51
|
Khaliq M, Ko S, Liu Y, Wang H, Sun Y, Solnica-Krezel L, Shin D. Stat3 Regulates Liver Progenitor Cell-Driven Liver Regeneration in Zebrafish. Gene Expr 2018; 18:157-170. [PMID: 29690953 PMCID: PMC6190120 DOI: 10.3727/105221618x15242506133273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After liver injury, regeneration manifests as either (1) hepatocytes proliferating to restore the lost hepatocyte mass or (2) if hepatocyte proliferation is compromised, biliary epithelial cells (BECs) dedifferentiating into liver progenitor cells (LPCs), which subsequently differentiate into hepatocytes. Following pharmacogenetic ablation of hepatocytes in Tg(fabp10a:CFP-NTR) zebrafish, resulting in severe liver injury, signal transducer and activator of transcription 3 (Stat3) and its target gene and negative regulator, socs3a, were upregulated in regenerating livers. Using either Stat3 inhibitors, JSI-124 and S3I-201, or stat3 zebrafish mutants, we investigated the role of Stat3 in LPC-driven liver regeneration. Although Stat3 suppression reduced the size of regenerating livers, BEC dedifferentiation into LPCs was unaffected. However, regenerating livers displayed a delay in LPC-to-hepatocyte differentiation and a significant reduction in the number of BECs. While no difference in cell death was detected, Stat3 inhibition significantly reduced LPC proliferation. Notably, stat3 mutants phenocopied the effects of Stat3 chemical inhibitors, although the mutant phenotype was incompletely penetrant. Intriguingly, a subset of socs3a mutants also displayed a lower number of BECs in regenerating livers. We conclude that the Stat3/Socs3a pathway is necessary for the proper timing of LPC-to-hepatocyte differentiation and establishing the proper number of BECs during LPC-driven liver regeneration.
Collapse
Affiliation(s)
- Mehwish Khaliq
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sungjin Ko
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yinzi Liu
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hualin Wang
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Yonghua Sun
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Lila Solnica-Krezel
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donghun Shin
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
52
|
Ng SS, Saeb-Parsy K, Blackford SJI, Segal JM, Serra MP, Horcas-Lopez M, No DY, Mastoridis S, Jassem W, Frank CW, Cho NJ, Nakauchi H, Glenn JS, Rashid ST. Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials 2018; 182:299-311. [PMID: 30149262 PMCID: PMC6131727 DOI: 10.1016/j.biomaterials.2018.07.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
Abstract
Generation of human organoids from induced pluripotent stem cells (iPSCs) offers exciting possibilities for developmental biology, disease modelling and cell therapy. Significant advances towards those goals have been hampered by dependence on animal derived matrices (e.g. Matrigel), immortalized cell lines and resultant structures that are difficult to control or scale. To address these challenges, we aimed to develop a fully defined liver organoid platform using inverted colloid crystal (ICC) whose 3-dimensional mechanical properties could be engineered to recapitulate the extracellular niche sensed by hepatic progenitors during human development. iPSC derived hepatic progenitors (IH) formed organoids most optimally in ICC scaffolds constructed with 140 μm diameter pores coated with type I collagen in a two-step process mimicking liver bud formation. The resultant organoids were closer to adult tissue, compared to 2D and 3D controls, with respect to morphology, gene expression, protein secretion, drug metabolism and viral infection and could integrate, vascularise and function following implantation into livers of immune-deficient mice. Preliminary interrogation of the underpinning mechanisms highlighted the importance of TGFβ and hedgehog signalling pathways. The combination of functional relevance with tuneable mechanical properties leads us to propose this bioengineered platform to be ideally suited for a range of future mechanistic and clinical organoid related applications.
