51
|
Lu HY, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J, Santacruz SR. Multi-scale neural decoding and analysis. J Neural Eng 2021; 18. [PMID: 34284369 PMCID: PMC8840800 DOI: 10.1088/1741-2552/ac160f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Objective. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code. Multi-modal techniques can overcome tradeoffs in the spatial and temporal resolution of a single modality to reveal deeper and more comprehensive understanding of system-level neural mechanisms. Uncovering multi-scale dynamics is essential for a mechanistic understanding of brain function and for harnessing neuroscientific insights to develop more effective clinical treatment. Approach. We discuss conventional methodologies used for characterizing neural activity at different scales and review contemporary examples of how these approaches have been combined. Then we present our case for integrating activity across multiple scales to benefit from the combined strengths of each approach and elucidate a more holistic understanding of neural processes. Main results. We examine various combinations of neural activity at different scales and analytical techniques that can be used to integrate or illuminate information across scales, as well the technologies that enable such exciting studies. We conclude with challenges facing future multi-scale studies, and a discussion of the power and potential of these approaches. Significance. This roadmap will lead the readers toward a broad range of multi-scale neural decoding techniques and their benefits over single-modality analyses. This Review article highlights the importance of multi-scale analyses for systematically interrogating complex spatiotemporal mechanisms underlying cognition and behavior.
Collapse
Affiliation(s)
- Hung-Yun Lu
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America
| | - Elizabeth S Lorenc
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Hanlin Zhu
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Justin Kilmarx
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America
| | - James Sulzer
- The University of Texas at Austin, Mechanical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Chong Xie
- Rice University, Electrical and Computer Engineering, Houston, TX, United States of America
| | - Philippe N Tobler
- University of Zurich, Neuroeconomics and Social Neuroscience, Zurich, Switzerland
| | - Andrew J Watrous
- The University of Texas at Austin, Neurology, Austin, TX, United States of America
| | - Amy L Orsborn
- University of Washington, Electrical and Computer Engineering, Seattle, WA, United States of America.,University of Washington, Bioengineering, Seattle, WA, United States of America.,Washington National Primate Research Center, Seattle, WA, United States of America
| | - Jarrod Lewis-Peacock
- The University of Texas at Austin, Psychology, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| | - Samantha R Santacruz
- The University of Texas at Austin, Biomedical Engineering, Austin, TX, United States of America.,The University of Texas at Austin, Institute for Neuroscience, Austin, TX, United States of America
| |
Collapse
|
52
|
Transcranial Direct Current Stimulation (tDCS) over the Left Dorsal Lateral Prefrontal Cortex in Children with Autism Spectrum Disorder (ASD). Neural Plast 2021; 2021:6627507. [PMID: 34257640 PMCID: PMC8245257 DOI: 10.1155/2021/6627507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
Recently, transcranial direct current stimulation (tDCS) has been applied to relieve symptoms in individuals with autism spectrum disorder (ASD). In this prospective, parallel, single-blinded, randomized study, we investigate the modulation effect of three-week tDCS treatment at the left dorsal lateral prefrontal cortex (DLPFC) in children with ASD. 47 children with ASD were enrolled, and 40 (20 in each group) completed the study. The primary outcomes are Childhood Autism Rating Scale (CARS), Aberrant Behavior Checklist (ABC), and the Repetitive Behavior Scale-Revised (RBS-R). We found that children with ASD can tolerate three-week tDCS treatment with no serious adverse events detected. A within-group comparison showed that real tDCS, but not sham tDCS, can significantly reduce the scores of CARS, Children's Sleep Habits Questionnaire (CSHQ), and general impressions in CARS (15th item). Real tDCS produced significant score reduction in the CSHQ and in CARS general impressions when compared to the effects of sham tDCS. The pilot study suggests that three-week left DLPFC tDCS is well-tolerated and may hold potential in relieving some symptoms in children with ASD.
