51
|
Chou Y, Chang C, Remedios SW, Butman JA, Chan L, Pham DL. Automated Classification of Resting-State fMRI ICA Components Using a Deep Siamese Network. Front Neurosci 2022; 16:768634. [PMID: 35368292 PMCID: PMC8971556 DOI: 10.3389/fnins.2022.768634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Manual classification of functional resting state networks (RSNs) derived from Independent Component Analysis (ICA) decomposition can be labor intensive and requires expertise, particularly in large multi-subject analyses. Hence, a fully automatic algorithm that can reliably classify these RSNs is desirable. In this paper, we present a deep learning approach based on a Siamese Network to learn a discriminative feature representation for single-subject ICA component classification. Advantages of this supervised framework are that it requires relatively few training data examples and it does not require the number of ICA components to be specified. In addition, our approach permits one-shot learning, which allows generalization to new classes not seen in the training set with only one example of each new class. The proposed method is shown to out-perform traditional convolutional neural network (CNN) and template matching methods in identifying eleven subject-specific RSNs, achieving 100% accuracy on a holdout data set and over 99% accuracy on an outside data set. We also demonstrate that the method is robust to scan-rescan variation. Finally, we show that the functional connectivity of default mode and salience networks identified by the proposed technique is altered in a group analysis of mild traumatic brain injury (TBI), severe TBI, and healthy subjects.
Collapse
Affiliation(s)
- Yiyu Chou
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
- *Correspondence: Yiyu Chou,
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Samuel W. Remedios
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - John A. Butman
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Leighton Chan
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
- Rehabilitation Medicine Department at Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dzung L. Pham
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| |
Collapse
|
52
|
Cruz Navarro J, Ponce Mejia LL, Robertson C. A Precision Medicine Agenda in Traumatic Brain Injury. Front Pharmacol 2022; 13:713100. [PMID: 35370671 PMCID: PMC8966615 DOI: 10.3389/fphar.2022.713100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury remains a leading cause of death and disability across the globe. Substantial uncertainty in outcome prediction continues to be the rule notwithstanding the existing prediction models. Additionally, despite very promising preclinical data, randomized clinical trials (RCTs) of neuroprotective strategies in moderate and severe TBI have failed to demonstrate significant treatment effects. Better predictive models are needed, as the existing validated ones are more useful in prognosticating poor outcome and do not include biomarkers, genomics, proteonomics, metabolomics, etc. Invasive neuromonitoring long believed to be a "game changer" in the care of TBI patients have shown mixed results, and the level of evidence to support its widespread use remains insufficient. This is due in part to the extremely heterogenous nature of the disease regarding its etiology, pathology and severity. Currently, the diagnosis of traumatic brain injury (TBI) in the acute setting is centered on neurological examination and neuroimaging tools such as CT scanning and MRI, and its treatment has been largely confronted using a "one-size-fits-all" approach, that has left us with many unanswered questions. Precision medicine is an innovative approach for TBI treatment that considers individual variability in genes, environment, and lifestyle and has expanded across the medical fields. In this article, we briefly explore the field of precision medicine in TBI including biomarkers for therapeutic decision-making, multimodal neuromonitoring, and genomics.
Collapse
Affiliation(s)
- Jovany Cruz Navarro
- Departments of Anesthesiology and Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Lucido L. Ponce Mejia
- Departments of Neurosurgery and Neurology, LSU Health Science Center, New Orleans, LA, United States
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
53
|
Zhang D, Zhu P, Yin B, Zhao P, Wang S, Ye L, Bai L, Yan Z, Bai G. Frontal White Matter Hyperintensities Effect on Default Mode Network Connectivity in Acute Mild Traumatic Brain Injury. Front Aging Neurosci 2022; 13:793491. [PMID: 35250532 PMCID: PMC8890121 DOI: 10.3389/fnagi.2021.793491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
The functional connectivity of the brain depends not only on the structural integrity of the cortex but also on the white matter pathways between cortical areas. White matter hyperintensities (WMH), caused by chronic hypoperfusion in the white matter, play a role in the outcome of traumatic brain injury (TBI) and other neurodegenerative disorders. Herein, we investigate how the location and volume of WMH affect the default-mode network (DMN) connectivity in acute mild TBI (mTBI) patients. Forty-six patients with acute mTBI and 46 matched healthy controls were enrolled in the study. All participants underwent T2-weighted fluid-attenuated inversion recovery magnetic resonance imaging (MRI), resting-state functional MRI (fMRI),and neuropsychological assessments. The volume and location of WMH were recorded. The relationships between the WMH volume and clinical assessments were evaluated using Spearman’s correlation. Patients with higher frontal lobe WMH volume had more severe post-concussion symptoms and poorer information processing speed. Moreover, these patients had significantly lower functional connectivity in the right middle temporal gyrus, left middle frontal gyrus, right superior frontal gyrus, and left anterior cingulate cortex, compared with patients with low frontal lobe WMH volume. Compared to the controls, the patients with high frontal WMH volume exhibited significantly lower functional connectivity in the right inferior temporal gyrus, left anterior cingulate cortex, and right superior frontal gyrus. These findings suggest that frontal lobe WMH volume may modulate the functional connectivity within the DMN. Therefore, the WMH volume in specific regions of the brain, particularly the frontal and parietal lobes, may accelerate the process of aging and cognitive impairment may be a useful biomarker for the diagnosis and prognosis of acute mTBI.
Collapse
Affiliation(s)
- Danbin Zhang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pingyi Zhu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Pinghui Zhao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Limei Ye
- Department of Radiology, Jinhua Municipal Central Hospital and Jinhua Hospital of Zhejiang University, Jinhua, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhihan Yan,
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, China
- Guanghui Bai,
| |
Collapse
|
54
|
An interdisciplinary computational model for predicting traumatic brain injury: Linking biomechanics and functional neural networks. Neuroimage 2022; 251:119002. [PMID: 35176490 DOI: 10.1016/j.neuroimage.2022.119002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 01/19/2022] [Accepted: 02/12/2022] [Indexed: 11/22/2022] Open
Abstract
The brain is a complex network consisting of neuron cell bodies in the gray matter and their axonal projections, forming the white matter tracts. These neurons are supported by an equally complex vascular network as well as glial cells. Traumatic brain injury (TBI) can lead to the disruption of the structural and functional brain networks due to disruption of both neuronal cell bodies in the gray matter as well as their projections and supporting cells. To explore how an impact can alter the function of brain networks, we integrated a finite element (FE) brain mechanics model with linked models of brain dynamics (Kuramoto oscillator) and vascular perfusion (Balloon-Windkessel) in this study. We used empirical resting-state functional magnetic resonance imaging (MRI) data to optimize the fit of our brain dynamics and perfusion models to clinical data. Results from the FE model were used to mimic injury in these optimized brain dynamics models: injury to the nodes (gray matter) led to a decrease in the nodal oscillation frequency, while damage to the edges (axonal connections/white matter) progressively decreased coupling among connected nodes. A total of 53 cases, including 33 non-injurious and 20 concussive head impacts experienced by professional American football players were simulated using this integrated model. We examined the correlation of injury outcomes with global measures of structural connectivity, neural dynamics, and functional connectivity of the brain networks when using different lesion methods. Results show that injurious head impacts cause significant alterations in global network topology regardless of lesion methods. Changes between the disrupted and healthy functional connectivity (measured by Pearson correlation) consistently correlated well with injury outcomes (AUC≥0.75), although the predictive performance is not significantly different (p>0.05) to that of traditional kinematic measures (angular acceleration). Intriguingly, our lesion model for gray matter damage predicted increases in global efficiency and clustering coefficient with increases in injury risk, while disrupting axonal connections led to lower network efficiency and clustering. When both injury mechanisms were combined into a single injury prediction model, the injury prediction performance depended on the thresholds used to determine neurodegeneration and mechanical tolerance for axonal injury. Together, these results point towards complex effects of mechanical trauma to the brain and provide a new framework for understanding brain injury at a causal mechanistic level and developing more effective diagnostic methods and therapeutic interventions.
Collapse
|
55
|
Robles DJ, Dharani A, Rostowsky KA, Chaudhari NN, Ngo V, Zhang F, O'Donnell LJ, Green L, Sheikh-Bahaei N, Chui HC, Irimia A. Older age, male sex, and cerebral microbleeds predict white matter loss after traumatic brain injury. GeroScience 2022; 44:83-102. [PMID: 34704219 PMCID: PMC8811069 DOI: 10.1007/s11357-021-00459-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022] Open
Abstract
Little is known on how mild traumatic brain injury affects white matter based on age at injury, sex, cerebral microbleeds, and time since injury. Here, we study the fractional anisotropy of white matter to study these effects in 109 participants aged 18-77 (46 females, age μ ± σ = 40 ± 17 years) imaged within [Formula: see text] 1 week and [Formula: see text] 6 months post-injury. Age is found to be linearly associated with white matter degradation, likely due not only to injury but also to cumulative effects of other pathologies and to their interactions with injury. Age is associated with mean anisotropy decreases in the corpus callosum, middle longitudinal fasciculi, inferior longitudinal and occipitofrontal fasciculi, and superficial frontal and temporal fasciculi. Over [Formula: see text] 6 months, the mean anisotropies of the corpus callosum, left superficial frontal fasciculi, and left corticospinal tract decrease significantly. Independently of other predictors, age and cerebral microbleeds contribute to anisotropy decrease in the callosal genu. Chronically, the white matter of commissural tracts, left superficial frontal fasciculi, and left corticospinal tract degrade appreciably, independently of other predictors. Our findings suggest that large commissural and intra-hemispheric structures are at high risk for post-traumatic degradation. This study identifies detailed neuroanatomic substrates consistent with brain injury patients' age-dependent deficits in information processing speed, interhemispheric communication, motor coordination, visual acuity, sensory integration, reading speed/comprehension, executive function, personality, and memory. We also identify neuroanatomic features underlying white matter degradation whose severity is associated with the male sex. Future studies should compare our findings to functional measures and other neurodegenerative processes.
Collapse
Affiliation(s)
- David J Robles
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ammar Dharani
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kenneth A Rostowsky
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Van Ngo
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren Green
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nasim Sheikh-Bahaei
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
56
|
Zhao P, Zhu P, Zhang D, Yin B, Wang Y, Hussein NM, Yan Z, Liu X, Bai G. Sex Differences in Cerebral Blood Flow and Serum Inflammatory Cytokines and Their Relationships in Mild Traumatic Brain Injury. Front Neurol 2022; 12:755152. [PMID: 35153973 PMCID: PMC8825420 DOI: 10.3389/fneur.2021.755152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate sex differences in cerebral blood flow (CBF) and serum inflammatory cytokines, as well as their correlations in patients with acute-stage mild traumatic brain injury (mTBI). Forty-one patients with mTBI and 23 matched healthy controls underwent 3D-pseudo-continuous arterial spin labeling imaging on 3T magnetic resonance imaging. The patients underwent cognitive evaluations and measurement of a panel of ten serum cytokines: interleukin (IL)-1I, IL-4, IL-6, IL-8, IL-10, IL-12, C–C motif chemokine ligand 2, interferon-gamma, nerve growth factor-beta (β-NGF), and tumor necrosis factor-alpha (TNF-α). Spearman rank correlation analysis was performed to evaluate the relationship between inflammation levels and CBF. We found that both male and female patients showed increased IL-1L and IL-6 levels. Female patients also demonstrated overexpression of IL-8 and low expression of IL-4. As for CBF levels, three brain regions [the right superior frontal gyrus (SFG_R), left putamen, and right precuneus] increased in male patients while three brain regions [the right superior temporal gyrus (STG_R), left middle occipital gyrus, and right postcentral (PoCG_R)] decreased in female patients. Furthermore, the STG_R in female controls was positively correlated with β-NGF while the right PoCG_R in female patients was negatively correlated with IL-8. In addition, compared with male patients, female patients showed decreased CBF in the right pallidum, which was negatively correlated with IL-8. These findings revealed abnormal expression of serum inflammatory cytokines and CBF levels post-mTBI. Females may be more sensitive to inflammatory and CBF changes and thus more likely to get cognitive impairment. This may suggest the need to pay closer attention to the female mTBI group.