Collapse
Affiliation(s)
- Soon Seng Ng
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, England, UK; Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and the Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Samuel J I Blackford
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, England, UK
| | - Joe M Segal
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, England, UK
| | - Maria Paola Serra
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, England, UK
| | - Marta Horcas-Lopez
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, England, UK
| | - Da Yoon No
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sotiris Mastoridis
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, England, UK
| | - Wayel Jassem
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, England, UK
| | - Curtis W Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Nam Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey S Glenn
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - S Tamir Rashid
- Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, King's College London, England, UK; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
53
|
Chien CS, Chen YH, Chen HL, Wang CP, Wu SH, Ho SL, Huang WC, Yu CH, Chang MH. Cells responsible for liver mass regeneration in rats with 2-acetylaminofluorene/partial hepatectomy injury. J Biomed Sci 2018; 25:39. [PMID: 29695258 PMCID: PMC5937839 DOI: 10.1186/s12929-018-0441-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022] Open
Abstract
Background Whether hepatic progenitor cells (HPCs)/oval cells regenerate liver mass upon chronic liver injury is controversial in mice and has not been conclusively proven in humans and rats. In this study, we examined which cell type—hepatocytes or oval cells—mediates liver regeneration in the classic rat 2-acetylaminofluorene (AAF)/partial hepatectomy (PH) injury where AAF reversibly blocks hepatocyte proliferation, thereby inducing oval cell expansion after the regenerative stimulus of PH. Methods We employed lineage tracing of dipeptidyl peptidase IV (DPPIV, a hepatocyte canalicular enzyme)-positive hepatocytes by subjecting rats with DPPIV-chimeric livers to AAF/PH, AAF/PH/AAF (continuous AAF after AAF/PH to nonselectively inhibit regenerating hepatocytes), or AAF/PH/retrorsine injury (2-dose retrorsine after AAF/PH to specifically and irreversibly block existing hepatocytes); through these methods, we determined hepatocyte contribution to liver regeneration. To determine the oval cell contribution to hepatocyte regeneration, we performed DPPIV(+) oval cell transplantation combined with AAF/PH injury or AAF/PH/retrorsine injury in DPPIV-deficient rats to track the fate of DPPIV(+) oval cells. Results DPPIV-chimeric livers demonstrated typical oval cell activation upon AAF/PH injury. After cessation of AAF, DPPIV(+) hepatocytes underwent extensive proliferation to regenerate the liver mass, whereas oval cells underwent hepatocyte differentiation. Upon AAF/PH/AAF injury where hepatocyte proliferation was inhibited by continuous AAF treatment following AAF/PH, oval cells extensively expanded in an undifferentiated state but did not produce hepatocytes. By substituting retrorsine for AAF administration following AAF/PH (AAF/PH/retrorsine), oval cells regenerated large-scale hepatocytes. Conclusions Hepatocyte self-replication provides the majority of hepatocyte regeneration, with supplementary contribution from oval cells in rats under AAF/PH injury. Oval cells expand and maintain in an undifferentiated state upon continuously nonselective liver injury, whereas they can significantly regenerate hepatocytes in a noncompetitive environment.
Collapse
Affiliation(s)
- Chin-Sung Chien
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation. No.289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University . No.7, Chung Shan South Rd., Zhongzheng Dist, Taipei, 10002, Taiwan
| | - Ya-Hui Chen
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation. No.289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University . No.7, Chung Shan South Rd., Zhongzheng Dist, Taipei, 10002, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital. No.1, Changde St., Zhongzheng Dist, Taipei, 10048, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital. No.1, Changde St., Zhongzheng Dist, Taipei, 10048, Taiwan
| | - Chiu-Ping Wang
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation. No.289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan
| | - Shang-Hsin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University . No.7, Chung Shan South Rd., Zhongzheng Dist, Taipei, 10002, Taiwan
| | - Shu-Li Ho
- Hepatitis Research Center, National Taiwan University Hospital. No.1, Changde St., Zhongzheng Dist, Taipei, 10048, Taiwan
| | - Wen-Cheng Huang
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation. No.289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan
| | - Chun-Hsien Yu
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation. No.289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan. .,Department of Pediatrics, School of Medicine, Tzu Chi University, No.701, Sec. 3, Zhongyang Rd, Hualien, 97004, Taiwan.