Collapse
|
53
|
Nardo D, Creasey M, Negus C, Pappa K, Aghaeifar A, Reid A, Josephs O, Callaghan MF, Crinion JT. Transcranial direct current stimulation with functional magnetic resonance imaging: a detailed validation and operational guide. Wellcome Open Res 2021; 6:143. [PMID: 37008187 PMCID: PMC10050906 DOI: 10.12688/wellcomeopenres.16679.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to modulate human brain and behavioural function in both research and clinical interventions. The combination of functional magnetic resonance imaging (fMRI) with tDCS enables researchers to directly test causal contributions of stimulated brain regions, answering questions about the physiology and neural mechanisms underlying behaviour. Despite the promise of the technique, advances have been hampered by technical challenges and methodological variability between studies, confounding comparability/replicability. Methods: Here tDCS-fMRI at 3T was developed for a series of experiments investigating language recovery after stroke. To validate the method, one healthy volunteer completed an fMRI paradigm with three conditions: (i) No-tDCS, (ii) Sham-tDCS, (iii) 2mA Anodal-tDCS. MR data were analysed in SPM12 with region-of-interest (ROI) analyses of the two electrodes and reference sites. Results: Quality assessment indicated no visible signal dropouts or distortions introduced by the tDCS equipment. After modelling scanner drift, motion-related variance, and temporal autocorrelation, we found no field inhomogeneity in functional sensitivity metrics across conditions in grey matter and in the three ROIs. Discussion: Key safety factors and risk mitigation strategies that must be taken into consideration when integrating tDCS into an fMRI environment are outlined. To obtain reliable results, we provide practical solutions to technical challenges and complications of the method. It is hoped that sharing these data and SOP will promote methodological replication in future studies, enhancing the quality of tDCS-fMRI application, and improve the reliability of scientific results in this field. Conclusions: The method and data provided here provide a technically safe, reliable tDCS-fMRI procedure to obtain high quality MR data. The detailed framework of the Standard Operation Procedure SOP (https://doi.org/10.5281/zenodo.4606564) systematically reports the technical and procedural elements of our tDCS-fMRI approach, which we hope can be adopted and prove useful in future studies.
Collapse
Affiliation(s)
- Davide Nardo
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Education, University of Roma Tre, Rome, Italy
| | - Megan Creasey
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Clive Negus
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Katerina Pappa
- Institute of Cognitive Neuroscience, University College London, London, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Ali Aghaeifar
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Alphonso Reid
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Oliver Josephs
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | | | - Jenny T. Crinion
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
54
|
Shinde AB, Lerud KD, Munsch F, Alsop DC, Schlaug G. Effects of tDCS dose and electrode montage on regional cerebral blood flow and motor behavior. Neuroimage 2021; 237:118144. [PMID: 33991697 PMCID: PMC8653867 DOI: 10.1016/j.neuroimage.2021.118144] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
We used three dose levels (Sham, 2 mA, and 4 mA) and two different electrode montages (unihemispheric and bihemispheric) to examine DOSE and MONTAGE effects on regional cerebral blood flow (rCBF) as a surrogate marker of neural activity, and on a finger sequence task, as a surrogate behavioral measure drawing on brain regions targeted by transcranial direct current stimulation (tDCS). We placed the anodal electrode over the right motor region (C4) while the cathodal or return electrode was placed either over a left supraorbital region (unihemispheric montage) or over the left motor region (C3 in the bihemispheric montage). Performance changes in the finger sequence task for both hands (left hand: p = 0.0026, and right hand: p = 0.0002) showed a linear tDCS dose response but no montage effect. rCBF in the right hemispheric perirolandic area increased with dose under the anodal electrode (p = 0.027). In contrast, in the perirolandic ROI in the left hemisphere, rCBF showed a trend to increase with dose (p = 0.053) and a significant effect of montage (p = 0.00004). The bihemispheric montage showed additional rCBF increases in frontomesial regions in the 4mA condition but not in the 2 mA condition. Furthermore, we found strong correlations between simulated current density in the left and right perirolandic region and improvements in the finger sequence task performance (FSP) for the contralateral hand. Our data support not only a strong direct tDCS dose effect for rCBF and FSP as surrogate measures of targeted brain regions but also indirect effects on rCBF in functionally connected regions (e.g., frontomesial regions), particularly in the higher dose condition and on FSP of the ipsilateral hand (to the anodal electrode). At a higher dose and irrespective of polarity, a wider network of sensorimotor regions is positively affected by tDCS.