Collapse
Affiliation(s)
- Pinghui Zhao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pingyi Zhu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danbin Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nimo Mohamed Hussein
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- China-USA Neuroimaging Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Xiaozheng Liu
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, Wenzhou, China
- *Correspondence: Guanghui Bai
| |
Collapse
|
57
|
Schumm SN, Gabrieli D, Meaney DF. Plasticity impairment exposes CA3 vulnerability in a hippocampal network model of mild traumatic brain injury. Hippocampus 2022; 32:231-250. [PMID: 34978378 DOI: 10.1002/hipo.23402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022]
Abstract
Proper function of the hippocampus is critical for executing cognitive tasks such as learning and memory. Traumatic brain injury (TBI) and other neurological disorders are commonly associated with cognitive deficits and hippocampal dysfunction. Although there are many existing models of individual subregions of the hippocampus, few models attempt to integrate the primary areas into one system. In this work, we developed a computational model of the hippocampus, including the dentate gyrus, CA3, and CA1. The subregions are represented as an interconnected neuronal network, incorporating well-characterized ex vivo slice electrophysiology into the functional neuron models and well-documented anatomical connections into the network structure. In addition, since plasticity is foundational to the role of the hippocampus in learning and memory as well as necessary for studying adaptation to injury, we implemented spike-timing-dependent plasticity among the synaptic connections. Our model mimics key features of hippocampal activity, including signal frequencies in the theta and gamma bands and phase-amplitude coupling in area CA1. We also studied the effects of spike-timing-dependent plasticity impairment, a potential consequence of TBI, in our model and found that impairment decreases broadband power in CA3 and CA1 and reduces phase coherence between these two subregions, yet phase-amplitude coupling in CA1 remains intact. Altogether, our work demonstrates characteristic hippocampal activity with a scaled network model of spiking neurons and reveals the sensitive balance of plasticity mechanisms in the circuit through one manifestation of mild traumatic injury.
Collapse
Affiliation(s)
- Samantha N Schumm
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Gabrieli
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
58
|
Vaughn KA, DeMaster D, Kook JH, Vannucci M, Ewing-Cobbs L. Effective connectivity in the default mode network after paediatric traumatic brain injury. Eur J Neurosci 2022; 55:318-336. [PMID: 34841600 PMCID: PMC9198945 DOI: 10.1111/ejn.15546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Children who experience a traumatic brain injury (TBI) are at elevated risk for a range of negative cognitive and neuropsychological outcomes. Identifying which children are at greatest risk for negative outcomes can be difficult due to the heterogeneity of TBI. To address this barrier, the current study applied a novel method of characterizing brain connectivity networks, Bayesian multi-subject vector autoregressive modelling (BVAR-connect), which used white matter integrity as priors to evaluate effective connectivity-the time-dependent relationship in functional magnetic resonance imaging (fMRI) activity between two brain regions-within the default mode network (DMN). In a prospective longitudinal study, children ages 8-15 years with mild to severe TBI underwent diffusion tensor imaging and resting state fMRI 7 weeks after injury; post-concussion and anxiety symptoms were assessed 7 months after injury. The goals of this study were to (1) characterize differences in positive effective connectivity of resting-state DMN circuitry between healthy controls and children with TBI, (2) determine if severity of TBI was associated with differences in DMN connectivity and (3) evaluate whether patterns of DMN effective connectivity predicted persistent post-concussion symptoms and anxiety. Healthy controls had unique positive connectivity that mostly emerged from the inferior temporal lobes. In contrast, children with TBI had unique effective connectivity among orbitofrontal and parietal regions. These positive orbitofrontal-parietal DMN effective connectivity patterns also differed by TBI severity and were associated with persisting behavioural outcomes. Effective connectivity may be a sensitive neuroimaging marker of TBI severity as well as a predictor of chronic post-concussion symptoms and anxiety.
Collapse
Affiliation(s)
- Kelly A. Vaughn
- University of Texas Health Science Center at Houston,,Corresponding Author
| | - Dana DeMaster
- University of Texas Health Science Center at Houston
| | | | | | | |
Collapse
|
59
|
Osman SM, Soliman HSM, Hamed FM, Marrez DA, El-Gazar AA, Alazzouni AS, Nasr T, Ibrahim HA. Neuroprotective Role of Microbial Biotransformed Metabolites of Sinapic Acid on Repetitive Traumatic Brain Injury in Rats. PHARMACOPHORE 2022. [DOI: 10.51847/1rj6v3egdu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
60
|
Kim E, Yoo RE, Seong MY, Oh BM. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults. Eur J Radiol 2021; 147:110117. [PMID: 34973540 DOI: 10.1016/j.ejrad.2021.110117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE This study aimed to review diffusion tensor imaging studies of mild traumatic brain injury (mTBI) in adults with longitudinal acquisition of data and investigate the variability of findings in association with related factors, such as the time post-injury. METHODS Eligible studies from PubMed and EMBASE were searched to identify relevant studies for review. Of the 540 studies, 23 observational studies without intervention and with the following characteristics were included: original research in which adults with mTBI were examined, diffusion tensor imaging was acquired at least twice, white matter integrity was investigated by estimating diffusion metrics, and mode of injury was not restricted to sport- or blast-related mTBI. RESULTS Baseline scans were acquired within 3 weeks post-injury, followed by longitudinal scans within 3 months and at 12 months post-injury. During the acute/subacute period, mixed results (increase, decrease, or no significant change) of fractional anisotropy (FA) were observed compared to those in controls. Some studies reported increased FA during the acute/subacute period compared to controls, followed by normalization of FA. Decreased FA was also reported during the acute/subacute period, which lasted long into the chronic phase. In the acute phase, the mean diffusivity (MD) was greater than that in the controls. Compared to the early phase of injury, MD was reduced in the follow-up phase in most studies in the mTBI group. Insignificant differences in FA and MD have been reported in several studies. Such variability limits the clinical usefulness of diffusion tensor metrics. CONCLUSIONS There was a high variability in reported changes in white matter integrity. Decreased FA not only in acute/subacute but also in long-term period after injury may indicate long-term neurodegenerative processes after mTBI. Nevertheless, longitudinal changes in MD towards normalization suggest possible recovery. Long-term cohort studies with research initiatives should be considered to elucidate brain changes after mTBI.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Yong Seong
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea.
| |
Collapse
|
61
|
Fan L, Xu H, Su J, Qin J, Gao K, Ou M, Peng S, Shen H, Li N. Discriminating mild traumatic brain injury using sparse dictionary learning of functional network dynamics. Brain Behav 2021; 11:e2414. [PMID: 34775693 PMCID: PMC8671791 DOI: 10.1002/brb3.2414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is usually caused by a bump, blow, or jolt to the head or penetrating head injury, and carries the risk of inducing cognitive disorders. However, identifying the biomarkers for the diagnosis of mTBI is challenging as evident abnormalities in brain anatomy are rarely found in patients with mTBI. In this study, we tested whether the alteration of functional network dynamics could be used as potential biomarkers to better diagnose mTBI. We propose a sparse dictionary learning framework to delineate spontaneous fluctuation of functional connectivity into the subject-specific time-varying evolution of a set of overlapping group-level sparse connectivity components (SCCs) based on the resting-state functional magnetic resonance imaging (fMRI) data from 31 mTBI patients in the early acute phase (<3 days postinjury) and 31 healthy controls (HCs). The identified SCCs were consistently distributed in the cohort of subjects without significant inter-group differences in connectivity patterns. Nevertheless, subject-specific temporal expression of these SCCs could be used to discriminate patients with mTBI from HCs with a classification accuracy of 74.2% (specificity 64.5% and sensitivity 83.9%) using leave-one-out cross-validation. Taken together, our findings indicate neuroimaging biomarkers for mTBI individual diagnosis based on the temporal expression of SCCs underlying time-resolved functional connectivity.
Collapse
Affiliation(s)
- Liangwei Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Huaze Xu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Jian Qin
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Kai Gao
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Min Ou
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Song Peng
- Radiology Department, Xiangya 3rd Hospital, Central South University, Changsha, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Na Li
- Radiology Department, Xiangya 3rd Hospital, Central South University, Changsha, China
| |
Collapse
|
62
|
Manning Franke L, Perera RA, Aygemang AA, Marquardt CA, Teich C, Sponheim SR, Duncan CC, Walker WC. Auditory evoked brain potentials as markers of chronic effects of mild traumatic brain injury in mid-life. Clin Neurophysiol 2021; 132:2979-2988. [PMID: 34715422 DOI: 10.1016/j.clinph.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/31/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Auditory event-related potential (ERP) correlates of pre-dementia in late-life may also be sensitive to chronic effects of mild traumatic brain injury (mTBI) in mid-life. In addition to mTBI history, other clinical factors may also influence ERP measures of brain function. This study's objective was to evaluate the relationship between mTBI history, auditory ERP metrics, and common comorbidities. METHODS ERPs elicited during an auditory target detection task, psychological symptoms, and hearing sensitivity were collected in 152 combat-exposed veterans and service members, as part of a prospective observational cohort study. Participants, with an average age of 43.6 years, were grouped according to positive (n = 110) or negative (n = 42) mTBI history. Positive histories were subcategorized into repetitive mTBI (3 + ) (n = 40) or non-repetitive (1-2) (n = 70). RESULTS Positive history of mTBI was associated with reduced N200 amplitude to targets and novel distractors. In participants with repetitive mTBI compared to non-repetitive and no mTBI, P50 was larger in response to nontargets and N100 was smaller in response to nontargets and targets. Changes in N200 were mediated by depression and anxiety symptoms and hearing loss, with no evidence of a supplementary direct mTBI pathway. CONCLUSIONS Auditory brain function differed between the positive and negative mTBI groups, especially for repetitive injury, which implicated more basic, early auditory processing than did any mTBI exposure. Symptoms of internalizing psychopathology (depression and anxiety) and hearing loss are implicated in mTBI's diminished brain responses to behaviorally relevant and novel stimuli. SIGNIFICANCE A mid-life neurologic vulnerability conferred by mTBI, particularly repetitive mTBI, may be detectable using auditory brain potentials, and so auditory ERPs are a target for study of dementia risk in this population.
Collapse
Affiliation(s)
- Laura Manning Franke
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, USA; Hunter Holmes McGuire VA Medical Center, USA.
| | - Robert A Perera
- Department of Biostatistics, Virginia Commonwealth University, USA.
| | - Amma A Aygemang
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, USA.
| | - Craig A Marquardt
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, USA.
| | | | - Scott R Sponheim
- Minneapolis VA Health Care System, USA; Department of Psychiatry & Behavioral Sciences, University of Minnesota, USA; Department of Psychology, University of Minnesota, USA.
| | - Connie C Duncan
- Departments of Psychiatry and Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, USA.
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, USA; Hunter Holmes McGuire VA Medical Center, USA.
| |
Collapse
|
63
|
Lunkova E, Guberman GI, Ptito A, Saluja RS. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Hum Brain Mapp 2021; 42:5477-5494. [PMID: 34427960 PMCID: PMC8519871 DOI: 10.1002/hbm.25630] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI), frequently referred to as concussion, is one of the most common neurological disorders. The underlying neural mechanisms of functional disturbances in the brains of concussed individuals remain elusive. Novel forms of brain imaging have been developed to assess patients postconcussion, including functional magnetic resonance imaging (fMRI), susceptibility-weighted imaging (SWI), diffusion MRI (dMRI), and perfusion MRI [arterial spin labeling (ASL)], but results have been mixed with a more common utilization in the research environment and a slower integration into the clinical setting. In this review, the benefits and drawbacks of the methods are described: fMRI is an effective method in the diagnosis of concussion but it is expensive and time-consuming making it difficult for regular use in everyday practice; SWI allows detection of microhemorrhages in acute and chronic phases of concussion; dMRI is primarily used for the detection of white matter abnormalities, especially axonal injury, specific for mTBI; and ASL is an alternative to the BOLD method with its ability to track cerebral blood flow alterations. Thus, the absence of a universal diagnostic neuroimaging method suggests a need for the adoption of a multimodal approach to the neuroimaging of mTBI. Taken together, these methods, with their underlying functional and structural features, can contribute from different angles to a deeper understanding of mTBI mechanisms such that a comprehensive diagnosis of mTBI becomes feasible for the clinician.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Guido I. Guberman
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Alain Ptito
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Montreal Neurological InstituteMontrealQuebecCanada
- Department of PsychologyMcGill University Health CentreMontrealQuebecCanada
| | - Rajeet Singh Saluja
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- McGill University Health Centre Research InstituteMontrealQuebecCanada
| |
Collapse
|
64
|
Glendon K, Blenkinsop G, Belli A, Pain M. Prospective study with specific Re-Assessment time points to determine time to recovery following a Sports-Related Concussion in university-aged student-athletes. Phys Ther Sport 2021; 52:287-296. [PMID: 34715487 DOI: 10.1016/j.ptsp.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Time to recovery for symptom burden and neurocognition following a Sports-Related Concussion (SRC) has previously been determined by consolidating varying re-assessment time points into a singular point, and has not been established for Vestibular-Ocular-Motor (VOM) function or academic ability. OBJECTIVES Establish when recovery of symptom burden, neurocognition, VOM function, and academic ability occurs in university-aged student-athletes. METHODS Student-athletes completed an assessment battery (Post-Concussion Symptom Scale (PCSS), Immediate Post-Concussion Assessment and Cognitive Test (ImPACT), Vestibular Ocular-Motor Screening (VOMS), Perceived Academic Impairment Tool (PAIT)) during pre-season (n = 140), within 48 hours, 4, 8 and 14 days post-SRC and prior to Return To Play (RTP) and were managed according to the Rugby Football Union' community pathway (n = 42). Student-athletes were deemed recovered or impaired according to Reliable Change Index' (RCI) or compared to their individual baseline. RESULTS Symptom burden recovers by four days post-SRC on RCI and to baseline by eight days. VOM function and academic ability recovers by 8 days. Some student-athletes demonstrated worse performance at RTP on all tests by RCI and to baseline, except for on VOMS score and near point convergence by RCI change. CONCLUSIONS Variation in individual university-aged student-athletes requires a multi-faceted approach to establish what dysfunctions post-SRC exist and when recovery occurs.
