51
|
Cruz-Rivera M, Carpio-Pedroza JC, Escobar-Gutiérrez A, Lozano D, Vergara-Castaneda A, Rivera-Osorio P, Martinez-Guarneros A, Chacon CAV, Fonseca-Coronado S, Vaughan G. Rapid hepatitis C virus divergence among chronically infected individuals. J Clin Microbiol 2013; 51:629-632. [PMID: 23224093 PMCID: PMC3553878 DOI: 10.1128/jcm.03042-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 11/26/2012] [Indexed: 12/17/2022] Open
Abstract
Here, we analyze the viral divergence among hepatitis C virus (HCV) chronic cases infected with genotype 1. The intrahost viral evolution was assessed by deep sequencing using the 454 Genome Sequencer platform. The results showed a rapid nucleotide sequence divergence. This notorious short-term viral evolution is of the utmost importance for the study of HCV transmission, because direct links between related samples were virtually lost. Thus, rapid divergence of HCV significantly affects genetic relatedness studies and outbreak investigations.
Collapse
Affiliation(s)
- Mayra Cruz-Rivera
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Daniela Lozano
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | | | | - Salvador Fonseca-Coronado
- Laboratorio de Inmunobiología de Enfermedades Infecciosas, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Gilberto Vaughan
- Instituto de Diagnóstico y Referencia Epidemiológicos, Mexico City, Mexico
| |
Collapse
|
52
|
Development of a robust luciferase reporter 1b/2a hepatitis C virus (HCV) for characterization of early stage HCV life cycle inhibitors. Antiviral Res 2013; 98:85-92. [PMID: 23376631 DOI: 10.1016/j.antiviral.2013.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 02/07/2023]
Abstract
The development of JFH1 based intergenotypic recombinants that exploit the unique replication characteristics of JFH1 has made it possible to study infectious hepatitis C virus (HCV) encoding the structural genes of additional HCV genotypes. To facilitate the study of 1b structural proteins, we aimed to develop a robust 1b/2a chimera encoding a humanized Renilla luciferase reporter gene (1b/2a hRluc). The unadapted genome replicated efficiently but produced very low titers of infectious virus. Adaptation by continuous passage over a novel Huh-7 Lunet clone improved viral titers approximately 100-fold but caused an unexpected decline in luciferase activity, limiting the utility of the reporter-containing virus. Genotypic analysis revealed 17 adenosine to guanosine (A to G) nucleotide mutations in the luciferase gene and two potential adaptive mutations. To overcome the problems of low viral titers and editing of the luciferase gene during viral adaptation, six adaptive mutations previously identified in a non-reporter 1b/2a HCV genome were introduced into the 1b/2a hRluc genome. This resulted in the immediate production of high-titer viral stocks (approximately 1000-fold greater than the parental virus) that could efficiently infect naïve cells and generate robust luciferase signals. The improved sensitivity of the luciferase reporter also facilitated time of addition studies validating the utility of this system for characterizing the early steps of HCV infection. Thus, the development of the 1b/2a hRluc reporter virus described here provides a versatile tool for discovery of inhibitors targeting the early steps of the viral life cycle and genotype 1b structural genes.
Collapse
|
53
|
Abstract
Mathematical modeling of hepatitis C viral kinetics has been an important tool in understanding hepatitis C virus (HCV) infection dynamics and in estimating crucial in vivo parameters characterizing the effectiveness of HCV therapy. Because of the introduction of direct-acting antiviral agents, there is a need to extend previous models so as to understand, characterize, and compare various new HCV treatment regimens. Here we review recent modeling efforts in this direction.
Collapse
Affiliation(s)
- Anushree Chatterjee
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87545, USA,Center for Nonlinear Studies, Los Alamos National Laboratory, NM 87545, USA
| | - Patrick F. Smith
- Clinical Pharmacology, Pharma Research and Early Development, Roche, Nutley, NJ, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87545, USA,Corresponding author.
