51
|
Weng Y, Liu X, Hu H, Huang H, Zheng S, Chen Q, Song J, Cao B, Wang J, Wang S, Huang R. Open eyes and closed eyes elicit different temporal properties of brain functional networks. Neuroimage 2020; 222:117230. [PMID: 32771616 DOI: 10.1016/j.neuroimage.2020.117230] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
The eyes are our windows to the brain. There are differences in brain activity between people who have their eyes closed (EC) and eyes open (EO). Previous studies focused on differences in brain functional properties between these eyes conditions based on an assumption that brain activity is a static phenomenon. However, the dynamic nature of the brain activity in different eyes conditions is still unclear. In this study, we collected resting-state fMRI data from 21 healthy subjects in the EC and EO conditions. Using a sliding time window approach and a k-means clustering algorithm, we calculated the temporal properties of dynamic functional connectivity (dFC) states in the eyes conditions. We also used graph theory to estimate the dynamic topological properties of functional networks in the two conditions. We detected two dFC states, a hyper-connected State 1 and a hypo-connected State 2. We showed the following results: (i) subjects in the EC condition stayed longer in the hyper-connected State 1 than those in the EO; (ii) subjects in the EO condition stayed longer in the hypo-connected State 2 than those in the EC; and (iii) the dFC state transformed into the other state more frequently during EC than during EO. We also found the variance of the characteristic path length was higher during EC than during EO in the hyper-connected State 1. These results indicate that brain activity may be more active and unstable during EC than during EO. Our findings may provide insights into the dynamic nature of the resting-state brain and could be a useful reference for future rs-fMRI studies.
Collapse
Affiliation(s)
- Yihe Weng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Xiaojin Liu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Huiqing Hu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Huiyuan Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Senning Zheng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Qinyuan Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Jie Song
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Bolin Cao
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Junjing Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Shuai Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Ruiwang Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, 510631 Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
52
|
Byrge L, Kennedy DP. Accurate prediction of individual subject identity and task, but not autism diagnosis, from functional connectomes. Hum Brain Mapp 2020; 41:2249-2262. [PMID: 32150312 PMCID: PMC7268028 DOI: 10.1002/hbm.24943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Despite enthusiasm about the potential for using fMRI-based functional connectomes in the development of biomarkers for autism spectrum disorder (ASD), the literature is full of negative findings-failures to distinguish ASD functional connectomes from those of typically developing controls (TD)-and positive findings that are inconsistent across studies. Here, we report on a new study designed to either better differentiate ASD from TD functional connectomes-or, alternatively, to refine our understanding of the factors underlying the current state of affairs. We scanned individuals with ASD and controls both at rest and while watching videos with social content. Using multiband fMRI across repeat sessions, we improved both data quantity and scanning duration by collecting up to 2 hr of data per individual. This is about 50 times the typical number of temporal samples per individual in ASD fcMRI studies. We obtained functional connectomes that were discriminable, allowing for near-perfect individual identification regardless of diagnosis, and equally reliable in both groups. However, contrary to what one might expect, we did not consistently or robustly observe in the ASD group either reductions in similarity to TD functional connectivity (FC) patterns or shared atypical FC patterns. Accordingly, FC-based predictions of diagnosis group achieved accuracy levels around chance. However, using the same approaches to predict scan type (rest vs. video) achieved near-perfect accuracy. Our findings suggest that neither the limitations of resting state as a "task," data resolution, data quantity, or scan duration can be considered solely responsible for failures to differentiate ASD from TD functional connectomes.
Collapse
Affiliation(s)
- Lisa Byrge
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndiana
| | - Daniel P. Kennedy
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndiana
- Cognitive Science ProgramIndiana UniversityBloomingtonIndiana
- Program in NeuroscienceIndiana UniversityBloomingtonIndiana
| |
Collapse
|
53
|
Nair A, Jolliffe M, Lograsso YSS, Bearden CE. A Review of Default Mode Network Connectivity and Its Association With Social Cognition in Adolescents With Autism Spectrum Disorder and Early-Onset Psychosis. Front Psychiatry 2020; 11:614. [PMID: 32670121 PMCID: PMC7330632 DOI: 10.3389/fpsyt.2020.00614] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies have demonstrated substantial phenotypic overlap, notably social impairment, between autism spectrum disorder (ASD) and schizophrenia. However, the neural mechanisms underlying the pathogenesis of social impairments across these distinct neuropsychiatric disorders has not yet been fully examined. Most neuroimaging studies to date have focused on adults with these disorders, with little known about the neural underpinnings of social impairments in younger populations. Here, we present a narrative review of the literature available through April 2020 on imaging studies of adolescents with either ASD or early-onset psychosis (EOP), to better understand the shared and unique neural mechanisms of social difficulties across diagnosis from a developmental framework. We specifically focus on functional connectivity studies of the default mode network (DMN), as the most extensively studied brain network relevant to social cognition across both groups. Our review included 29 studies of DMN connectivity in adolescents with ASD (Mean age range = 11.2-21.6 years), and 14 studies in adolescents with EOP (Mean age range = 14.2-24.3 years). Of these, 15 of 29 studies in ASD adolescents found predominant underconnectivity when examining DMN connectivity. In contrast, findings were mixed in adolescents with EOP, with five of 14 studies reporting DMN underconnectivity, and an additional six of 14 studies reporting both under- and over-connectivity of the DMN. Specifically, intra-DMN networks were more frequently underconnected in ASD, but overconnected in EOP. On the other hand, inter-DMN connectivity patterns were mixed (both under- and over-connected) for each group, especially DMN connectivity with frontal, sensorimotor, and temporoparietal regions in ASD, and with frontal, temporal, subcortical, and cerebellar regions in EOP. Finally, disrupted DMN connectivity appeared to be associated with social impairments in both groups, less so with other features distinct to each condition, such as repetitive behaviors/restricted interests in ASD and hallucinations/delusions in EOP. Further studies on demographically well-matched groups of adolescents with each of these conditions are needed to systematically explore additional contributing factors in DMN connectivity patterns such as clinical heterogeneity, pubertal development, and medication effects that would better inform treatment targets and facilitate prediction of outcomes in the context of these developmental neuropsychiatric conditions.