Collapse
Affiliation(s)
- K Glendon
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - G Blenkinsop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - A Belli
- Institute of Inflammation and Ageing, University of Birmingham, UK
| | - M Pain
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
65
|
Bomyea J, Choi SH, Sweet A, Stein M, Paulus M, Taylor C. Neural Changes in Reward Processing Following Approach Avoidance Training for Depression. Soc Cogn Affect Neurosci 2021; 17:nsab107. [PMID: 34643736 PMCID: PMC8881638 DOI: 10.1093/scan/nsab107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/17/2021] [Accepted: 09/14/2021] [Indexed: 11/14/2022] Open
Abstract
Altered approach motivation is hypothesized to be critical for the maintenance of depression. Computer-administered approach-avoidance training programs to increase approach action tendencies toward positive stimuli produce beneficial outcomes. However, there have been few studies examining neural changes following approach-avoidance training. Participants with Major Depressive Disorder were randomized to an Approach Avoidance Training (AAT) manipulation intended to increase approach tendencies for positive social cues (n=13) or a control procedure (n=15). We examined changes in neural activation (primary outcome) and connectivity patterns using Group Iterative Multiple Model Estimation during a social reward anticipation task (exploratory). A laboratory-based social affiliation task was also administered following the manipulation to measure affect during anticipation of real-world social activity. Individuals in the AAT group demonstrated increased activation in reward processing regions during social reward anticipation relative to the control group from pre to post-training. Following training, connectivity patterns across reward regions were observed in the full sample and connectivity between the medial PFC and caudate was associated with anticipatory positive affect before the social interaction; preliminary evidence of differential connectivity patterns between the two groups also emerged. Results support models whereby modifying approach-oriented behavioral tendencies with computerized training leads to alterations in reward circuitry. (NCT02330744).
Collapse
Affiliation(s)
- Jessica Bomyea
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA 92037, USA
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine and Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Alison Sweet
- Department of Psychiatry, University of California, San Diego, San Diego, CA 92037, USA
| | - Murray Stein
- Department of Psychiatry, University of California, San Diego, San Diego, CA 92037, USA
- School of Public Health, University of California, San Diego, San Diego, CA, USA
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Charles Taylor
- Department of Psychiatry, University of California, San Diego, San Diego, CA 92037, USA
| |
Collapse
|
66
|
Moody JF, Adluru N, Alexander AL, Field AS. The Connectomes: Methods of White Matter Tractography and Contributions of Resting State fMRI. Semin Ultrasound CT MR 2021; 42:507-522. [PMID: 34537118 DOI: 10.1053/j.sult.2021.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A comprehensive mapping of the structural and functional circuitry of the brain is a major unresolved problem in contemporary neuroimaging research. Diffusion-weighted and functional MRI have provided investigators with the capability to assess structural and functional connectivity in-vivo, driven primarily by methods of white matter tractography and resting-state fMRI, respectively. These techniques have paved the way for the construction of the functional and structural connectomes, which are quantitative representations of brain architecture as neural networks, comprised of nodes and edges. The connectomes, typically depicted as matrices or graphs, possess topological properties that inherently characterize the strength, efficiency, and organization of the connections between distinct brain regions. Graph theory, a general mathematical framework for analyzing networks, can be implemented to derive metrics from the connectomes that are sensitive to changes in brain connectivity associated with age, sex, cognitive function, and disease. These quantities can be assessed at either the global (whole brain) or local levels, allowing for the identification of distinct regional connectivity hubs and associated localized brain networks, which together serve crucial roles in establishing the structural and functional architecture of the brain. As a result, structural and functional connectomes have each been employed to study the brain circuitry underlying early brain development, neuroplasticity, developmental disorders, psychopathology, epilepsy, aging, neurodegenerative disorders, and traumatic brain injury. While these studies have yielded important insights into brain structure, function, and pathology, a precise description of the innate relationship between functional and structural networks across the brain remains unachieved. To date, connectome research has merely scratched the surface of potential clinical applications and related characterizations of brain-wide connectivity. Continued advances in diffusion and functional MRI acquisition, the delineation of functional and structural networks, and the quantification of neural network properties in specific brain regions, will be invaluable to future progress in neuroimaging science.
Collapse
Affiliation(s)
- Jason F Moody
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI; Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI; Department of Radiology, University of Wisconsin-Madison, Madison, WI
| | - Andrew L Alexander
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI; Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Aaron S Field
- Department of Radiology, University of Wisconsin-Madison, Madison, WI.
| |
Collapse
|
67
|
Reddy DD, Davenport EM, Yu FF, Wagner B, Urban JE, Whitlow CT, Stitzel JD, Maldjian JA. Alterations in the Magnetoencephalography Default Mode Effective Connectivity following Concussion. AJNR Am J Neuroradiol 2021; 42:1776-1782. [PMID: 34503943 DOI: 10.3174/ajnr.a7232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/05/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Magnetoencephalography is sensitive to functional connectivity changes associated with concussion. However, the directional influences between functionally related regions remain unexplored. In this study, we therefore evaluated concussion-related magnetoencephalography-based effective connectivity changes within resting-state default mode network regions. MATERIALS AND METHODS Resting-state magnetoencephalography was acquired for 8 high school football players with concussion at 3 time points (preseason, postconcussion, postseason), as well as 8 high school football players without concussion and 8 age-matched controls at 2 time points (preseason, postseason). Time-series from the default mode network regions were extracted, and effective connectivity between them was computed for 5 different frequency bands. The default mode network regions were grouped into anterior and posterior default mode networks. The combined posterior-to-anterior and anterior-to-posterior effective connectivity values were averaged to generate 2 sets of values for each subject. The effective connectivity values were compared using a repeated measures ANOVA across time points for the concussed, nonconcussed, and control groups, separately. RESULTS A significant increase in posterior-to-anterior effective connectivity from preseason to postconcussion (corrected P value = .013) and a significant decrease in posterior-to-anterior effective connectivity from postconcussion to postseason (corrected P value = .028) were observed in the concussed group. Changes in effective connectivity were only significant within the delta band. Anterior-to-posterior connectivity demonstrated no significant change. Effective connectivity in the nonconcussed group and controls did not show significant differences. CONCLUSIONS The unidirectional increase in effective connectivity postconcussion may elucidate compensatory processes, invoking use of posterior regions to aid the function of susceptible anterior regions following brain injury. These findings support the potential value of magnetoencephalography in exploring directional changes of the brain network following concussion.
Collapse
Affiliation(s)
- D D Reddy
- From the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
| | - E M Davenport
- From the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
| | - F F Yu
- From the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
| | - B Wagner
- From the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
| | - J E Urban
- Wake Forest School of Medicine (J.E.U. C.T.W., J.D.S.), Winston-Salem, North Carolina
| | - C T Whitlow
- Wake Forest School of Medicine (J.E.U. C.T.W., J.D.S.), Winston-Salem, North Carolina
| | - J D Stitzel
- Wake Forest School of Medicine (J.E.U. C.T.W., J.D.S.), Winston-Salem, North Carolina
| | - J A Maldjian
- From the Department of Radiology (D.D.R., E.M.D., F.F.Y., B.W., J.A.M.), University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
68
|
Song J, Li J, Chen L, Lu X, Zheng S, Yang Y, Cao B, Weng Y, Chen Q, Ding J, Huang R. Altered gray matter structural covariance networks at both acute and chronic stages of mild traumatic brain injury. Brain Imaging Behav 2021; 15:1840-1854. [PMID: 32880075 DOI: 10.1007/s11682-020-00378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive and emotional impairments observed in mild traumatic brain injury (mTBI) patients may reflect variances of brain connectivity within specific networks. Although previous studies found altered functional connectivity (FC) in mTBI patients, the alterations of brain structural properties remain unclear. In the present study, we analyzed structural covariance (SC) for the acute stages of mTBI (amTBI) patients, the chronic stages of mTBI (cmTBI) patients, and healthy controls. We first extracted the mean gray matter volume (GMV) of seed regions that are located in the default-mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), and the visual network (VN). Then we determined and compared the SC for each seed region among the amTBI, the cmTBI and the healthy controls. Compared with healthy controls, the amTBI patients showed lower SC for the ECN, and the cmTBI patients showed higher SC for the both DMN and SN but lower SC for the SMN. The results revealed disrupted ECN in the amTBI patients and disrupted DMN, SN and SMN in the cmTBI patients. These alterations suggest that early disruptions in SC between bilateral insula and the bilateral prefrontal cortices may appear in amTBI and persist into cmTBI, which might be potentially related to the cognitive and emotional impairments.
Collapse
Affiliation(s)
- Jie Song
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Jie Li
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Lixiang Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Xingqi Lu
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Senning Zheng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ying Yang
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Bolin Cao
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yihe Weng
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,School of Psychology, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Qinyuan Chen
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Jianping Ding
- Department of Radiology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China. .,School of Medicine, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Ruiwang Huang
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China. .,School of Psychology, South China Normal University, Guangzhou, 510631, China. .,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
69
|
Morelli N, Johnson NF, Kaiser K, Andreatta RD, Heebner NR, Hoch MC. Resting state functional connectivity responses post-mild traumatic brain injury: a systematic review. Brain Inj 2021; 35:1326-1337. [PMID: 34487458 DOI: 10.1080/02699052.2021.1972339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mild traumatic brain injuries (mTBI) are associated with functional network connectivity alterations throughout recovery. Yet, little is known about the adaptive or maladaptive nature of post-mTBI connectivity and which networks are predisposed to altered function and adaptation. The objective of this review was to determine functional connectivity changes post-mTBI and to determine the adaptive or maladaptive nature of connectivity through direct comparisons of connectivity and behavioral data. Literature was systematically searched and appraised for methodological quality. A total of 16 articles were included for review. There was conflicting evidence of post-mTBI connectivity responses as decreased connectivity was noted in 4 articles, 6 articles reported increased connectivity, 5 reported a mixture of increased and decreased connectivity, while 1 found no differences in connectivity. Supporting evidence for adaptive post-mTBI increases in connectivity were found, particularly in the frontoparietal, cerebellar, and default mode networks. Although initial results are promising, continued longitudinal research that systematically controls for confounding variables and that standardizes methodologies is warranted to adequately understand the neurophysiological recovery trajectory of mTBI.
Collapse
Affiliation(s)
- Nathan Morelli
- Department of Physical Therapy, High Point University, High Point, North Carolina, USA
| | - Nathan F Johnson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Kaiser
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Richard D Andreatta
- Rehabilitation Sciences Doctoral Program, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas R Heebner
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew C Hoch
- Sports Medicine Research Institute, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
70
|
Aberrant Static and Dynamic Functional Network Connectivity in Acute Mild Traumatic Brain Injury with Cognitive Impairment. Clin Neuroradiol 2021; 32:205-214. [PMID: 34463779 DOI: 10.1007/s00062-021-01082-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study aimed to investigate differences in static and dynamic functional network connectivity (FNC) and explore their association with neurocognitive performance in acute mild traumatic brain injury (mTBI). METHODS A total of 76 patients with acute mTBI and 70 age-matched and sex-matched healthy controls were enrolled (age 43.79 ± 10.22 years vs. 45.63 ± 9.49 years; male/female: 34/42 vs. 38/32; all p > 0.05) and underwent resting-state functional magnetic resonance imaging (fMRI) scan (repetition time/echo time = 2000/30 ms, 230 volumes). Independent component analysis was conducted to evaluate static and dynamic FNC patterns on the basis of nine resting-state networks, namely, auditory network (AUDN), dorsal attention network (dAN), ventral attention network (vAN), default mode network (DMN), left frontoparietal network (LFPN), right frontoparietal network (RFPN), somatomotor network (SMN), visual network (VN), and salience network (SN). Spearman's correlation among aberrances in FNC values, and Montreal cognitive assessment (MoCA) scores was further measured in mTBI. RESULTS Compared with controls, patients with mTBI showed wide aberrances of static FNC, such as reduced FNC in DMN-vAN and VN-vAN pairs. The mTBI patients exhibited aberrant dynamic FNC in state 2, involving reduced FNC aberrance in the vAN with AUDN, VN with DMN and dAN, and SN with SMN and vAN. Reduced dFNC in the SN-vAN pair was negatively correlated with the MoCA score. CONCLUSION Our findings suggest that aberrant static and dynamic FNC at the acute stage may contribute to cognitive symptoms, which not only may expand knowledge regarding FNC cognition relations from the static perspective but also from the dynamic perspective.