| |
Collapse
|
54
|
Chayama K, Hayes CN, Ohishi W, Kawakami Y. Treatment of chronic hepatitis C virus infection in Japan: update on therapy and guidelines. J Gastroenterol 2013; 48. [PMID: 23188091 PMCID: PMC3698425 DOI: 10.1007/s00535-012-0714-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) infection is a serious health problem leading to cirrhosis, liver failure and hepatocellular carcinoma. The recent introduction of telaprevir, which was approved in November 2011, in combination with peg-interferon and ribavirin is expected to markedly improve the eradication rate of the virus. However, side effects of triple therapy may be severe. In a phase three III clinical trial, 2250 mg of telaprevir, which is the same dosage used in clinical trials in Western countries, was given to Japanese patients. As this dosage is considered to be relatively high for Japanese patients, who typically have lower weight than patients in Western countries, reduction of telaprevir is recommended in the 2012 revision of the guidelines established by the Study Group for the Standardization of Treatment of Viral Hepatitis Including Cirrhosis published by the Ministry of Health, Labour and Welfare of Japan. Other protease inhibitors with fewer side effects are now in clinical trials in Japan. Alternatively, treatment of patients with combination of direct acting antivirals without interferon has been reported. In this review we summarize current treatment options in Japan and discuss how we treat patients with chronic HCV infection.
Collapse
Affiliation(s)
- Kazuaki Chayama
- Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan ,Liver Research Project Center, Hiroshima University, Hiroshima, Japan ,Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - C. Nelson Hayes
- Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan ,Liver Research Project Center, Hiroshima University, Hiroshima, Japan ,Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Waka Ohishi
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan ,Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoshiiku Kawakami
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan ,Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| |
Collapse
|
55
|
Beerenwinkel N, Günthard HF, Roth V, Metzner KJ. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front Microbiol 2012; 3:329. [PMID: 22973268 PMCID: PMC3438994 DOI: 10.3389/fmicb.2012.00329] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/24/2012] [Indexed: 12/17/2022] Open
Abstract
Many viruses, including the clinically relevant RNA viruses HIV (human immunodeficiency virus) and HCV (hepatitis C virus), exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing (NGS) technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different NGS platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants (SNVs) to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of NGS to estimate viral diversity.
Collapse
Affiliation(s)
- Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH ZurichBasel, Switzerland
- Swiss Institute of BioinformaticsBasel, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurich, Switzerland
| | - Volker Roth
- Department of Mathematics and Computer Science, University of BaselBasel, Switzerland
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurich, Switzerland
| |
Collapse
|
56
|
Shiryaev SA, Cheltsov AV, Strongin AY. Probing of exosites leads to novel inhibitor scaffolds of HCV NS3/4A proteinase. PLoS One 2012; 7:e40029. [PMID: 22768327 PMCID: PMC3388044 DOI: 10.1371/journal.pone.0040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/01/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors. METHODOLOGY/PRINCIPAL FINDINGS To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified. CONCLUSIONS/SIGNIFICANCE Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Anton V. Cheltsov
- R&D Department, Q-MOL L.L.C., San Diego, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| | - Alex Y. Strongin
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| |
Collapse
|
57
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
58
|
Translational research in infectious disease: current paradigms and challenges ahead. Transl Res 2012; 159:430-53. [PMID: 22633095 PMCID: PMC3361696 DOI: 10.1016/j.trsl.2011.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/23/2011] [Accepted: 12/24/2012] [Indexed: 12/25/2022]
Abstract
In recent years, the biomedical community has witnessed a rapid scientific and technologic evolution after the development and refinement of high-throughput methodologies. Concurrently and consequentially, the scientific perspective has changed from the reductionist approach of meticulously analyzing the fine details of a single component of biology to the "holistic" approach of broadmindedly examining the globally interacting elements of biological systems. The emergence of this new way of thinking has brought about a scientific revolution in which genomics, proteomics, metabolomics, and other "omics" have become the predominant tools by which large amounts of data are amassed, analyzed, and applied to complex questions of biology that were previously unsolvable. This enormous transformation of basic science research and the ensuing plethora of promising data, especially in the realm of human health and disease, have unfortunately not been followed by a parallel increase in the clinical application of this information. On the contrary, the number of new potential drugs in development has been decreasing steadily, suggesting the existence of roadblocks that prevent the translation of promising research into medically relevant therapeutic or diagnostic application. In this article, we will review, in a noninclusive fashion, several recent scientific advancements in the field of translational research, with a specific focus on how they relate to infectious disease. We will also present a current picture of the limitations and challenges that exist for translational research, as well as ways that have been proposed by the National Institutes of Health to improve the state of this field.