Collapse
Affiliation(s)
- Aarti Nair
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, California
| | - Morgan Jolliffe
- Graduate School of Professional Psychology, University of Denver, Denver, CO, United States
| | - Yong Seuk S Lograsso
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, California.,Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, California.,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
54
|
Malaia EA, Ahn S, Rubchinsky LL. Dysregulation of temporal dynamics of synchronous neural activity in adolescents on autism spectrum. Autism Res 2019; 13:24-31. [PMID: 31702116 DOI: 10.1002/aur.2219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder is increasingly understood to be based on atypical signal transfer among multiple interconnected networks in the brain. Relative temporal patterns of neural activity have been shown to underlie both the altered neurophysiology and the altered behaviors in a variety of neurogenic disorders. We assessed brain network dynamics variability in autism spectrum disorders (ASD) using measures of synchronization (phase-locking) strength, and timing of synchronization and desynchronization of neural activity (desynchronization ratio) across frequency bands of resting-state electroencephalography (EEG). Our analysis indicated that frontoparietal synchronization is higher in ASD but with more short periods of desynchronization. It also indicates that the relationship between the properties of neural synchronization and behavior is different in ASD and typically developing populations. Recent theoretical studies suggest that neural networks with a high desynchronization ratio have increased sensitivity to inputs. Our results point to the potential significance of this phenomenon to the autistic brain. This sensitivity may disrupt the production of an appropriate neural and behavioral responses to external stimuli. Cognitive processes dependent on the integration of activity from multiple networks maybe, as a result, particularly vulnerable to disruption. Autism Res 2020, 13: 24-31. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Parts of the brain can work together by synchronizing the activity of the neurons. We recorded the electrical activity of the brain in adolescents with autism spectrum disorder and then compared the recording to that of their peers without the diagnosis. We found that in participants with autism, there were a lot of very short time periods of non-synchronized activity between frontal and parietal parts of the brain. Mathematical models show that the brain system with this kind of activity is very sensitive to external events.
Collapse
Affiliation(s)
- Evie A Malaia
- Department of Communicative Disorders, University of Alabama, Tuscaloosa, Alabama
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, North Carolina
| | - Leonid L Rubchinsky
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
55
|
Li Y, Zhu Y, Nguchu BA, Wang Y, Wang H, Qiu B, Wang X. Dynamic Functional Connectivity Reveals Abnormal Variability and Hyper‐connected Pattern in Autism Spectrum Disorder. Autism Res 2019; 13:230-243. [DOI: 10.1002/aur.2212] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Li
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| | - Yuying Zhu
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
- School of Information Engineering, Southwest University of Science and Technology Mianyang China
| | | | - Yanming Wang
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| | - Huijuan Wang
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| | - Xiaoxiao Wang
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| |
Collapse
|
56
|
King JB, Prigge MBD, King CK, Morgan J, Weathersby F, Fox JC, Dean DC, Freeman A, Villaruz JAM, Kane KL, Bigler ED, Alexander AL, Lange N, Zielinski B, Lainhart JE, Anderson JS. Generalizability and reproducibility of functional connectivity in autism. Mol Autism 2019; 10:27. [PMID: 31285817 PMCID: PMC6591952 DOI: 10.1186/s13229-019-0273-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background Autism is hypothesized to represent a disorder of brain connectivity, yet patterns of atypical functional connectivity show marked heterogeneity across individuals. Methods We used a large multi-site dataset comprised of a heterogeneous population of individuals with autism and typically developing individuals to compare a number of resting-state functional connectivity features of autism. These features were also tested in a single site sample that utilized a high-temporal resolution, long-duration resting-state acquisition technique. Results No one method of analysis provided reproducible results across research sites, combined samples, and the high-resolution dataset. Distinct categories of functional connectivity features that differed in autism such as homotopic, default network, salience network, long-range connections, and corticostriatal connectivity, did not align with differences in clinical and behavioral traits in individuals with autism. One method, lag-based functional connectivity, was not correlated to other methods in describing patterns of resting-state functional connectivity and their relationship to autism traits. Conclusion Overall, functional connectivity features predictive of autism demonstrated limited generalizability across sites, with consistent results only for large samples. Different types of functional connectivity features do not consistently predict different symptoms of autism. Rather, specific features that predict autism symptoms are distributed across feature types. Electronic supplementary material The online version of this article (10.1186/s13229-019-0273-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jace B King
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,2Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112 USA
| | - Molly B D Prigge
- 3Department of Pediatrics, University of Utah, Salt Lake City, UT 84108 USA.,4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Carolyn K King