Collapse
|
71
|
Hogeveen J, Aragon DF, Rogge-Obando K, Campbell RA, Shuttleworth CW, Avila-Rieger RE, Yeo RA, Wilson JK, Fratzke V, Brandt E, Story-Remer J, Gill D, Mayer AR, Cavanagh JF, Quinn DK. Ventromedial Prefrontal-Anterior Cingulate Hyperconnectivity and Resilience to Apathy in Traumatic Brain Injury. J Neurotrauma 2021; 38:2264-2274. [PMID: 33787328 PMCID: PMC8328044 DOI: 10.1089/neu.2020.7363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apathy is a common and impairing sequela of traumatic brain injury (TBI). Yet, little is known about the neural mechanisms determining in which patients apathy does or does not develop post-TBI. We aimed to elucidate the impact of TBI on motivational neural circuits and how this shapes apathy over the course of TBI recovery. Resting-state functional magnetic resonance imaging data were collected in patients with subacute mild TBI (n = 44), chronic mild-to-moderate TBI (n = 26), and nonbrain-injured control participants (CTRL; n = 28). We measured ventromedial prefrontal cortex (vmPFC) functional connectivity (FC) as a function of apathy, using an a priori vmPFC seed adopted from a motivated decision-making study in an independent TBI study cohort. Patients reported apathy using a well-validated tool for assaying apathy in TBI. The vmPFC-to-wholebrain FC was contrasted between groups, and we fit regression models with apathy predicting vmPFC FC. Subacute and chronic TBI caused increased apathy relative to CTRL, replicating previous work suggesting that apathy has an enduring impact in TBI. The vmPFC was functionally connected to the canonical default network, and this architecture did not differ between subacute TBI, chronic TBI, and CTRL groups. Critically, in TBI, increased apathy scores predicted decreased vmPFC-dorsal anterior cingulate cortex (dACC) FC. Last, we subdivided the TBI group based on patients above versus below the threshold for "clinically significant apathy," finding that TBI patients with clinically significant apathy demonstrated comparable vmPFC-dACC FC to CTRLs, whereas TBI patients with subthreshold apathy scores demonstrated vmPFC-dACC hyperconnectivity relative to both CTRLs and patients with clinically significant apathy. Post-TBI vmPFC-dACC hyperconnectivity may represent an adaptive compensatory response, helping to maintain motivation and enabling resilience to the development of apathy after neurotrauma. Given the role of vmPFC-dACC circuits in value-based decision making, rehabilitation strategies designed to improve this ability may help to reduce apathy and improve functional outcomes in TBI.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology and Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Denicia F. Aragon
- Department of Psychology and Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Kimberly Rogge-Obando
- Department of Psychology and Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Richard A. Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - C. William Shuttleworth
- Department of Neurosciences, and University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Rebecca E. Avila-Rieger
- Department of Psychology and Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico, USA
- Montefiore Medical Center, Bronx, New York, USA
| | - Ronald A. Yeo
- Department of Psychology and Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - J. Kevin Wilson
- Department of Neurosciences, and University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Violet Fratzke
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- College of Education, Clemson University, Clemson, South Carolina, USA
| | - Emma Brandt
- Department of Neurosciences, and University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jacqueline Story-Remer
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Rosalind Franklin University, Chicago Medical School, North Chicago, Illinois, USA
| | - Darbi Gill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Andrew R. Mayer
- Department of Psychology and Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- The Mind Research Network/LBERI, Albuquerque, New Mexico, USA
| | - James F. Cavanagh
- Department of Psychology and Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
72
|
McGeown JP, Hume PA, Kara S, King D, Theadom A. Preliminary Evidence for the Clinical Utility of Tactile Somatosensory Assessments of Sport-Related mTBI. SPORTS MEDICINE - OPEN 2021; 7:56. [PMID: 34370132 PMCID: PMC8353035 DOI: 10.1186/s40798-021-00340-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the clinical utility of tactile somatosensory assessments to assist clinicians in diagnosing sport-related mild traumatic brain injury (SR-mTBI), classifying recovery trajectory based on performance at initial clinical assessment, and determining if neurophysiological recovery coincided with clinical recovery. RESEARCH DESIGN Prospective cohort study with normative controls. METHODS At admission (n = 79) and discharge (n = 45/79), SR-mTBI patients completed the SCAT-5 symptom scale, along with the following three components from the Cortical Metrics Brain Gauge somatosensory assessment (BG-SA): temporal order judgement (TOJ), TOJ with confounding condition (TOJc), and duration discrimination (DUR). To assist SR-mTBI diagnosis on admission, BG-SA performance was used in logistic regression to discriminate cases belonging to the SR-mTBI sample or a healthy reference sample (pooled BG-SA data for healthy participants in previous studies). Decision trees evaluated how accurately BG-SA performance classified SR-mTBI recovery trajectories. RESULTS BG-SA TOJ, TOJc, and DUR poorly discriminated between cases belonging to the SR-mTBI sample or a healthy reference sample (0.54-0.70 AUC, 47.46-64.71 PPV, 48.48-61.11 NPV). The BG-SA evaluated did not accurately classify SR-mTBI recovery trajectories (> 14-day resolution 48%, ≤14-day resolution 54%, lost to referral/follow-up 45%). Mann-Whitney U tests revealed differences in BG-SA TOJc performance between SR-mTBI participants and the healthy reference sample at initial clinical assessment and at clinical recovery (p < 0.05). CONCLUSIONS BG-SA TOJ, TOJc, and DUR appear to have limited clinical utility to assist clinicians with diagnosing SR-mTBI or predicting recovery trajectories under ecologically valid conditions. Neurophysiological abnormalities persisted beyond clinical recovery given abnormal BG-SA TOJc performance observed when SR-mTBI patients achieved clinical recovery.
Collapse
Affiliation(s)
- Joshua P McGeown
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand.
| | - Patria A Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
| | - Stephen Kara
- Axis Sports Medicine Clinic, Auckland, New Zealand
| | - Doug King
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Alice Theadom
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
73
|
Amir J, Nair JKR, Del Carpio-O'Donovan R, Ptito A, Chen JK, Chankowsky J, Tinawi S, Lunkova E, Saluja RS. Atypical resting state functional connectivity in mild traumatic brain injury. Brain Behav 2021; 11:e2261. [PMID: 34152089 PMCID: PMC8413771 DOI: 10.1002/brb3.2261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study aimed to investigate changes in three intrinsic functional connectivity networks (IFCNs; default mode network [DMN], salience network [SN], and task-positive network [TPN]) in individuals who had sustained a mild traumatic brain injury (mTBI). METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 27 mTBI patients with persistent postconcussive symptoms, along with 26 age- and sex-matched controls. These individuals were recruited from a Level-1 trauma center, at least 3 months after a traumatic episode. IFCNs were established based on seed-to-voxel, region-of-interest (ROI) to ROI, and independent component analyses (ICA). Subsequently, we analyzed the relationship between functional connectivity and postconcussive symptoms. RESULTS Seed-to-voxel analysis of rs-fMRI demonstrated decreased functional connectivity in the right lateral parietal lobe, part of the DMN, and increased functional connectivity in the supramarginal gyrus, part of the SN. Our TPN showed both hypo- and hyperconnectivity dependent on seed location. Within network hypoconnectivity was observed in the visual network also using group comparison. Using an ICA, we identified altered network functional connectivity in regions within four IFCNs (sensorimotor, visual, DMN, and dorsal attentional). A significant negative correlation between dorsal attentional network connectivity and behavioral symptoms score was also found. CONCLUSIONS Our findings indicate that rs-fMRI may be of use clinically in order to assess disrupted functional connectivity among IFCNs in mTBI patients. Improved mTBI diagnostic and prognostic information could be especially relevant for athletes looking to safely return to play, as well for individuals from the general population with persistent postconcussive symptoms months after injury, who hope to resume activity.
Collapse
Affiliation(s)
- Joelle Amir
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | | - Alain Ptito
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jen-Kai Chen
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jeffrey Chankowsky
- Department of Radiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Simon Tinawi
- Department of Rehabilitation Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ekaterina Lunkova
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rajeet Singh Saluja
- Department of Radiology, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
74
|
Walz JA, Mani R, Alnawmasi MM, Khuu SK. Visuospatial Attention Allocation as an Indicator of Cognitive Deficit in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Front Hum Neurosci 2021; 15:675376. [PMID: 34354575 PMCID: PMC8329082 DOI: 10.3389/fnhum.2021.675376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
Traumatic Brain Injury (TBI) is defined by changes in brain function resulting from external forces acting on the brain and is typically characterized by a host of physiological and functional changes such as cognitive deficits including attention problems. In the present study, we focused on the effect of TBI on the ability to allocate attention in vision (i.e., the use of endogenous and exogenous visual cues) by systematically reviewing previous literature on the topic. We conducted quantitative synthesis of 16 selected studies of visual attention following TBI, calculating 80 effect size estimates. The combined effect size was large (g = 0.79, p < 0.0001) with medium heterogeneity (I2 = 68.39%). Subgroup analyses revealed an increase in deficit with moderate-to-severe and severe TBI as compared to mild TBI [F(2, 76) = 24.14, p < 0.0001]. Task type was another key source of variability and subgroup analyses indicated that higher order attention processes were severely affected by TBI [F(2, 77) = 5.66, p = 0.0051). Meta-regression analyses revealed significant improvement in visual attention deficit with time [p(mild) = 0.031, p(moderate-to-severe) = 0.002, p(severe) < 0.0001]. Taken together, these results demonstrate that visual attention is affected by TBI and that regular assessment of visual attention, using a systematic attention allocation task, may provide a useful clinical measure of cognitive impairment and change after TBI.
Collapse
Affiliation(s)
- Jacinta A Walz
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Revathy Mani
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Mohammed M Alnawmasi
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Sieu K Khuu
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
75
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Brain function associated with reaction time after sport-related concussion. Brain Imaging Behav 2021; 15:1508-1517. [PMID: 32851585 DOI: 10.1007/s11682-020-00349-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Concussion is associated with significant functional disturbances in the first week post-injury. Computerized neurocognitive testing tools have become widely adopted in concussion management, to identify specific domains of impairment and obtain more objective measures of recovery. Reaction time (RT) slowing is a common sequela of concussion, however, the functional brain networks that underlie RT performance remain under-studied in both healthy and concussed athletic cohorts. This study used blood-oxygenation-level-dependent function magnetic resonance imaging (BOLD fMRI) to evaluate resting brain function of 45 university-level athletes with concussion in the first week post-injury, along with a control cohort of 102 athletes without recent concussion. We evaluated the main effects of concussion and RT on functional connectivity, along with concussion × RT interactions, using multivariate analysis techniques. Concussion was associated with reduced connectivity throughout the brain, whereas RT slowing was associated with elevated connectivity in parietal and temporal regions, for both control and concussed groups. For the concussed group, RT slowing was also associated with disrupted connectivity between fronto-insular and default mode networks. For concussed athletes, the brain networks associated with slower post-injury RT also showed similar but non-significant associations with longitudinal changes in RT performance relative to pre-injury baseline. These study findings provide new insights into the effects of concussion on neurocognitive function and suggest the presence of functional brain networks that are specific to concussion-related RT slowing.