| | - Mei-Hwei Chang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University . No.7, Chung Shan South Rd., Zhongzheng Dist, Taipei, 10002, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital. No.1, Changde St., Zhongzheng Dist, Taipei, 10048, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, and College of Medicine, National Taiwan University. No.8, Chung Shan South Rd., Zhongzheng Dist, Taipei, 10041, Taiwan
| |
Collapse
|
54
|
Gilgenkrantz H, Collin de l'Hortet A. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1316-1327. [PMID: 29673755 DOI: 10.1016/j.ajpath.2018.03.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- INSERM U1149, Center for Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
55
|
Feng R, Yuan X, Shao C, Ding H, Liebe R, Weng HL. Are we any closer to treating liver fibrosis (and if no, why not)? J Dig Dis 2018; 19:118-126. [PMID: 29389083 DOI: 10.1111/1751-2980.12584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
Abstract
This review provides a personal view on anti-fibrosis therapy in the liver. The worst clinical consequence of liver fibrosis is the development of liver cirrhosis and portal hypertension. Etiology is a decisive factor which determines patterns of fibrous septa and subsequent vascular remodeling, which is essential for the development of portal hypertension. Removing or controlling the disease-causing agent, i.e. anti-viral treatment for hepatitis, is the essential first step for treating chronic liver diseases and can reverse fibrosis in some settings. However, removing etiology is not always sufficient to prevent fibrosis from progressing towards cirrhosis and portal hypertension. In liver diseases such as severe alcoholic hepatitis and massive parenchymal loss, the formation of vascular anastomoses between portal to central veins based on bridging fibrosis results in cirrhosis and portal hypertension. For these patients, anti-fibrotic treatment is crucial and urgent. Unfortunately, a lack of understanding how fibrosis contributes to vascular remodeling caused by and combined with a lack of suitable experimental models that recapitulate human liver diseases, has hampered the development of successful anti-fibrotic drugs for clinical use to date.
Collapse
Affiliation(s)
- Rilu Feng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaodong Yuan
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Roman Liebe
- Department of Medicine II, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hong-Lei Weng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
56
|
|
57
|
Carpino G, Cardinale V, Folseraas T, Overi D, Floreani A, Franchitto A, Onori P, Cazzagon N, Berloco PB, Karlsen TH, Alvaro D, Gaudio E. Hepatic Stem/Progenitor Cell Activation Differs between Primary Sclerosing and Primary Biliary Cholangitis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:627-639. [PMID: 29248458 DOI: 10.1016/j.ajpath.2017.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 02/08/2023]
Abstract
Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are human primary cholangiopathies characterized by the damage of mature cholangiocytes and by the appearance of ductular reaction (DR) as the results of hepatic progenitor cell activation. This study evaluated the differences in progenitor cell niche activation between these two cholangiopathies. Liver tissue was obtained from healthy liver donors (n = 5) and from patients with PSC (n = 20) or PBC (n = 20). DR, progenitor cell phenotype, and signaling pathways were investigated by IHC analysis and immunofluorescence. Our results indicated that DR was more extended, appeared earlier, and had a higher proliferation index in PBC compared with PSC. In PBC, DR was strongly correlated with clinical prognostic scores. A higher percentage of sex determining region Y-box (SOX)9+ and cytokeratin 19+ cells but fewer features of hepatocyte fate characterized progenitor cell activation in PBC versus PSC. Lower levels of laminin and neurogenic locus notch homolog protein 1 but higher expression of wingless-related integration site (WNT) family pathway components characterize progenitor cell niche in PSC compared with PBC. In conclusion, progenitor cell activation differs between PSC and PBC and is characterized by a divergent fate commitment and different signaling pathway predominance. In PBC, DR represents a relevant histologic prognostic marker.
Collapse
Affiliation(s)
- Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Trine Folseraas
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Nora Cazzagon
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Pasquale B Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Tom H Karlsen
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
58
|
Munker S, Wu YL, Ding HG, Liebe R, Weng HL. Can a fibrotic liver afford epithelial-mesenchymal transition? World J Gastroenterol 2017; 23:4661-4668. [PMID: 28765687 PMCID: PMC5514631 DOI: 10.3748/wjg.v23.i26.4661] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
The question whether epithelial-mesenchymal transition (EMT) occurs during liver fibrogenesis is a controversial issue. In vitro studies confirm that hepatocytes or cholangiocytes undergo EMT upon transforming growth factor β (TGF-β) stimulation, whereas in vivo experiments based on genetic fate mapping of specific cell populations suggest that EMT does not occur in fibrotic animal models. In this review we present current data supporting or opposing EMT in chronic liver disease and discuss conditions for the occurrence of EMT in patients. Based on the available data and our clinical observations we hypothesize that EMT-like alterations in liver cirrhosis are a side effect of high levels of TGF-β and other pro-fibrotic mediators rather than a biological process converting functional parenchyma, i.e., hepatocytes, into myofibroblasts at a time when essential liver functions are deteriorating.
