 (H3K9me2) silenced the expression of SLC7A2 to suppress HCC metastasis and immune escape. In conclusion, G9a-mediated silencing of SLC7A2 exerts unexpected functions in cancer metastasis by fostering a tumor-supportive microenvironment through CXCL1 secretion and MDSCs recruitment. Thus, SLC7A2 may provide new mechanistic insight into the cancer-promoting property of MDSCs.
Collapse
Affiliation(s)
- Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jingwen Wu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wangdong Zhou
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Mingyu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Kai Zhao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
63
|
Ge Y, Cheng D, Jia Q, Xiong H, Zhang J. Mechanisms Underlying the Role of Myeloid-Derived Suppressor Cells in Clinical Diseases: Good or Bad. Immune Netw 2021; 21:e21. [PMID: 34277111 PMCID: PMC8263212 DOI: 10.4110/in.2021.21.e21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive activity and are morphologically similar to conventional monocytes and granulocytes. The development and classification of these cells have, however, been controversial. The activation network of MDSCs is relatively complex, and their mechanism of action is poorly understood, creating an avenue for further research. In recent years, MDSCs have been found to play an important role in immune regulation and in effectively inhibiting the activity of effector lymphocytes. Under certain conditions, particularly in the case of tissue damage or inflammation, MDSCs play a leading role in the immune response of the central nervous system. In cancer, however, this can lead to tumor immune evasion and the development of related diseases. Under cancerous conditions, tumors often alter bone marrow formation, thus affecting progenitor cell differentiation, and ultimately, MDSC accumulation. MDSCs are important contributors to tumor progression and play a key role in promoting tumor growth and metastasis, and even reduce the efficacy of immunotherapy. Currently, a number of studies have demonstrated that MDSCs play a key regulatory role in many clinical diseases. In light of these studies, this review discusses the origin of MDSCs, the mechanisms underlying their activation, their role in a variety of clinical diseases, and their function in immune response regulation.
Collapse
Affiliation(s)
- Yongtong Ge
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Qingzhi Jia
- Affiliated Hospital of Jining Medical College, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| |
Collapse
|
64
|
Qiao M, Jiang T, Liu X, Mao S, Zhou F, Li X, Zhao C, Chen X, Su C, Ren S, Zhou C. Immune Checkpoint Inhibitors in EGFR-Mutated NSCLC: Dusk or Dawn? J Thorac Oncol 2021; 16:1267-1288. [PMID: 33915248 DOI: 10.1016/j.jtho.2021.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Although immune checkpoint inhibitors (ICIs) that target programmed cell death protein-1/programmed cell death ligand-1 axis have significantly shifted the treatment paradigm in advanced NSCLC, clinical benefits of these agents are limited in patients with EGFR-mutated NSCLC. Several predictive biomarkers (e.g., programmed cell death ligand-1 expression, tumor mutation burden), which have been validated in EGFR-wild type NSCLC, however, are not efficacious in EGFR-mutated tumors, suggesting the unique characteristics of tumor microenvironment of EGFR-mutated NSCLC. Here, we first summarized the clinical evidence on the efficacy of ICIs in patients with EGFR-mutated NSCLC. Then, the cancer immunogram features of EGFR-mutated NSCLC was depicted to visualize the state of cancer-immune system interactions, including tumor foreignness, tumor sensitivity to immune effectors, metabolism, general immune status, immune cell infiltration, cytokines, and soluble molecules. We further discussed the potential subpopulations with EGFR mutations that could benefit from ICI treatment. Lastly, we put forward future strategies to adequately maximize the efficacy of ICI treatment in patients with EGFR-mutated NSCLC in the upcoming era of combination immunotherapies.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
65
|
Lei Y, Li X, Huang Q, Zheng X, Liu M. Progress and Challenges of Predictive Biomarkers for Immune Checkpoint Blockade. Front Oncol 2021; 11:617335. [PMID: 33777757 PMCID: PMC7992906 DOI: 10.3389/fonc.2021.617335] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
Over the past decade, immune checkpoint blockade (ICB) therapy has revolutionized the outlook for oncology with significant and sustained improvement in the overall patient survival. Unlike traditional cancer therapies, which target the cancer cells directly, ICB acts on the immune system to enhance anti-tumoral immunity. However, the response rate is still far from satisfactory and most patients are refractory to such treatment. Unfortunately, the mechanisms underlying such heterogeneous responses between patients to ICB therapy remain unclear. In addition, escalating costs of cancer care and unnecessary immune-related adverse events also are pertinent considerations with applications of ICB. Given these issues, identifying explicit predictive biomarkers for patient selection is an urgent unmet need to increase the efficacy of ICB therapy. The markers can be classified as tumor related and non-tumor-related biomarkers. Although substantial efforts have been put into investigating various biomarkers, none of them has been found to be sufficient for effectively stratifying patients who may benefit from immunotherapy. The present write up is an attempt to review the various emerging clinically relevant biomarkers affecting the efficacy of immune checkpoint inhibitors, as well as the limitations associated with their clinical application.