Collapse
Affiliation(s)
- Nathan W Churchill
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada. .,Neuroscience Research Program, St. Michael's Hospital, ON, Toronto, Canada.
| | - Michael G Hutchison
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, ON, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, ON, Toronto, Canada
| | - Tom A Schweizer
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.,Neuroscience Research Program, St. Michael's Hospital, ON, Toronto, Canada.,Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada.,The Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, ON, Toronto, Canada
| |
Collapse
|
76
|
du Plessis S, Oni IK, Lapointe AP, Campbell C, Dunn JF, Debert CT. Treatment of Persistent Post-Concussion Syndrome with Repetitive Transcranial Magnetic Stimulation Using Functional Near-Infrared Spectroscopy as a Biomarker of Response: A Randomized Sham-Controlled Clinical Trial Protocol (Preprint). JMIR Res Protoc 2021; 11:e31308. [PMID: 35315783 PMCID: PMC8984821 DOI: 10.2196/31308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
Background Approximately one-third of all concussions lead to persistent postconcussion syndrome (PPCS). Repetitive transcranial magnetic stimulation (rTMS) is a form of noninvasive brain stimulation that has been extensively used to treat refractory major depressive disorder and has a strong potential to be used as a treatment for patients with PPCS. Functional near-infrared spectroscopy (fNIRS) has already been used as a tool to assess patients with PPCS and may provide insight into the pathophysiology of rTMS treatment in patients with PPCS. Objective The primary objective of this research is to determine whether rTMS treatment improves symptom burden in patients with PPCS compared to sham treatment using the Rivermead postconcussion symptom questionnaire. The secondary objective is to explore the neuropathophysiological changes that occur following rTMS in participants with PPCS using fNIRS. Exploratory objectives include determining whether rTMS treatment in participants with PPCS will also improve quality of life, anxiety, depressive symptoms, cognition, posttraumatic stress, and function secondary to headaches. Methods A total of 44 adults (18-65 years old) with PPCS (>3 months to 5 years) will participate in a double-blind, sham-controlled, concealed allocation, randomized clinical trial. The participants will engage in either a 4-week rTMS treatment protocol or sham rTMS protocol (20 treatments). The left dorsolateral prefrontal cortex will be located through Montreal Neurologic Institute coordinates. The intensity of the rTMS treatment over the left dorsolateral prefrontal cortex will be 120% of resting motor threshold, with a frequency of 10 Hz, 10 trains of 60 pulses per train (total of 600 pulses), and intertrain interval of 45 seconds. Prior to starting the rTMS treatment, participant and injury characteristics, questionnaires (symptom burden, quality of life, depression, anxiety, cognition, and headache), and fNIRS assessment will be collected. Repeat questionnaires and fNIRS will occur immediately after rTMS treatment and at 1 month and 3 months post rTMS. Outcome parameters will be analyzed by a 2-way (treatment × time) mixed analysis of variance. Results As of May 6, 2021, 5 participants have been recruited for the study, and 3 have completed the rTMS protocol. The estimated completion date of the trial is May 2022. Conclusions This trial will expand our knowledge of how rTMS can be used as a treatment option of PPCS and will explore the neuropathophysiological response of rTMS through fNIRS analysis. Trial Registration ClinicalTrials.gov NCT04568369; https://clinicaltrials.gov/ct2/show/NCT04568369 International Registered Report Identifier (IRRID) DERR1-10.2196/31308
Collapse
Affiliation(s)
- Sané du Plessis
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Ibukunoluwa K Oni
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew P Lapointe
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Campbell
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| |
Collapse
|
77
|
Clinical Evaluation and Treatment of Patients with Postconcussion Syndrome. Neurol Res Int 2021; 2021:5567695. [PMID: 34194843 PMCID: PMC8181109 DOI: 10.1155/2021/5567695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Postconcussion syndrome (PCS) is a complex set of symptoms occurring in a small percentage of patients following concussion. The condition is characterized by headaches, dizziness, cognitive difficulties, somatosensory issues, and a variety of other symptoms with varying durations. There is a lack of objective markers and standard treatment protocols. With the complexity created by premorbid conditions, psychosomatic issues, secondary gains, and litigations, providers often find themselves in a tough situation in the care of these patients. This article combines literature review and clinical insights with a focus on the underlying pathophysiology of PCS to provide a roadmap for evaluating and treating this condition.
Collapse
|
78
|
Shi J, Teng J, Du X, Li N. Multi-Modal Analysis of Resting-State fMRI Data in mTBI Patients and Association With Neuropsychological Outcomes. Front Neurol 2021; 12:639760. [PMID: 34079510 PMCID: PMC8165539 DOI: 10.3389/fneur.2021.639760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Various cognitive disorders have been reported for mild traumatic brain injury (mTBI) patients during the acute stage. This acute stage provides an opportunity for clinicians to optimize treatment protocols, which are based on the evaluation of brain structural connectivity. So far, most brain functional magnetic resonance imaging studies are focused on moderate to severe traumatic brain injuries (TBIs). In this study, we prospectively collected resting state data on 50 mTBI within 3 days of injury and 50 healthy volunteers and analyzed them using Amplitude of low-frequency fluctuation (ALFF), Regional Homogeneity (ReHo), graph theory methods and behavior measure, to explore the dysfunctional brain regions in acute mTBI. In our study, a total of 50 patients suffering <3 days mTBI and 50 healthy subjects were tested in rs-fMRI, as well as under neuropsychological examinations including the Wechsler Intelligence Scale and Stroop Color and Word Test. The correlation analysis was conducted between graph theoretic parameters and neuropsychological results. For the mTBI group, the ReHo of the inferior temporal gyrus and the cerebellum superior are significantly lower than in the control group, and the ALFF of the left insula, the cerebellum inferior, and the middle occipital gyrus were significantly higher than in the control group, which implies the dysfunctionality usually observed in Parkinson's disease. Executive function disorder was significantly correlated with the global efficiencies of the dorsolateral superior frontal gyrus and the anterior cingulate cortex, which is consistent with the literature: the acute mTBI patients demonstrate abnormality in terms of motor speed, association, information processing speed, attention, and short-term memory function. Correlation analysis between the neuropsychological outcomes and the network efficiency for the mTBI group indicates that executive dysfunction might be caused by local brain changes. Our data support the idea that the cerebral internal network has compensatory reactions in response to sudden pathological and neurophysiological changes. In the future, multimode rs-fMRI analysis could be a valuable tool for evaluating dysfunctional brain regions after mTBI.
Collapse
Affiliation(s)
- Jian Shi
- Department of Spine Surgury, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Xianping Du
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ, United States
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
79
|
Cripe CT, Cooper R, Mikulecky P, Huang JH, Hack DC. Improved Mild Closed Head Traumatic Brain Injury Outcomes With a Brain-Computer Interface Amplified Cognitive Remediation Training. Cureus 2021; 13:e14996. [PMID: 34007777 PMCID: PMC8121126 DOI: 10.7759/cureus.14996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study is a retrospective chart review of 200 clients who participated in a non-verbal restorative cognitive remediation training (rCRT) program between 2012 and 2020. Each client participated in the program for about 16 weeks, and the study as a whole occurred over a five-year period. The program was applied to effect proper neural functional remodeling needed to support resilient, flexible, and adaptable behaviors after encountering a mild closed head traumatic brain injury (mTBI). The rCRT program focused on improving functional performance in executive cognitive control networks as defined by fMRI studies. All rCRT activities were delivered in a semi-game-like manner, incorporating a brain-computer interface (BCI) that provided in-the-moment neural network performance integrity metrics (nPIMs) used to adjust the level of play required to properly engage long-term potentiation (LTP) and long-term depression (LTD) network learning rules. This study reports on t-test and Reliable Change Index (RCI) changes found within individual cognitive abilities’ performance metrics derived from the Woodcock-Johnson Cognitive Abilities III Test. We compared pre- and post-scores from seven cognitive abilities considered dependent on executive cognitive control networks against seven non-executive control abilities. We observed significant improvements (p < 10-4) with large Cohen’s deffect sizes (0.78-1.20) across 13 of 14 cognitive ability domains with a medium effect size (0.49) on the remaining one. The mean percent change for the pooled trained domain was double that observed for the pooled untrained domain, at 17.2% versus 8.3%, respectively. To further adjust for practice effects, practice effect RCI values were computed and further supported the effectiveness of the rCRT (trained RCI 1.4-4.8; untrained RCI 0.08-0.75).
Collapse
Affiliation(s)
- Curtis T Cripe
- Graduate School of Social Service, Fordham University, New York City, USA.,Behavioral Medicine NeuroEngineering, NTLGroup, Inc, Scottsdale, USA
| | - Rebecca Cooper
- Behavioral Medicine NeuroEngineering, NTLGroup, Inc, Scottsdale, USA
| | - Peter Mikulecky
- Brain Mapping and Optimization, Neurologics, Inc, Newport Beach, USA
| | - Jason H Huang
- Neurosurgery, Baylor Scott & White Medical Center, Temple, USA
| | - Dallas C Hack
- Brain Mapping and Optimization, Neurologics, Inc, Newport Beach, USA
| |
Collapse
|
80
|
Gimbel SI, Ettenhofer ML, Cordero E, Roy M, Chan L. Brain bases of recovery following cognitive rehabilitation for traumatic brain injury: a preliminary study. Brain Imaging Behav 2021; 15:410-420. [PMID: 32328915 DOI: 10.1007/s11682-020-00269-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many patients with traumatic brain injury (TBI) have persistent cognitive deficits, including decreased attention and working memory. This preliminary study examined fMRI data from a clinical trial implementing a 4-week virtual reality driving intervention to assess how sustained training can improve deficits related to traumatic brain injury. Previously-reported behavioral findings showed improvements in working memory and processing speed in those who received the intervention; this report explores the brain bases of these effects by comparing neural activity related to working memory (n-back task) and resting state connectivity before and after the intervention. In the baseline visit (n = 24), working memory activity was prominent in bilateral DLPFC and prefrontal cortex, anterior insula, medial superior frontal gyrus, left thalamus, bilateral supramarginal / angular gyrus, precuneus, and left posterior middle temporal gyrus. Following intervention, participants showed less global activation on the n-back task, with regions of activity only in the bilateral middle frontal cortex, posterior middle frontal gyrus, and supramarginal gyrus. Activity related to working memory load was reduced for the group that went through the intervention (n = 7) compared to the waitlist control group (n = 4). These results suggest that successful cognitive rehabilitation of working memory in TBI may be associated with increased efficiency of brain networks, evidenced by reduced activation of brain activity during cognitive processing. These results highlight the importance of examining brain activity related to cognitive rehabilitation of attention and working memory after brain injury.
Collapse
Affiliation(s)
- Sarah I Gimbel
- Naval Medical Center San Diego, 34730 Bob Wilson Drive, San Diego, CA, 92134, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Defense and Veterans Brain Injury Center, 7700 Arlington Blvd Suite 5101, Falls Church, VA, 22041, USA
| | - Mark L Ettenhofer
- Naval Medical Center San Diego, 34730 Bob Wilson Drive, San Diego, CA, 92134, USA.
- Defense and Veterans Brain Injury Center, 7700 Arlington Blvd Suite 5101, Falls Church, VA, 22041, USA.
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- Center for Neuroscience and Regenerative Medicine, 12725 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Evelyn Cordero
- Naval Medical Center San Diego, 34730 Bob Wilson Drive, San Diego, CA, 92134, USA
- Henry M. Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Michael Roy
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Center for Neuroscience and Regenerative Medicine, 12725 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Leighton Chan
- Center for Neuroscience and Regenerative Medicine, 12725 Twinbrook Parkway, Rockville, MD, 20852, USA
- National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|
81
|
Wu SCJ, Jenkins LM, Apple AC, Petersen J, Xiao F, Wang L, Yang FPG. Longitudinal fMRI task reveals neural plasticity in default mode network with disrupted executive-default coupling and selective attention after traumatic brain injury. Brain Imaging Behav 2021; 14:1638-1650. [PMID: 30937828 DOI: 10.1007/s11682-019-00094-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Executive dysfunctions are common in individuals with Traumatic Brain Injury (TBI). However, change in functional neural coupling of default and executive networks in the post-acute phase (≥ 1 month after injury) patients over time has yet to be understood. During a 5-week observation period, we examined changes in the goal-oriented executive function networks in 20 TBI participants, using a face/scene matching 1-back fMRI task (Chen et al. 2011). We conducted multivariate pattern analysis to assess working memory and visual selective attention, followed by a repeat-measures ANOVA to examine longitudinal changes, with a cluster FDR at p = .001. Results showed that task accuracy significantly improved after follow-up. Significantly increased activity patterns over time were observed in the right dorsolateral prefrontal cortex and right insula. Decreased activity patterns were seen in the left posterior cingulate cortex (PCC), bilateral precuneus, right inferior occipital gyrus and right temporo-occipital junction. Improvement in task accuracy correlated with decreased activity patterns in the PCC (r = -0.478, p = 0.031) and temporo-occipital junction (r = -0.592, p = 0.006), which were interpreted as neural plastic changes. However, we did not observe the default mode network (DMN)-executive network decoupling during task performance that is found in other studies. These results suggest that fMRI of attentional task performance could serve as a potential biomarker for neural plasticity of selective attention in TBI patients in the post-acute phase.
Collapse
Affiliation(s)
- Shun-Chin Jim Wu
- National Defense Medical Center, School of Medicine, Taipei, Taiwan
| | - Lisanne M Jenkins
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexandra C Apple
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julie Petersen
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Furen Xiao
- National Taiwan University Hospital, Taipei, Taiwan
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fan-Pei Gloria Yang
- Center for Cognition & Mind Science, National Tsinghua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013.
| |
Collapse
|
82
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Long-term changes in the small-world organization of brain networks after concussion. Sci Rep 2021; 11:6862. [PMID: 33767293 PMCID: PMC7994718 DOI: 10.1038/s41598-021-85811-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/04/2021] [Indexed: 11/09/2022] Open
Abstract
There is a growing body of literature using functional MRI to study the acute and long-term effects of concussion on functional brain networks. To date, studies have largely focused on changes in pairwise connectivity strength between brain regions. Less is known about how concussion affects whole-brain network topology, particularly the “small-world” organization which facilitates efficient communication at both local and global scales. The present study addressed this knowledge gap by measuring local and global efficiency of 26 concussed athletes at acute injury, return to play (RTP) and one year post-RTP, along with a cohort of 167 athletic controls. On average, concussed athletes showed no alterations in local efficiency but had elevated global efficiency at acute injury, which had resolved by RTP. Athletes with atypically long recovery, however, had reduced global efficiency at 1 year post-RTP, suggesting long-term functional abnormalities for this subgroup. Analyses of nodal efficiency further indicated that global network changes were driven by high-efficiency visual and sensorimotor regions and low-efficiency frontal and subcortical regions. This study provides evidence that concussion causes subtle acute and long-term changes in the small-world organization of the brain, with effects that are related to the clinical profile of recovery.