Collapse
Key Words
- 2-de, 2-dimensional electrophoresis
- 2-d dige, 2-dimensional differential in-gel electrophoresis
- cf, cystic fibrosis
- ctsa, clinical and translational science awards program
- ebv, epstein-barr virus
- fda, u.s. food and drug administration
- gwas, genome-wide association studies
- hcv, hepatitis c virus
- hmp, human microbiome project
- hplc, high-pressure liquid chromatography
- lc, liquid chromatography
- lsb, laboratory of systems biology
- mab, monoclonal antibody
- mrm/srm, multiple reaction monitoring/selective reaction monitoring
- ms, mass spectrometry
- ms/ms, tandem mass spectrometry
- ncats, national center for advancing translational sciences
- ncrr, national center of research resources
- niaid, national institute of allergy and infectious disease
- nih, national institutes of health
- nme, new molecular entity
- nmr, nuclear magnetic resonance
- pbmc, peripheral blood mononuclear cell
- pcr, polymerase chain reaction
- prr, pathogen recognition receptor
- qqq, triple quadrupole mass spectrometry
- sars-cov, coronavirus associated with severe acute respiratory syndrome
- snp, single nucleotide polymorphism
- tb, tuberculosis
- uti, urinary tract infection
- yfv, yellow fever virus
Collapse
|
59
|
Radford AD, Chapman D, Dixon L, Chantrey J, Darby AC, Hall N. Application of next-generation sequencing technologies in virology. J Gen Virol 2012; 93:1853-1868. [PMID: 22647373 PMCID: PMC3709572 DOI: 10.1099/vir.0.043182-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The progress of science is punctuated by the advent of revolutionary technologies that provide new ways and scales to formulate scientific questions and advance knowledge. Following on from electron microscopy, cell culture and PCR, next-generation sequencing is one of these methodologies that is now changing the way that we understand viruses, particularly in the areas of genome sequencing, evolution, ecology, discovery and transcriptomics. Possibilities for these methodologies are only limited by our scientific imagination and, to some extent, by their cost, which has restricted their use to relatively small numbers of samples. Challenges remain, including the storage and analysis of the large amounts of data generated. As the chemistries employed mature, costs will decrease. In addition, improved methods for analysis will become available, opening yet further applications in virology including routine diagnostic work on individuals, and new understanding of the interaction between viral and host transcriptomes. An exciting era of viral exploration has begun, and will set us new challenges to understand the role of newly discovered viral diversity in both disease and health.
Collapse
Affiliation(s)
- Alan D Radford
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Chester High Road, Neston, South Wirral CH64 7TE, UK
| | - David Chapman
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Linda Dixon
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Julian Chantrey
- University of Liverpool, School of Veterinary Science, Leahurst Campus, Chester High Road, Neston, South Wirral CH64 7TE, UK
| | - Alistair C Darby
- Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| | - Neil Hall
- Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
60
|
Bukh J. Animal models for the study of hepatitis C virus infection and related liver disease. Gastroenterology 2012; 142:1279-1287.e3. [PMID: 22537434 DOI: 10.1053/j.gastro.2012.02.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) causes liver-related death in more than 300,000 people annually. Treatments for patients with chronic HCV are suboptimal, despite the introduction of directly acting antiviral agents. There is no vaccine that prevents HCV infection. Relevant animal models are important for HCV research and development of drugs and vaccines. Chimpanzees are the best model for studies of HCV infection and related innate and adaptive host immune responses. They can be used in immunogenicity and efficacy studies of HCV vaccines. The only small animal models of robust HCV infection are T- and B- cell deficient mice with human chimeric livers. Although these mice cannot be used in studies of adaptive immunity, they have provided new insights into HCV neutralization, interactions between virus and receptors, innate host responses, and therapeutic approaches. Recent progress in developing genetically humanized mice is exciting, but these models only permit studies of specific steps in the HCV life cycle and have limited or no viral replication.