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,3Department of Pediatrics, University of Utah, Salt Lake City, UT 84108 USA
| | - Jubel Morgan
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,3Department of Pediatrics, University of Utah, Salt Lake City, UT 84108 USA.,4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Fiona Weathersby
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,5Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - J Chancellor Fox
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA
| | - Douglas C Dean
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Abigail Freeman
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA.,6Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719 USA
| | | | - Karen L Kane
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Erin D Bigler
- 7Psychology Department and Neuroscience Center, Brigham Young University, Provo, UT 84604 USA
| | - Andrew L Alexander
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA.,6Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719 USA.,8Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Nicholas Lange
- 9McLean Hospital and Department of Psychiatry, Harvard University, Cambridge, MA 02478 USA
| | - Brandon Zielinski
- 3Department of Pediatrics, University of Utah, Salt Lake City, UT 84108 USA.,10Department of Neurology, University of Utah, Salt Lake City, UT 84132 USA
| | - Janet E Lainhart
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA.,6Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719 USA
| | - Jeffrey S Anderson
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,2Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112 USA.,5Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
57
|
Noriega G. Restricted, Repetitive, and Stereotypical Patterns of Behavior in Autism-an fMRI Perspective. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1139-1148. [PMID: 31021772 DOI: 10.1109/tnsre.2019.2912416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main objective of this paper is to determine whether resting-state fMRI can identify functional connectivity differences between individuals with autism who experience severe issues with restricted, repetitive, and stereotypical behaviors, those who experience only mild issues, and controls. We use resting-state fMRI data from the ABIDE-I preprocessed repository, with participants grouped according to their ADI-R Restricted, Repetitive, and Stereotyped Patterns of Behavior Subscore. Three processing methods are used for analysis. A time-correlation approach establishes a basic baseline, and we introduce a method based on sliding time windows, with means across time adjusted to consider the fraction of time the correlation measure is above/below average. We complement these with a band-limited coherence approach. For completeness, preprocessing schemes with and without global signal regression are considered. Our results are in line with recent ones which find both over- and under-connectivities in the autistic brain. We find that there are indeed significant differences in connectivity between various regions that differentiate between ASD subjects with severe stereotypical/restrictive behavior issues, those with only mild issues, and controls. Interestingly, for some regions, the "signature" of subjects in the milder of the ASD groups appears to be distinct (i.e., over- or under-connected) relative to both the more severe ASD group and the controls.
Collapse
|
58
|
Mash LE, Linke AC, Olson LA, Fishman I, Liu TT, Müller RA. Transient states of network connectivity are atypical in autism: A dynamic functional connectivity study. Hum Brain Mapp 2019; 40:2377-2389. [PMID: 30681228 DOI: 10.1002/hbm.24529] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
There is ample evidence of atypical functional connectivity (FC) in autism spectrum disorders (ASDs). However, transient relationships between neural networks cannot be captured by conventional static FC analyses. Dynamic FC (dFC) approaches have been used to identify repeating, transient connectivity patterns ("states"), revealing spatiotemporal network properties not observable in static FC. Recent studies have found atypical dFC in ASDs, but questions remain about the nature of group differences in transient connectivity, and the degree to which states persist or change over time. This study aimed to: (a) describe and relate static and dynamic FC in typical development and ASDs, (b) describe group differences in transient states and compare them with static FC patterns, and (c) examine temporal stability and flexibility between identified states. Resting-state functional magnetic resonance imaging (fMRI) data were collected from 62 ASD and 57 typically developing (TD) children and adolescents. Whole-brain, data-driven regions of interest were derived from group independent component analysis. Sliding window analysis and k-means clustering were used to explore dFC and identify transient states. Across all regions, static overconnnectivity and increased variability over time in ASDs predominated. Furthermore, significant patterns of group differences emerged in two transient states that were not observed in the static FC matrix, with group differences in one state primarily involving sensory and motor networks, and in the other involving higher-order cognition networks. Default mode network segregation was significantly reduced in ASDs in both states. Results highlight that dynamic approaches may reveal more nuanced transient patterns of atypical FC in ASDs.
Collapse
Affiliation(s)
- Lisa E Mash
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California
| | - Annika C Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Lindsay A Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Thomas T Liu
- Center for Functional MRI, Department of Radiology, University of California San Diego, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California
| |
Collapse
|