Collapse
Affiliation(s)
- N W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada. .,Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.
| | - M G Hutchison
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Science Center, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - T A Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.,Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada.,The Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
83
|
Philippi CL, Velez CS, Wade BSC, Drennon AM, Cooper DB, Kennedy JE, Bowles AO, Lewis JD, Reid MW, York GE, Newsome MR, Wilde EA, Tate DF. Distinct patterns of resting-state connectivity in U.S. service members with mild traumatic brain injury versus posttraumatic stress disorder. Brain Imaging Behav 2021; 15:2616-2626. [PMID: 33759113 DOI: 10.1007/s11682-021-00464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
Mild traumatic brain injury (mTBI) is highly prevalent in military populations, with many service members suffering from long-term symptoms. Posttraumatic stress disorder (PTSD) often co-occurs with mTBI and predicts worse clinical outcomes. Functional neuroimaging research suggests there are both overlapping and distinct patterns of resting-state functional connectivity (rsFC) in mTBI versus PTSD. However, few studies have directly compared rsFC of cortical networks in military service members with these two conditions. In the present study, U.S. service members (n = 137; ages 19-59; 120 male) underwent resting-state fMRI scans. Participants were divided into three study groups: mTBI only, PTSD only, and orthopedically injured (OI) controls. Analyses investigated group differences in rsFC for cortical networks: default mode (DMN), frontoparietal (FPN), salience, somatosensory, motor, auditory, and visual. Analyses were family-wise error (FWE) cluster-corrected and Bonferroni-corrected for number of network seeds regions at the whole brain level (pFWE < 0.002). Both mTBI and PTSD groups had reduced rsFC for DMN and FPN regions compared with OI controls. These group differences were largely driven by diminished connectivity in the PTSD group. rsFC with the middle frontal gyrus of the FPN was increased in mTBI, but decreased in PTSD. Overall, these results suggest that PTSD symptoms may have a more consistent signal than mTBI. Our novel findings of opposite patterns of connectivity with lateral prefrontal cortex highlight a potential biomarker that could be used to differentiate between these conditions.
Collapse
Affiliation(s)
- Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA.
| | - Carmen S Velez
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA.,University of Utah, Salt Lake City, UT, USA
| | - Benjamin S C Wade
- University of Utah, Salt Lake City, UT, USA.,Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, CA, USA
| | - Ann Marie Drennon
- Defense and Veterans Brain Injury Center at the San Antonio VA Polytrauma Center, San Antonio, TX, USA
| | - Douglas B Cooper
- Defense and Veterans Brain Injury Center at the San Antonio VA Polytrauma Center, San Antonio, TX, USA.,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jan E Kennedy
- Defense and Veterans Brain Injury Center at the San Antonio VA Polytrauma Center, San Antonio, TX, USA
| | - Amy O Bowles
- Brooke Army Medical Center, San Antonio, TX, USA.,Uniformed Services University of Health Science, Bethesda, MD, USA
| | - Jeffrey D Lewis
- Brooke Army Medical Center, San Antonio, TX, USA.,Uniformed Services University of Health Science, Bethesda, MD, USA
| | - Matthew W Reid
- Defense and Veterans Brain Injury Center at the San Antonio VA Polytrauma Center, San Antonio, TX, USA
| | | | - Mary R Newsome
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
84
|
DeSimone JC, Davenport EM, Urban J, Xi Y, Holcomb JM, Kelley ME, Whitlow CT, Powers AK, Stitzel JD, Maldjian JA. Mapping default mode connectivity alterations following a single season of subconcussive impact exposure in youth football. Hum Brain Mapp 2021; 42:2529-2545. [PMID: 33734521 PMCID: PMC8090779 DOI: 10.1002/hbm.25384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Repetitive head impact (RHI) exposure in collision sports may contribute to adverse neurological outcomes in former players. In contrast to a concussion, or mild traumatic brain injury, “subconcussive” RHIs represent a more frequent and asymptomatic form of exposure. The neural network‐level signatures characterizing subconcussive RHIs in youth collision‐sport cohorts such as American Football are not known. Here, we used resting‐state functional MRI to examine default mode network (DMN) functional connectivity (FC) following a single football season in youth players (n = 50, ages 8–14) without concussion. Football players demonstrated reduced FC across widespread DMN regions compared with non‐collision sport controls at postseason but not preseason. In a subsample from the original cohort (n = 17), players revealed a negative change in FC between preseason and postseason and a positive and compensatory change in FC during the offseason across the majority of DMN regions. Lastly, significant FC changes, including between preseason and postseason and between in‐ and off‐season, were specific to players at the upper end of the head impact frequency distribution. These findings represent initial evidence of network‐level FC abnormalities following repetitive, non‐concussive RHIs in youth football. Furthermore, the number of subconcussive RHIs proved to be a key factor influencing DMN FC.
Collapse
Affiliation(s)
- Jesse C. DeSimone
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Elizabeth M. Davenport
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jillian Urban
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Yin Xi
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - James M. Holcomb
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Mireille E. Kelley
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Department of Radiology – NeuroradiologyWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Clinical and Translational Sciences InstituteWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Alexander K. Powers
- Department of NeurosurgeryWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Joel D. Stitzel
- Department of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Virginia Tech – Wake Forest School of Biomedical EngineeringWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Clinical and Translational Sciences InstituteWake Forest School of MedicineWinston SalemNorth CarolinaUSA
- Childress Institute for Pediatric TraumaWake Forest School of MedicineWinston SalemNorth CarolinaUSA
| | - Joseph A. Maldjian
- Advanced Neuroscience Imaging Research (ANSIR) LaboratoryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
85
|
Resting-State Network Plasticity Induced by Music Therapy after Traumatic Brain Injury. Neural Plast 2021; 2021:6682471. [PMID: 33763126 PMCID: PMC7964116 DOI: 10.1155/2021/6682471] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is characterized by a complex pattern of abnormalities in resting-state functional connectivity (rsFC) and network dysfunction, which can potentially be ameliorated by rehabilitation. In our previous randomized controlled trial, we found that a 3-month neurological music therapy intervention enhanced executive function (EF) and increased grey matter volume in the right inferior frontal gyrus (IFG) in patients with moderate-to-severe TBI (N = 40). Extending this study, we performed longitudinal rsFC analyses of resting-state fMRI data using a ROI-to-ROI approach assessing within-network and between-network rsFC in the frontoparietal (FPN), dorsal attention (DAN), default mode (DMN), and salience (SAL) networks, which all have been associated with cognitive impairment after TBI. We also performed a seed-based connectivity analysis between the right IFG and whole-brain rsFC. The results showed that neurological music therapy increased the coupling between the FPN and DAN as well as between these networks and primary sensory networks. By contrast, the DMN was less connected with sensory networks after the intervention. Similarly, there was a shift towards a less connected state within the FPN and SAL networks, which are typically hyperconnected following TBI. Improvements in EF were correlated with rsFC within the FPN and between the DMN and sensorimotor networks. Finally, in the seed-based connectivity analysis, the right IFG showed increased rsFC with the right inferior parietal and left frontoparietal (Rolandic operculum) regions. Together, these results indicate that the rehabilitative effects of neurological music therapy after TBI are underpinned by a pattern of within- and between-network connectivity changes in cognitive networks as well as increased connectivity between frontal and parietal regions associated with music processing.
Collapse
|
86
|
Wang S, Gan S, Yang X, Li T, Xiong F, Jia X, Sun Y, Liu J, Zhang M, Bai L. Decoupling of structural and functional connectivity in hubs and cognitive impairment after mild traumatic brain injury. Brain Connect 2021; 11:745-758. [PMID: 33605188 DOI: 10.1089/brain.2020.0852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Mild traumatic brain injury (mild TBI) exhibited abnormal brain network topologies associated with cognitive dysfunction. However, it was still unclear which aspects of network organization were critical underlying the key pathology of mild TBI. Here, a multi-imaging strategy was applied to capture dynamic topological features of both structural and functional connectivity networks (SCN and FCN), to provide more sensitive detection of altered FCN from its anatomical backbone and identify novel biomarkers of mild TBI outcomes. METHODS 62 mild TBI patients (30 subjects as an original sample with 3-12 months follow-up, 32 subjects as independent replicated sample), and 37 healthy controls were recruited. Both diffusion tensor imaging (DTI) and resting-state fMRI were used to create global connectivity matrices in the same individuals. Global and regional network analyses were applied to identify group differences and correlations with clinical assessments. RESULTS Most global network properties were conserved in both SCNs and FCNs in subacute mild TBI, whereas SCNs presented decreased global efficiency and characteristic path length at follow-up. Specifically, some hubs in healthy brain networks typically became non-hubs in patients and vice versa, such as the medial prefrontal cortex, superior temporal gyrus, middle frontal gyrus. The relationship between structural and functional connectivity (SC and FC) in patients also showed salient decoupling as a function of time, primarily located in the hubs. CONCLUSIONS These results suggested mild TBI influences the relationship between SCN and FCN, and the SC-FC coupling strength may be used as a potential biomarker to predict long-term outcomes after injury.
Collapse
Affiliation(s)
- Shan Wang
- Xi'an Jiaotong University, 12480, Department of Biomedical Engineering, Xianning Road, Xi'an, China, 710049;
| | - Shuoqiu Gan
- Xi'an Jiaotong University Medical College First Affiliated Hospital, 162798, Department of Medical Imaging, Xi'an, Shaanxi, China;
| | - Xuefei Yang
- Xi'an Jiaotong University, 12480, Department of Biomedical Engineering, Xi'an, Shaanxi, China;
| | - Tianhui Li
- Xi'an Jiaotong University, 12480, Department of Biomedical Engineering, Xi'an, Shaanxi, China;
| | - Feng Xiong
- Xi'an Jiaotong University, 12480, Department of Biomedical Engineering, Xi'an, Shaanxi, China;
| | - Xiaoyan Jia
- Xi'an Jiaotong University, 12480, Department of Biomedical Engineering, Xi'an, Shaanxi, China;
| | - Yingxiang Sun
- Xi'an Jiaotong University Medical College First Affiliated Hospital, 162798, Department of Medical Imaging, Xi'an, Shaanxi, China;
| | - Jun Liu
- Xiangya Hospital Central South University, 159374, Department of Radiology, Changsha, Hunan, China;
| | - Ming Zhang
- Xi'an Jiaotong University Medical College First Affiliated Hospital, 162798, Department of Medical Imaging, Xi'an, Shaanxi, China;
| | - Lijun Bai
- Xi'an Jiaotong University, 12480, Department of Biomedical Engineering, Xi'an, Shaanxi, China;
| |
Collapse
|
87
|
Hergert DC, Robertson-Benta C, Sicard V, Schwotzer D, Hutchison K, Covey DP, Quinn DK, Sadek JR, McDonald J, Mayer AR. Use of Medical Cannabis to Treat Traumatic Brain Injury. J Neurotrauma 2021; 38:1904-1917. [PMID: 33256496 DOI: 10.1089/neu.2020.7148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is not a single pharmacological agent with demonstrated therapeutic efficacy for traumatic brain injury (TBI). With recent legalization efforts and the growing popularity of medical cannabis, patients with TBI will inevitably consider medical cannabis as a treatment option. Pre-clinical TBI research suggests that cannabinoids have neuroprotective and psychotherapeutic properties. In contrast, recreational cannabis use has consistently shown to have detrimental effects. Our review identified a paucity of high-quality studies examining the beneficial and adverse effects of medical cannabis on TBI, with only a single phase III randomized control trial. However, observational studies demonstrate that TBI patients are using medical and recreational cannabis to treat their symptoms, highlighting inconsistencies between public policy, perception of potential efficacy, and the dearth of empirical evidence. We conclude that randomized controlled trials and prospective studies with appropriate control groups are necessary to fully understand the efficacy and potential adverse effects of medical cannabis for TBI.