Collapse
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
61
|
Li K, Frankowski KJ, Belon CA, Neuenswander B, Ndjomou J, Hanson AM, Shanahan MA, Schoenen FJ, Blagg BSJ, Aubé J, Frick DN. Optimization of potent hepatitis C virus NS3 helicase inhibitors isolated from the yellow dyes thioflavine S and primuline. J Med Chem 2012; 55:3319-30. [PMID: 22409723 DOI: 10.1021/jm300021v] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A screen for hepatitis C virus (HCV) NS3 helicase inhibitors revealed that the commercial dye thioflavine S was the most potent inhibitor of NS3-catalyzed DNA and RNA unwinding in the 827-compound National Cancer Institute Mechanistic Set. Thioflavine S and the related dye primuline were separated here into their pure components, all of which were oligomers of substituted benzothiazoles. The most potent compound (P4), a benzothiazole tetramer, inhibited unwinding >50% at 2 ± 1 μM, inhibited the subgenomic HCV replicon at 10 μM, and was not toxic at 100 μM. Because P4 also interacted with DNA, more specific analogues were synthesized from the abundant dimeric component of primuline. Some of the 32 analogues prepared retained ability to inhibit HCV helicase but did not appear to interact with DNA. The most potent of these specific helicase inhibitors (compound 17) was active against the replicon and inhibited the helicase more than 50% at 2.6 ± 1 μM.
Collapse
Affiliation(s)
- Kelin Li
- University of Kansas Specialized Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Fonseca-Coronado S, Escobar-Gutiérrez A, Ruiz-Tovar K, Cruz-Rivera MY, Rivera-Osorio P, Vazquez-Pichardo M, Carpio-Pedroza JC, Ruíz-Pacheco JA, Cazares F, Vaughan G. Specific detection of naturally occurring hepatitis C virus mutants with resistance to telaprevir and boceprevir (protease inhibitors) among treatment-naïve infected individuals. J Clin Microbiol 2012; 50:281-287. [PMID: 22116161 PMCID: PMC3264164 DOI: 10.1128/jcm.05842-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/11/2011] [Indexed: 12/17/2022] Open
Abstract
The use of telaprevir and boceprevir, both protease inhibitors (PI), as part of the specifically targeted antiviral therapy for hepatitis C (STAT-C) has significantly improved sustained virologic response (SVR) rates. However, different clinical studies have also identified several mutations associated with viral resistance to both PIs. In the absence of selective pressure, drug-resistant hepatitis C virus (HCV) mutants are generally present at low frequency, making mutation detection challenging. Here, we describe a mismatch amplification mutation assay (MAMA) PCR method for the specific detection of naturally occurring drug-resistant HCV mutants. MAMA PCR successfully identified the corresponding HCV variants, while conventional methods such as direct sequencing, endpoint limiting dilution (EPLD), and bacterial cloning were not sensitive enough to detect circulating drug-resistant mutants in clinical specimens. Ultradeep pyrosequencing was used to confirm the presence of the corresponding HCV mutants. In treatment-naïve patients, the frequency of all resistant variants was below 1%. Deep amplicon sequencing allowed a detailed analysis of the structure of the viral population among these patients, showing that the evolution of the NS3 is limited to a rather small sequence space. Monitoring of HCV drug resistance before and during treatment is likely to provide important information for management of patients undergoing anti-HCV therapy.
Collapse
Affiliation(s)
| | | | - Karina Ruiz-Tovar
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| | | | - Pilar Rivera-Osorio
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| | | | | | | | - Fernando Cazares
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| | - Gilberto Vaughan
- Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
63
|
Analysis of hepatitis C virus intrahost diversity across the coding region by ultradeep pyrosequencing. J Virol 2012; 86:3952-60. [PMID: 22278255 DOI: 10.1128/jvi.06627-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) is the leading cause of liver disease worldwide. In this study, we analyzed four treatment-naïve patients infected with subtype 1a and performed Roche/454 pyrosequencing across the coding region. We report the presence of low-level drug resistance mutations that would most likely have been missed using conventional sequencing methods. The approach described here is broadly applicable to studies of viral diversity and could help to improve the efficacy of direct-acting antiviral agents (DAA) in the treatment of HCV-infected patients.