Collapse
Affiliation(s)
- Yanna Lei
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoying Li
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Huang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiufeng Zheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
66
|
Kim KH, Hur JY, Koh J, Cho J, Ku BM, Koh JY, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ, Shin EC. Immunological Characteristics of Hyperprogressive Disease in Patients with Non-small Cell Lung Cancer Treated with Anti-PD-1/PD-L1 Abs. Immune Netw 2020; 20:e48. [PMID: 33425433 PMCID: PMC7779871 DOI: 10.4110/in.2020.20.e48] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperprogressive disease (HPD) is a distinct pattern of progression characterized by acceleration of tumor growth after treatment with anti-PD-1/PD-L1 Abs. However, the immunological characteristics have not been fully elucidated in patients with HPD. We prospectively recruited patients with metastatic non-small cell lung cancer treated with anti-PD-1/PD-L1 Abs between April 2015 and April 2018, and collected peripheral blood before treatment and 7-days post-treatment. HPD was defined as ≥2-fold increase in both tumor growth kinetics and tumor growth rate between pre-treatment and post-treatment. Peripheral blood mononuclear cells were analyzed by multi-color flow cytometry to phenotype the immune cells. Of 115 patients, 19 (16.5%) developed HPD, 52 experienced durable clinical benefit (DCB; partial response or stable disease ≥6 months), and 44 experienced non-hyperprogressive progression (NHPD). Patients with HPD had significantly lower progression-free survival (p<0.001) and overall survival (p<0.001). When peripheral blood immune cells were examined, the pre-treatment frequency of CD39+ cells among CD8+ T cells was significantly higher in patients with HPD compared to those with NHPD, although it showed borderline significance to predict HPD. Other parameters regarding regulatory T cells or myeloid derived suppressor cells did not significantly differ among patient groups. Our findings suggest high pre-treatment frequency of CD39+CD8+ T cells might be a characteristic of HPD. Further investigations in a larger cohort are needed to confirm our results and better delineate the immune landscape of HPD.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Joon Young Hur
- Division of Hematology and Oncology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Jiae Koh
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Jinhyun Cho
- Division of Hematology-Oncology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - June Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Myung-Ju Ahn
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea.,Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
67
|
Regulatory (FoxP3 +) T cells and TGF-β predict the response to anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep 2020; 10:18994. [PMID: 33149213 PMCID: PMC7642363 DOI: 10.1038/s41598-020-76130-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 01/28/2023] Open
Abstract
Antitumor immune responses induced by immune checkpoint inhibitors anti-PD-1 or anti-PD-L1 have been used as therapeutic strategies in advanced non-small cell lung cancer (NSCLC) patients over the last decade. Favorable antitumor activity to immune checkpoint inhibitors is correlated with high PD-L1 expression, increased tumor-infiltrating lymphocytes, and decreased suppressive immune cells including Treg cells, myeloid-derived suppressor cells, or tumor-associated macrophages in various cancer types. In this study, we investigated the potential correlation between clinical outcomes and peripheral blood immune cell profiles, specifically focused on FoxP3+ Treg cells, collected at baseline and one week after anti-PD-1 therapy in two independent cohorts of patients with NSCLC: a discovery cohort of 83 patients and a validation cohort of 49 patients. High frequencies of circulating Treg cells one week after anti-PD-1 therapy were correlated with a high response rate, longer progression-free survival, and overall survival. Furthermore, high levels of TGF-β and Treg cells were associated with favorable clinical outcomes. Our results suggest that higher levels of FoxP3+ Treg cells and TGF-β can predict a favorable response to anti-PD-1 immunotherapy in patients with advanced NSCLC.
Collapse
|