Collapse
Affiliation(s)
- Danielle C Hergert
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Cidney Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Veronik Sicard
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Daniela Schwotzer
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Kent Hutchison
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Dan P Covey
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Davin K Quinn
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Joseph R Sadek
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Jacob McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA.,Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Psychology Department, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
88
|
Sinke MRT, Otte WM, Meerwaldt AE, Franx BAA, Ali MHM, Rakib F, van der Toorn A, van Heijningen CL, Smeele C, Ahmed T, Blezer ELA, Dijkhuizen RM. Imaging Markers for the Characterization of Gray and White Matter Changes from Acute to Chronic Stages after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1642-1653. [PMID: 33198560 DOI: 10.1089/neu.2020.7151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. Therefore, the present study had two aims: first, to characterize the development of MRI-based measures of structural and functional changes in gray and white matter regions from acute to chronic stages after mild and moderate TBI; and second, to identify the imaging markers that can most accurately predict outcome after TBI. To these aims, 52 rats underwent serial functional (resting-state) and structural (T1-, T2-, and diffusion-weighted) MRI before and 1 h, 1 day, 1 week, 1 month and 3-4 months after mild or moderate experimental TBI. All rats underwent behavioral testing. Histology was performed in subgroups of rats at different time points. Early after moderate TBI, axial and radial diffusivities were increased, and fractional anisotropy was reduced in the corpus callosum and bilateral hippocampi, which normalized over time and was paralleled by recovery of sensorimotor function. Correspondingly, histology revealed decreased myelin staining early after TBI, which was not detected at chronic stages. No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078.,UMC Utrecht Brain Center, Department of Child Neurology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Anu E Meerwaldt
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Mohamed H M Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Caroline L van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Christel Smeele
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Tariq Ahmed
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| |
Collapse
|
89
|
Bittencourt-Villalpando M, van der Horn HJ, Maurits NM, van der Naalt J. Disentangling the effects of age and mild traumatic brain injury on brain network connectivity: A resting state fMRI study. Neuroimage Clin 2020; 29:102534. [PMID: 33360020 PMCID: PMC7770973 DOI: 10.1016/j.nicl.2020.102534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cognitive complaints are common shortly after mild traumatic brain injury (mTBI) but may persist up to years. Age-related cognitive decline can worsen these symptoms. However, effects of age on mTBI sequelae have scarcely been investigated. METHODS Fifty-four mTBI patients (median age: 35 years, range 19-64 years, 67% male) and twenty age- and sex-matched healthy controls were studied using resting state functional magnetic resonance imaging in the sub-acute phase. Independent component analysis was used to identify intrinsic connectivity networks (ICNs). A multivariate approach was adopted to evaluate the effects of age and group on the ICNs in terms of (static) functional network connectivity (FNC), intensities of spatial maps (SMs) and time-course spectral power (TC). RESULTS We observed significant age-related changes for a) FNC: changes between 10 pairs of ICNs, mostly involving the default mode (DM) and/or the cognitive-control (CC) domains; b) SMs: intensity decrease in clusters across three domains and intensity increase in clusters across two domains, including the CC but not the DM and c) TC: spectral power decrease within the 0-0.15 Hz range and increase within the 0.20-0.25 Hz range for increasing age within networks located in frontal areas, including the anterior DM. Groups only differed for TC within the 0.065-0.10 Hz range in the cerebellar ICN and no age × group interaction effect was found. CONCLUSIONS We showed robust effects of age on connectivity between and within ICNs that are associated with cognitive functioning. Differences between mTBI patients and controls were only found for activity in the cerebellar network, increasingly recognized to participate in cognition. Our results suggest that to allow for capturing the true effects related to mTBI and its effects on cognitive functioning, age should be included as a covariate in mTBI studies, in addition to age-matching groups.
Collapse
Affiliation(s)
- M Bittencourt-Villalpando
- University of Groningen, University Medical Center Groningen, Department of Neurology AB51, 9700RB Groningen, The Netherlands.
| | - H J van der Horn
- University of Groningen, University Medical Center Groningen, Department of Neurology AB51, 9700RB Groningen, The Netherlands
| | - N M Maurits
- University of Groningen, University Medical Center Groningen, Department of Neurology AB51, 9700RB Groningen, The Netherlands
| | - J van der Naalt
- University of Groningen, University Medical Center Groningen, Department of Neurology AB51, 9700RB Groningen, The Netherlands
| |
Collapse
|
90
|
Iyer KK, Zalesky A, Cocchi L, Barlow KM. Neural Correlates of Sleep Recovery following Melatonin Treatment for Pediatric Concussion: A Randomized Controlled Trial. J Neurotrauma 2020; 37:2647-2655. [DOI: 10.1089/neu.2020.7200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kartik K. Iyer
- Faculty of Medicine, Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Clinical Brain Networks Group, Brisbane, Queensland, Australia
| | - Karen M. Barlow
- Faculty of Medicine, Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Department of Neurology, Queensland Children's Hospital, Brisbane, Queensland, Australia
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
91
|
Shafi R, Crawley AP, Tartaglia MC, Tator CH, Green RE, Mikulis DJ, Colantonio A. Sex-specific differences in resting-state functional connectivity of large-scale networks in postconcussion syndrome. Sci Rep 2020; 10:21982. [PMID: 33319807 PMCID: PMC7738671 DOI: 10.1038/s41598-020-77137-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Concussions are associated with a range of cognitive, neuropsychological and behavioral sequelae that, at times, persist beyond typical recovery times and are referred to as postconcussion syndrome (PCS). There is growing support that concussion can disrupt network-based connectivity post-injury. To date, a significant knowledge gap remains regarding the sex-specific impact of concussion on resting state functional connectivity (rs-FC). The aims of this study were to (1) investigate the injury-based rs-FC differences across three large-scale neural networks and (2) explore the sex-specific impact of injury on network-based connectivity. MRI data was collected from a sample of 80 concussed participants who fulfilled the criteria for postconcussion syndrome and 31 control participants who did not have any history of concussion. Connectivity maps between network nodes and brain regions were used to assess connectivity using the Functional Connectivity (CONN) toolbox. Network based statistics showed that concussed participants were significantly different from healthy controls across both salience and fronto-parietal network nodes. More specifically, distinct subnetwork components were identified in the concussed sample, with hyperconnected frontal nodes and hypoconnected posterior nodes across both the salience and fronto-parietal networks, when compared to the healthy controls. Node-to-region analyses showed sex-specific differences across association cortices, however, driven by distinct networks. Sex-specific network-based alterations in rs-FC post concussion need to be examined to better understand the underlying mechanisms and associations to clinical outcomes.
Collapse
Affiliation(s)
- Reema Shafi
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada. .,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
| | - Adrian P Crawley
- Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Charles H Tator
- Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Department of Surgery, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Robin E Green
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - David J Mikulis
- Department of Medical Imaging, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Canadian Concussion Center, Toronto Western Hospital, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Angela Colantonio
- Rehabilitation Sciences Institute, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.,KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.,Department of Occupational Science and Occupational Therapy, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
92
|
Zhuang X, Mishra V, Nandy R, Yang Z, Sreenivasan K, Bennett L, Bernick C, Cordes D. Resting-State Static and Dynamic Functional Abnormalities in Active Professional Fighters With Repetitive Head Trauma and With Neuropsychological Impairments. Front Neurol 2020; 11:602586. [PMID: 33362704 PMCID: PMC7758536 DOI: 10.3389/fneur.2020.602586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
Previous neuroimaging studies have identified structural brain abnormalities in active professional fighters with repetitive head trauma and correlated these changes with fighters' neuropsychological impairments. However, functional brain changes in these fighters derived using neuroimaging techniques remain unclear. In this study, both static and dynamic functional connectivity alterations were investigated (1) between healthy normal control subjects (NC) and fighters and (2) between non-impaired and impaired fighters. Resting-state fMRI data were collected on 35 NC and 133 active professional fighters, including 68 impaired fighters and 65 non-impaired fighters, from the Professional Fighters Brain Health Study at our center. Impaired fighters performed worse on processing speed (PSS) tasks with visual-attention and working-memory demands. The static functional connectivity (sFC) matrix was estimated for every pair of regions of interest (ROI) using a subject-specific parcellation. The dynamic functional connectivity (dFC) was estimated using a sliding-window method, where the variability of each ROI pair across all windows represented the temporal dynamics. A linear regression model was fitted for all 168 subjects, and different t-contrast vectors were used for between-group comparisons. An association analysis was further conducted to evaluate FC changes associated with PSS task performances without creating artificial impairment group-divisions in fighters. Following corrections for multiple comparisons using network-based statistics, our study identified significantly reduced long-range frontal-temporal, frontal-occipital, temporal-occipital, and parietal-occipital sFC strengths in fighters than in NCs, corroborating with previously observed structural damages in corresponding white matter tracts in subjects experiencing repetitive head trauma. In impaired fighters, significantly decreased sFC strengths were found among key regions involved in visual-attention, executive and cognitive process, as compared to non-impaired fighters. Association analysis further reveals similar sFC deficits to worse PSS task performances in all 133 fighters. With our choice of dFC indices, we were not able to observe any significant dFC changes beyond a trend-level increased temporal variability among similar regions with weaker sFC strengths in impaired fighters. Collectively, our functional brain findings supplement previously reported structural brain abnormalities in fighters and are important to comprehensively understand brain changes in fighters with repetitive head trauma.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, NV, United States
| | - Virendra Mishra
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Rajesh Nandy
- School of Public Health, University of North Texas, Fort Worth, TX, United States
| | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, NV, United States
| | - Karthik Sreenivasan
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, NV, United States
| | - Lauren Bennett
- Pickup Family Neuroscience Institute, Hoag Memorial Hospital Presbyterian, Newport Beach, CA, United States
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- UW Medicine, Seattle, WA, United States
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, NV, United States
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| |
Collapse
|
93
|
Johnson B, Dodd A, Mayer AR, Hallett M, Slobounov S. Are there any differential responses to concussive injury in civilian versus athletic populations: a neuroimaging study. Brain Imaging Behav 2020; 14:110-117. [PMID: 30361946 DOI: 10.1007/s11682-018-9982-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accurate identification and classification of patients suffering from mild traumatic brain injury (mTBI) is a significant challenge faced by clinicians and researchers. To examine if there are different pathophysiological responses to concussive injury in different populations, evaluated here comparing collegiate athletes versus age-matched non-athletes. Resting-state fMRI data were acquired in the acute phase of concussion from 30 collegiate athletes and from 30 injury and age matched non-athletes. Resting-state functional connectivity measures revealed group differences with reduced connectivity in the anterior cingulate cortex (p < .05) and posterior cingulate cortex (p < 0.05) hubs of the Default Mode Network in the athletes. Given the known positive effects of exercise on brain functional reserves and neural efficiency concept, we expected less pronounced effect of concussion in athletic population. In contrast, there were significant decreases in functional connectivity in athletes that could be a result of previous repetitive subconcussive impacts and history of concussion.
Collapse
Affiliation(s)
- Brian Johnson
- Department of Kinesiology, The Pennsylvania State University, 276, Recreation Building, University Park, PA, 16802, USA
| | - Andrew Dodd
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Andrew R Mayer
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA.,Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Mark Hallett
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Semyon Slobounov
- Department of Kinesiology, The Pennsylvania State University, 276, Recreation Building, University Park, PA, 16802, USA. .,Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| |
Collapse
|
94
|
Abstract
This article focuses on 3 concepts that continue to be investigated in the search for the holy grail of concussion-a valid diagnostic test. Imaging advances are discussed with optimism that functional MRI and diffusion tensor imaging may be available clinically. Biomarkers and the use of genetic tests are covered. Sideline accelerometer use may help steer discussions of head trauma risk once technology exists to accurately estimate acceleration of the brain. In the meantime, strategies including allowing athletes to be substituted out of games for an evaluation and video review in elite sports can improve recognition of sports-related concussion.
Collapse
Affiliation(s)
- Hamish Kerr
- Sports Medicine, Department of Medicine, Albany Medical College, 1019 New Loudon Road, Cohoes, NY 12047, USA.
| | - Bjørn Bakken
- Department of Medicine, Albany Medical Center, 1019 New Loudon Road, Cohoes, NY 12047, USA
| | - Gregory House
- Department of Family and Community Medicine, Albany Medical Center, 391 Myrtle Avenue, Albany, NY 12208, USA
| |
Collapse
|
95
|
Wang Z, Zhang M, Sun C, Wang S, Cao J, Wang KKW, Gan S, Huang W, Niu X, Zhu Y, Sun Y, Bai L. Single Mild Traumatic Brain Injury Deteriorates Progressive Interhemispheric Functional and Structural Connectivity. J Neurotrauma 2020; 38:464-473. [PMID: 30931824 DOI: 10.1089/neu.2018.6196] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The present study examined dynamic interhemispheric structural and functional connectivity in mild traumatic brain injury (mTBI) patients with longitudinal observations from early subacute to chronic stages within 1 year of injury. Forty-two mTBI patients and 42 matched healthy controls underwent clinical and neuropsychological evaluations, diffusion tensor imaging, and resting-state functional magnetic resonance imaging. All mTBI patients were initially evaluated within 14 d post-injury (T-1) and at 3 months (T-2) and 6-12 months (T-3) follow-ups. Separate transcallosal fiber tracts in the corpus callosum (CC) with respect to their specific interhemispheric cortical projections were derived with fiber tracking and voxel-mirrored homotopic connectivity analyses. With diffusion tensor imaging-based tractography, five vertical segments of the CC (I-V) were distinguished. Correlation analyses were performed to evaluate relationships between structural and functional imaging measures as well as imaging indices and neuropsychological measures. The loss of integrity in the CC demonstrated saliently persistent and time-dependent regional specificity after mTBI. The impairment spanned multiple segments from CC II at T-1 and CC I, II, VI, and V at T-2 to all subregions at T-3. Moreover, loss of interhemispheric structural connectivity through the CC corresponded well to regions presenting altered interhemispheric functional connectivity. Decreased functional connectivity in the dorsolateral prefrontal cortex thereafter contributed to poor executive function in mTBI patients. The current study provides further evidence that the CC is a sign to interhemispheric highways underpinning the widespread cerebral pathology typifying mTBI syndrome.