Collapse
|
64
|
Hanson AM, Hernandez JJ, Shadrick WR, Frick DN. Identification and analysis of inhibitors targeting the hepatitis C virus NS3 helicase. Methods Enzymol 2012; 511:463-83. [PMID: 22713333 DOI: 10.1016/b978-0-12-396546-2.00021-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes two types of FRET-based fluorescence assays that can be used to identify and analyze compounds that inhibit the helicase encoded by the hepatitis C virus (HCV). Both assays use a fluorescently labeled DNA or RNA oligonucleotide to monitor helicase-catalyzed strand separation, and they differ from other real-time helicase assays in that they do not require the presence of other nucleic acids to trap the reaction products. The first assay is a molecular beacon-based helicase assay (MBHA) that monitors helicase-catalyzed displacement of a hairpin-forming oligonucleotide with a fluorescent moiety on one end and a quencher on the other. DNA-based MBHAs have been used extensively for high-throughput screening (HTS), but RNA-based MBHAs are typically less useful because of poor signal to background ratios. In the second assay discussed, the fluorophore and quencher are split between two hairpin-forming oligonucleotides annealed in tandem to a third oligonucleotide. This split beacon helicase assay can be used for HTS with either DNA or RNA oligonucleotides. These assays should be useful to the many labs searching for HCV helicase inhibitors in order to develop new HCV therapies that are still desperately needed.
Collapse
Affiliation(s)
- Alicia M Hanson
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|
65
|
Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J Virol 2011; 85:13185-94. [PMID: 21994453 DOI: 10.1128/jvi.06099-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases. A high risk of chronicity is the major concern of HCV infection, since chronic HCV infection often leads to liver cirrhosis and hepatocellular carcinoma. Infection with the HCV genotype 1 in particular is considered a clinical risk factor for the development of hepatocellular carcinoma, although the molecular mechanisms of the pathogenesis are largely unknown. Autophagy is involved in the degradation of cellular organelles and the elimination of invasive microorganisms. In addition, disruption of autophagy often leads to several protein deposition diseases. Although recent reports suggest that HCV exploits the autophagy pathway for viral propagation, the biological significance of the autophagy to the life cycle of HCV is still uncertain. Here, we show that replication of HCV RNA induces autophagy to inhibit cell death. Cells harboring an HCV replicon RNA of genotype 1b strain Con1 but not of genotype 2a strain JFH1 exhibited an incomplete acidification of the autolysosome due to a lysosomal defect, leading to the enhanced secretion of immature cathepsin B. The suppression of autophagy in the Con1 HCV replicon cells induced severe cytoplasmic vacuolation and cell death. These results suggest that HCV harnesses autophagy to circumvent the harmful vacuole formation and to maintain a persistent infection. These findings reveal a unique survival strategy of HCV and provide new insights into the genotype-specific pathogenicity of HCV.
Collapse
|
66
|
Win-Shwe TT, Mitsushima D, Yamamoto S, Funabashi T, Fujimaki H. Strain differences in extracellular amino acid neurotransmitter levels in the hippocampi of major histocompatibility complex congenic mice in response to toluene exposure. Neuroimmunomodulation 2009; 16:185-90. [PMID: 19246941 DOI: 10.1159/000204232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/10/2008] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the possible role of the major histocompatibility complex locus in neurotransmitter systems in the mouse hippocampus following toluene exposure. METHODS We compared the changes in toluene-induced extracellular amino acid neurotransmitter levels in the hippocampi of 2 strains of male congenic mice, C57BL/10 (H-2(b)) and B10.BR/Sg (H-2(k)). In vivo microdialysis was performed in each freely moving mouse after a single intraperitoneal injection of toluene (300 mg/kg), and neurotransmitters in the hippocampal microdialysates were measured using high-performance liquid chromatography. RESULTS The basal extracelluar glutamate and glycine levels in the hippocampi of the C57BL mice were significantly higher than those in the B10.BR mice. However, the basal extracellular taurine levels in the hippocampi of the C57BL mice were significantly lower than those in the B10.BR mice. Although no changes in the glutamate levels were observed after toluene injection in either strain, the glycine levels increased significantly after toluene injection in the C57BL mice. On the other hand, significantly lower taurine levels were observed after toluene injection in both strains of mice. CONCLUSIONS Our data demonstrate the existence of a relationship between H-2 haplotypes and hippocampal neurotransmitter levels in mice.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|