Collapse
Affiliation(s)
- Anant B Shinde
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA; Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA.
| | - Karl D Lerud
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA
| | - Fanny Munsch
- Department of Radiology, MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| | - David C Alsop
- Department of Radiology, MRI Research, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| | - Gottfried Schlaug
- Department of Neurology, Baystate Medical Center - UMass Medical School, Springfield, MA 01107, USA; Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA 02215, USA
| |
Collapse
|
55
|
Molero-Chamizo A, Salas Sánchez Á, Álvarez Batista B, Cordero García C, Andújar Barroso R, Rivera-Urbina GN, Nitsche MA, Alameda Bailén JR. Bilateral Motor Cortex tDCS Effects on Post-Stroke Pain and Spasticity: A Three Cases Study. Front Pharmacol 2021; 12:624582. [PMID: 33967758 PMCID: PMC8098051 DOI: 10.3389/fphar.2021.624582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Stroke patients frequently suffer from chronic limb pain, but well-suited treatment approaches have been not established so far. Transcranial direct current stimulation (tDCS) is a safe and non-invasive brain stimulation technique that alters cortical excitability, and it has been shown that motor cortex tDCS can reduce pain. Some data also suggest that spasticity may be improved by tDCS in post-stroke patients. Moreover, multiple sessions of tDCS have shown to induce neuroplastic changes with lasting beneficial effects in different neurological conditions. The aim of this pilot study was to explore the effect of multiple anodal tDCS (atDCS) sessions on upper limb pain and spasticity of stroke patients, using a within-subject, crossover, sham-controlled design. Brain damage was of similar extent in the three patients evaluated, although located in different hemispheres. The results showed a significant effect of 5 consecutive sessions of atDCS, compared to sham stimulation, on pain evaluated by the Adaptive Visual Analog Scales -AVAS-, and spasticity evaluated by the Fugl-Meyer scale. In two of the patients, pain was completely relieved and markedly reduced, respectively, only after verum tDCS. The pain improvement effect of atDCS in the third patient was considerably lower compared to the other two patients. Spasticity was significantly improved in one of the patients. The treatment was well-tolerated, and no serious adverse effects were reported. These findings suggest that multiple sessions of atDCS are a safe intervention for improving upper limb pain and spasticity in stroke patients, although the inter-individual variability is a limitation of the results. Further studies including longer follow-up periods, more representative patient samples and individualized stimulation protocols are required to demonstrate the efficacy and safety of tDCS for improving limb symptoms in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | |
Collapse
|
56
|
Beliaeva V, Savvateev I, Zerbi V, Polania R. Toward integrative approaches to study the causal role of neural oscillations via transcranial electrical stimulation. Nat Commun 2021; 12:2243. [PMID: 33854049 PMCID: PMC8047004 DOI: 10.1038/s41467-021-22468-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/15/2021] [Indexed: 11/12/2022] Open
Abstract
Diverse transcranial electrical stimulation (tES) techniques have recently been developed to elucidate the role of neural oscillations, but critically, it remains questionable whether neural entrainment genuinely occurs and is causally related to the resulting behavior. Here, we provide a perspective on an emerging integrative research program across systems, species, theoretical and experimental frameworks to elucidate the potential of tES to induce neural entrainment. We argue that such an integrative agenda is a requirement to establish tES as a tool to test the causal role of neural oscillations and highlight critical issues that should be considered when adopting a translational approach.
Collapse
Affiliation(s)
- Valeriia Beliaeva
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland.
| | - Iurii Savvateev
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland
| | - Rafael Polania
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Switzerland, Zurich, Switzerland.
| |
Collapse
|
57
|
Pilloni G, Woods AJ, Charvet L. No risk of skin lesion or burn with transcranial direct current stimulation (tDCS) using standardized protocols. Brain Stimul 2021; 14:511-512. [PMID: 33722658 DOI: 10.1016/j.brs.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Adam J Woods
- Center for Cognitive Aging and Memory Clinical Translational Research, Department of Clinical and Health Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, NY, USA.