Collapse
Affiliation(s)
- Zhuonan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jieli Cao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarker Research, Departments of Emergency Medicine, Psychiatry, and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenmin Huang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Niu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanan Zhu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingxiang Sun
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
96
|
Cassoudesalle H, Petit A, Chanraud S, Petit H, Badaut J, Sibon I, Dehail P. Changes in resting-state functional brain connectivity associated with head impacts over one men's semi-professional soccer season. J Neurosci Res 2020; 99:446-454. [PMID: 33089563 DOI: 10.1002/jnr.24742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/05/2022]
Abstract
Soccer, as a contact sport, exposes players to repetitive head impacts, especially through heading the ball. The question of a long-term brain cumulative effect remains. Our objective was to determine whether exposure to head impacts over one soccer season was associated with changes in functional brain connectivity at rest, using magnetic resonance imaging (MRI). In this prospective cohort study, 10 semi-professional men soccer players, aged 18-25 years, and 20 age-matched men athletes without a concussion history and who do not practice any contact sport were recruited in Bordeaux (France). Exposure to head impacts per soccer player during competitive games over one season was measured using video analysis. Resting-state functional magnetic resonance imaging data were acquired for both groups at two times, before and after the season. With a seed-based analysis, resting-state networks that have been intimately associated with aspects of cognitive functioning were investigated. The results showed a mean head impacts of 42 (±33) per soccer player over the season, mainly intentional head-to-ball impacts and no concussion. No head impact was found among the other athletes. The number of head impacts between the two MRI acquisitions before and after the season was associated with increased connectivity within the default mode network and the cortico-cerebellar network. In conclusion, our findings suggest that the brain functioning changes over one soccer season in association with exposure to repetitive head impacts.
Collapse
Affiliation(s)
- Hélène Cassoudesalle
- Physical and Rehabilitation Medicine Department, University Hospital of Bordeaux, Bordeaux, France.,"Handicap, Activity, Cognition & Health" Team, INSERM, BPH, U1219, University of Bordeaux, Bordeaux, France
| | - Adrien Petit
- Physical and Rehabilitation Medicine Department, University Hospital of Bordeaux, Bordeaux, France
| | - Sandra Chanraud
- Neuroimaging and Human Cognition Group, UMR-CNRS 5287 - INCIA, Bordeaux, France
| | - Hervé Petit
- "Handicap, Activity, Cognition & Health" Team, INSERM, BPH, U1219, University of Bordeaux, Bordeaux, France
| | - Jérôme Badaut
- Brain Molecular Imaging Group, UMR-CNRS 5287 - INCIA, Bordeaux, France
| | - Igor Sibon
- Neuroimaging and Human Cognition Group, UMR-CNRS 5287 - INCIA, Bordeaux, France
| | - Patrick Dehail
- Physical and Rehabilitation Medicine Department, University Hospital of Bordeaux, Bordeaux, France.,"Handicap, Activity, Cognition & Health" Team, INSERM, BPH, U1219, University of Bordeaux, Bordeaux, France
| |
Collapse
|
97
|
de Souza NL, Parker R, Gonzalez CS, Ryan JD, Esopenko C. Effect of age at time of injury on long-term changes in intrinsic functional connectivity in traumatic brain injury. Brain Inj 2020; 34:1646-1654. [PMID: 33090913 DOI: 10.1080/02699052.2020.1832257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Alterations in resting-state functional connectivity (rsFC) occur in the acute and chronic phases following traumatic brain injury (TBI); however, few studies have assessed long-term (>1 year) changes in rsFC. METHODS Resting-state functional magnetic resonance imaging (rsfMRI) scans were obtained from the Federal Interagency Traumatic Brain Injury Research Informatics Systems. Patients with primarily mild TBI (n = 39) completed rsfMRI scans at the sub-acute (~10 days) and long-term (~18 months) phases. We examined changes in voxel-based rsFC from anterior medial prefrontal cortex (aMPFC) and posterior cingulate cortex (PCC) seeds in the default mode network (DMN) between both phases. The effect of age at the time of injury on long-term rsFC was also examined. RESULTS Increased rsFC from the aMPFC and the PCC to frontal and temporal regions was shown at ~18-months post-injury. Widespread increases in rsFC from the aMPFC and between the PCC and frontal regions were shown for younger patients at time of injury, but limited increases of rsFC were noted at ~18 months in older patients. CONCLUSION Long-term increases in rsFC were found following TBI, but age at the time of injury was associated with distinct rsFC profiles suggesting that younger patients show greater increases in rsFC over time.
Collapse
Affiliation(s)
- Nicola L de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers Biomedical and Health Sciences , Newark, New Jersey, USA
| | - Rachel Parker
- Rotman Research Institute at Baycrest , Toronto, Ontario, Canada
| | - Christie S Gonzalez
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences , Newark, New Jersey, USA
| | - Jennifer D Ryan
- Rotman Research Institute at Baycrest , Toronto, Ontario, Canada.,Department of Psychology, University of Toronto , Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto , Toronto, Ontario, Canada
| | - Carrie Esopenko
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences , Newark, New Jersey, USA
| |
Collapse
|
98
|
Quinn DK, Upston J, Jones T, Brandt E, Story-Remer J, Fratzke V, Wilson JK, Rieger R, Hunter MA, Gill D, Richardson JD, Campbell R, Clark VP, Yeo RA, Shuttleworth CW, Mayer AR. Cerebral Perfusion Effects of Cognitive Training and Transcranial Direct Current Stimulation in Mild-Moderate TBI. Front Neurol 2020; 11:545174. [PMID: 33117255 PMCID: PMC7575722 DOI: 10.3389/fneur.2020.545174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Persistent post-traumatic symptoms (PPS) after traumatic brain injury (TBI) can lead to significant chronic functional impairment. Pseudocontinuous arterial spin labeling (pCASL) has been used in multiple studies to explore changes in cerebral blood flow (CBF) that may result in acute and chronic TBI, and is a promising neuroimaging modality for assessing response to therapies. Methods: Twenty-four subjects with chronic mild-moderate TBI (mmTBI) were enrolled in a pilot study of 10 days of computerized executive function training combined with active or sham anodal transcranial direct current stimulation (tDCS) for treatment of cognitive PPS. Behavioral surveys, neuropsychological testing, and magnetic resonance imaging (MRI) with pCASL sequences to assess global and regional CBF were obtained before and after the training protocol. Results: Robust improvements in depression, anxiety, complex attention, and executive function were seen in both active and sham groups between the baseline and post-treatment visits. Global CBF decreased over time, with differences in regional CBF noted in the right inferior frontal gyrus (IFG). Active stimulation was associated with static or increased CBF in the right IFG, whereas sham was associated with reduced CBF. Neuropsychological performance and behavioral symptoms were not associated with changes in CBF. Discussion: The current study suggests a complex picture between mmTBI, cerebral perfusion, and recovery. Changes in CBF may result from physiologic effect of the intervention, compensatory neural mechanisms, or confounding factors. Limitations include a small sample size and heterogenous injury sample, but these findings suggest promising directions for future studies of cognitive training paradigms in mmTBI.
Collapse
Affiliation(s)
- Davin K Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Joel Upston
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Thomas Jones
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Emma Brandt
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | | | - Violet Fratzke
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States.,Chicago Medical School, Chicago, IL, United States
| | - J Kevin Wilson
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | - Rebecca Rieger
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | | | - Darbi Gill
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | - Jessica D Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Richard Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States.,Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | - Vincent P Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.,Mind Research Network, Albuquerque, NM, United States
| | - Ronald A Yeo
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | |
Collapse
|
99
|
Chao LL, Barlow C, Karimpoor M, Lim L. Changes in Brain Function and Structure After Self-Administered Home Photobiomodulation Treatment in a Concussion Case. Front Neurol 2020; 11:952. [PMID: 33013635 PMCID: PMC7509409 DOI: 10.3389/fneur.2020.00952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a common neurological disorder among athletes. Although there are no widely accepted treatments for TBI, new investigational approaches, such as photobiomodulation (PBM), are being tested. PBM is a light therapy that uses red to near-infrared (NIR) light to stimulate, heal, and protect tissue that has been injured or is at risk of dying. Benefits following transcranial PBM treatments in animal models of acute TBI and a small number of chronic TBI patients have been reported. However, the human PBM TBI studies published to date have been based on behavioral assessments. This report describes changes in behavioral and neuroimaging measures after 8 weeks of PBM treatments. The subject was a 23-year professional hockey player with a history of concussions, presumed to have caused his symptoms of headaches, mild anxiety, and difficulty concentrating. He treated himself at home with commercially available, low-risk PBM devices that used light-emitting diodes (LEDs) to emit 810-nm light pulsing at 10 or 40 Hz delivered by an intranasal and four transcranial modules that targeted nodes of the default mode network (DMN) with a maximum power density of 100 mW/cm2. After 8 weeks of PBM treatments, increased brain volumes, improved functional connectivity, and increased cerebral perfusion and improvements on neuropsychological test scores were observed. Although this is a single, sport-related case with a history of concussions, these positive findings encourage replication studies that could provide further validation for this non-invasive, non-pharmacological modality as a viable treatment option for TBI.
Collapse
Affiliation(s)
- Linda L Chao
- Departments of Radiology & Biomedical Imaging and Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States.,VA Advanced Imaging Research Center, San Francisco VA Health Care System, San Francisco, CA, United States
| | - Cody Barlow
- VA Advanced Imaging Research Center, San Francisco VA Health Care System, San Francisco, CA, United States
| | | | - Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
100
|
McGlade E, Rogowska J, DiMuzio J, Bueler E, Sheth C, Legarreta M, Yurgelun-Todd D. Neurobiological evidence of sexual dimorphism in limbic circuitry of US Veterans. J Affect Disord 2020; 274:1091-1101. [PMID: 32663937 DOI: 10.1016/j.jad.2020.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/25/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Female Veterans are an increasing patient population in the Department of Veterans Affairs and may have distinct clinical and neurobiological features compared to males. METHODS Nineteen female and 19 male Veterans who met diagnostic criteria for depression/posttraumatic stress disorder (MDD/PTSD) completed diagnostic interviews, symptom measures, and resting-state neuroimaging. Participants completed clinical measures of mood and aggression in addition to magnetic resonance imaging on a 3.0 Tesla Siemens scanner. RESULTS Females showed increased functional connectivity between the left and right basolateral amygdala (BLA) and the left and right cerebellar and occipital lobes. Sex differences also were evident in the relationship between affective and clinical symptoms with BLA connectivity. Females showed a correlation between revenge planning and decreased connectivity between the left BLA and left occipital lobe and also a correlation between aggression and decreased connectivity between the right BLA and right mid cingulate, right and left medial frontal lobe, and right frontal lobe. Males evidenced a relationship between increased depressive symptoms and increased connectivity between the left BLA and right and left occipital lobe, left calcarine, and other areas associated with visual memory and processing, and interpretation of sensory information. Additionally, males reported higher levels of physical aggression and revenge planning compared to females. LIMITATIONS This study included neuroimaging and self-report clinical measures. Further studies will benefit from multimodal measures, including behavioral measures of aggression. CONCLUSIONS Results suggest that male Veterans report more aggression than females and symptoms of aggression and mood are differentially related to BLA connectivity by sex.
Collapse
Affiliation(s)
- Erin McGlade
- Diagnostic Neuroimaging Lab, University of Utah, Salt Lake City, UT, United States; University of Utah School of Medicine, Salt Lake City, UT, United States; VISN 19 MIRREC, Salt Lake City, UT, United States.
| | - Jadwiga Rogowska
- Diagnostic Neuroimaging Lab, University of Utah, Salt Lake City, UT, United States; University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jennifer DiMuzio
- Diagnostic Neuroimaging Lab, University of Utah, Salt Lake City, UT, United States; VISN 19 MIRREC, Salt Lake City, UT, United States
| | - Elliott Bueler
- Diagnostic Neuroimaging Lab, University of Utah, Salt Lake City, UT, United States; VISN 19 MIRREC, Salt Lake City, UT, United States
| | - Chandni Sheth
- Diagnostic Neuroimaging Lab, University of Utah, Salt Lake City, UT, United States; University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Margaret Legarreta
- Diagnostic Neuroimaging Lab, University of Utah, Salt Lake City, UT, United States; University of Utah School of Medicine, Salt Lake City, UT, United States; VISN 19 MIRREC, Salt Lake City, UT, United States
| | - Deborah Yurgelun-Todd
- Diagnostic Neuroimaging Lab, University of Utah, Salt Lake City, UT, United States; University of Utah School of Medicine, Salt Lake City, UT, United States; VISN 19 MIRREC, Salt Lake City, UT, United States
| |
Collapse
|