| |
Collapse
|
58
|
Beheshti I, Ko JH. Modulating brain networks associated with cognitive deficits in Parkinson's disease. Mol Med 2021; 27:24. [PMID: 33691622 PMCID: PMC7945662 DOI: 10.1186/s10020-021-00284-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a relatively well characterised neurological disorder that primarily affects motor and cognitive functions. This paper reviews on how transcranial direct current stimulation (tDCS) can be used to modulate brain networks associated with cognitive deficits in PD. We first provide an overview of brain network abnormalities in PD, by introducing the brain network modulation approaches such as pharmacological interventions and brain stimulation techniques. We then present the potential underlying mechanisms of tDCS technique, and specifically highlight how tDCS can be applied to modulate brain network abnormality associated with cognitive dysfunction among PD patients. More importantly, we address the limitations of existing studies and suggest possible future directions, with the aim of helping researchers to further develop the use of tDCS technique in clinical settings.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, 130-745 Bannatyne Ave., Winnipeg, MB R3E 0J9 Canada
- Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, 130-745 Bannatyne Ave., Winnipeg, MB R3E 0J9 Canada
- Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB Canada
- Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
59
|
Soleimani G, Saviz M, Bikson M, Towhidkhah F, Kuplicki R, Paulus MP, Ekhtiari H. Group and individual level variations between symmetric and asymmetric DLPFC montages for tDCS over large scale brain network nodes. Sci Rep 2021; 11:1271. [PMID: 33446802 PMCID: PMC7809198 DOI: 10.1038/s41598-020-80279-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Two challenges to optimizing transcranial direct current stimulation (tDCS) are selecting between, often similar, electrode montages and accounting for inter-individual differences in response. These two factors are related by how tDCS montage determines current flow through the brain considered across or within individuals. MRI-based computational head models (CHMs) predict how brain anatomy determines electric field (EF) patterns for a given tDCS montage. Because conventional tDCS produces diffuse brain current flow, stimulation outcomes may be understood as modulation of global networks. Therefore, we developed a network-led, rather than region-led, approach. We specifically considered two common "frontal" tDCS montages that nominally target the dorsolateral prefrontal cortex; asymmetric "unilateral" (anode/cathode: F4/Fp1) and symmetric "bilateral" (F4/F3) electrode montages. CHMs of 66 participants were constructed. We showed that cathode location significantly affects EFs in the limbic network. Furthermore, using a finer parcellation of large-scale networks, we found significant differences in some of the main nodes within a network, even if there is no difference at the network level. This study generally demonstrates a methodology for considering the components of large-scale networks in CHMs instead of targeting a single region and specifically provides insight into how symmetric vs asymmetric frontal tDCS may differentially modulate networks across a population.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehrdad Saviz
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York of CUNY, New York, NY, USA
| | - Farzad Towhidkhah
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rayus Kuplicki
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA
| |
Collapse
|
60
|
Huang Y, Shen L, Huang J, Xu X, Wang Y, Jin H. Efficacy and Safety of tDCS and tACS in Treatment of Major Depressive Disorder: A Randomized, Double-Blind, Factorial Placebo-Controlled Study Design. Neuropsychiatr Dis Treat 2021; 17:1459-1468. [PMID: 34012266 PMCID: PMC8128494 DOI: 10.2147/ndt.s295945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are regarded as promising antidepressant treatments. OBJECTIVE To compare the efficacy and safety of tDCS, tACS, escitalopram, and placebo/sham stimulation controls. DESIGN Randomized, parallel, double-blind, placebo-controlled study. METHODS Sample sizes were calculated based on data from previous similar studies. Eligible non-treatment-resistant-depressive outpatient subjects with moderate-to-severe depression (HRDS ≥17) are randomized to receive (1) tDCS + placebo; (2) tACS + placebo; (3) escitalopram + placebo; or (4) sham stimulation + placebo. The intensity of electricity is 2 mA, lasting for 30 minutes over two consecutive working days (10 sessions in total). The medication lasts for 6 weeks. The primary outcome measure was the response rates within 6 weeks (week 6 is also the endpoint of the study), and secondary outcome measures included changes in other clinical measurements. Safety and acceptability are measured by adverse event rates and dropout rates. Exploring outcome consist of the performance of cognitive battery as well as neurophysiology results. CONCLUSION To the best of our knowledge, the present study is the first double-blind controlled study comparing tDCS, tACS, and clinically used antidepressants, which will provide further evidence for their efficacy and safety in possible clinical applications.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| | - Linjie Shen
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| | - Jia Huang
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| | - Xianrong Xu
- School of Public Health, Hangzhou Normal University, Hnagzhou, Zhejiang Province, People's Republic of China
| | - Yong Wang
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| | - Hua Jin
- Department of Outpatient, Shanghai Mental Health Center, Shanghai, People's Republic of China
| |
Collapse
|
61
|
Tu Y, Cao J, Bi Y, Hu L. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers. SCIENCE CHINA-LIFE SCIENCES 2020; 64:879-896. [PMID: 33247802 DOI: 10.1007/s11427-020-1822-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Pain is a multidimensional subjective experience with biological, psychological, and social factors. Whereas acute pain can be a warning signal for the body to avoid excessive injury, long-term and ongoing pain may be developed as chronic pain. There are more than 100 million people in China living with chronic pain, which has raised a huge socioeconomic burden. Studying the mechanisms of pain and developing effective analgesia approaches are important for basic and clinical research. Recently, with the development of brain imaging and data analytical approaches, the neural mechanisms of chronic pain have been widely studied. In the first part of this review, we briefly introduced the magnetic resonance imaging and conventional analytical approaches for brain imaging data. Then, we reviewed brain alterations caused by several chronic pain disorders, including localized and widespread primary pain, primary headaches and orofacial pain, musculoskeletal pain, and neuropathic pain, and present meta-analytical results to show brain regions associated with the pathophysiology of chronic pain. Next, we reviewed brain changes induced by pain interventions, such as pharmacotherapy, neuromodulation, and acupuncture. Lastly, we reviewed emerging studies that combined advanced machine learning and neuroimaging techniques to identify diagnostic, prognostic, and predictive biomarkers in chronic pain patients.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, 02129, USA
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
62
|
Dehais F, Karwowski W, Ayaz H. Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for Neuroergonomics. FRONTIERS IN NEUROERGONOMICS 2020; 1:583733. [PMID: 38234310 PMCID: PMC10790928 DOI: 10.3389/fnrgo.2020.583733] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 01/19/2024]
Affiliation(s)
- Frederic Dehais
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Drexel Solutions Institute, Drexel University, Philadelphia, PA, United States
- Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
63
|
Improving insight to facilitate antipsychotic medication adherence in patients with schizophrenia. Clin Neurophysiol 2020; 131:1968-1970. [DOI: 10.1016/j.clinph.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/01/2023]
|
64
|
Esmaeilpour Z, Shereen AD, Ghobadi‐Azbari P, Datta A, Woods AJ, Ironside M, O'Shea J, Kirk U, Bikson M, Ekhtiari H. Methodology for tDCS integration with fMRI. Hum Brain Mapp 2020; 41:1950-1967. [PMID: 31872943 PMCID: PMC7267907 DOI: 10.1002/hbm.24908] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/09/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Understanding and reducing variability of response to transcranial direct current stimulation (tDCS) requires measuring what factors predetermine sensitivity to tDCS and tracking individual response to tDCS. Human trials, animal models, and computational models suggest structural traits and functional states of neural systems are the major sources of this variance. There are 118 published tDCS studies (up to October 1, 2018) that used fMRI as a proxy measure of neural activation to answer mechanistic, predictive, and localization questions about how brain activity is modulated by tDCS. FMRI can potentially contribute as: a measure of cognitive state-level variance in baseline brain activation before tDCS; inform the design of stimulation montages that aim to target functional networks during specific tasks; and act as an outcome measure of functional response to tDCS. In this systematic review, we explore methodological parameter space of tDCS integration with fMRI spanning: (a) fMRI timing relative to tDCS (pre, post, concurrent); (b) study design (parallel, crossover); (c) control condition (sham, active control); (d) number of tDCS sessions; (e) number of follow up scans; (f) stimulation dose and combination with task; (g) functional imaging sequence (BOLD, ASL, resting); and (h) additional behavioral (cognitive, clinical) or quantitative (neurophysiological, biomarker) measurements. Existing tDCS-fMRI literature shows little replication across these permutations; few studies used comparable study designs. Here, we use a representative sample study with both task and resting state fMRI before and after tDCS in a crossover design to discuss methodological confounds. We further outline how computational models of current flow should be combined with imaging data to understand sources of variability. Through the representative sample study, we demonstrate how modeling and imaging methodology can be integrated for individualized analysis. Finally, we discuss the importance of conducting tDCS-fMRI with stimulation equipment certified as safe to use inside the MR scanner, and of correcting for image artifacts caused by tDCS. tDCS-fMRI can address important questions on the functional mechanisms of tDCS action (e.g., target engagement) and has the potential to support enhancement of behavioral interventions, provided studies are designed rationally.
Collapse
Affiliation(s)
- Zeinab Esmaeilpour
- Neural Engineering Laboratory, Department of Biomedical EngineeringThe City College of the City University of New York, City College Center for Discovery and InnovationNew YorkNew York
| | - A. Duke Shereen
- Advanced Science Research Center, The Graduate CenterCity University of New YorkNew YorkNew York
| | | | | | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health PsychologyUniversity of FloridaGainesvilleFlorida
| | - Maria Ironside
- Center for Depression, Anxiety and Stress Research, McLean HospitalBelmontMassachusetts
- Department of PsychiatryHarvard Medical SchoolBostonMassachusetts
| | - Jacinta O'Shea
- Nuffield Department of Clinical Neuroscience, Medical Science DivisionUniversity of OxfordOxfordEnglandUK
| | - Ulrich Kirk
- Department of PsychologyUniversity of Southern DenmarkOdenseDenmark
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical EngineeringThe City College of the City University of New York, City College Center for Discovery and InnovationNew YorkNew York
| | | |
Collapse
|