Collapse
|
59
|
Wu J, Choi TY, Shin D. tomm22 Knockdown-Mediated Hepatocyte Damages Elicit Both the Formation of Hybrid Hepatocytes and Biliary Conversion to Hepatocytes in Zebrafish Larvae. Gene Expr 2017; 17:237-249. [PMID: 28251883 PMCID: PMC5542045 DOI: 10.3727/105221617x695195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver has a highly regenerative capacity. In the normal liver, hepatocytes proliferate to restore lost liver mass. However, when hepatocyte proliferation is impaired, biliary epithelial cells (BECs) activate and contribute to hepatocytes. We previously reported in zebrafish that upon severe hepatocyte ablation, BECs extensively contribute to regenerated hepatocytes. It was also speculated that BEC-driven liver regeneration might occur in another zebrafish liver injury model in which temporary knockdown of the mitochondrial import gene tomm22 by morpholino antisense oligonucleotides (MO) induces hepatocyte death. Given the importance of multiple BEC-driven liver regeneration models for better elucidating the mechanisms underlying innate liver regeneration in the diseased liver, we hypothesized that BECs would contribute to hepatocytes in tomm22 MO-injected larvae. In this MO-based liver injury model, by tracing the lineage of BECs, we found that BECs significantly contributed to hepatocytes. Moreover, we found that surviving, preexisting hepatocytes become BEC-hepatocyte hybrid cells in tomm22 MO-injected larvae. Intriguingly, both the inhibition of Wnt/β-catenin signaling and macrophage ablation suppressed the formation of the hybrid hepatocytes. This new liver injury model in which both hepatocytes and BECs contribute to regenerated hepatocytes will aid in better understanding the mechanisms of innate liver regeneration in the diseased liver.
Collapse
Affiliation(s)
- Jianchen Wu
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- †Tsinghua University School of Medicine, Beijing, P.R. China
| | - Tae-Young Choi
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghun Shin
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
60
|
Abstract
Liver regeneration is a fascinating and complex process with many medical implications. An important component of this regenerative process is the hepatic progenitor cell (HPC). These appealing cells are able to participate in the renewal of hepatocytes and cholangiocytes when the normal homeostatic regeneration is exhausted. Moreover, the HPC niche is of vital importance toward the activation, differentiation, and proliferation of the HPC. This niche provides a rich microenvironment for the regulation of the HPC, thanks to the intercellular secretion of molecules. New findings indicate that the regenerative possibilities in the liver could provide a diverse basis for therapeutic targets.
Collapse
Affiliation(s)
- Matthias Van Haele
- Liver Research Unit, Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium
| | - Tania Roskams
- Liver Research Unit, Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Minderbroederstraat 12, 3000 Leuven, Belgium.
| |
Collapse
|
61
|
Sun Y, Zhou J, Wang L, Wu X, Chen Y, Piao H, Lu L, Jiang W, Xu Y, Feng B, Nan Y, Xie W, Chen G, Zheng H, Li H, Ding H, Liu H, Lv F, Shao C, Wang T, Ou X, Wang B, Chen S, Wee A, Theise ND, You H, Jia J. New classification of liver biopsy assessment for fibrosis in chronic hepatitis B patients before and after treatment. Hepatology 2017; 65:1438-1450. [PMID: 28027574 DOI: 10.1002/hep.29009] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Liver fibrosis is the net result of dynamic changes between fibrogenesis and fibrolysis. Evidence has shown that antiviral therapy can reverse liver fibrosis or even early cirrhosis caused by hepatitis B virus. However, current evaluation systems mainly focus on the severity of, but not the dynamic changes in, fibrosis. Here, we propose a new classification to evaluate the dynamic changes in the quality of fibrosis, namely: predominantly progressive (thick/broad/loose/pale septa with inflammation); predominately regressive (delicate/thin/dense/splitting septa); and indeterminate, which displayed an overall balance between progressive and regressive scarring. Then, we used this classification to evaluate 71 paired liver biopsies of chronic hepatitis B patients before and after entecavir-based therapy for 78 weeks. Progressive, indeterminate, and regressive were observed in 58%, 29%, and 13% of patients before treatment versus in 11%, 11%, and 78% after treatment. Of the 55 patients who showed predominantly regressive changes on posttreatment liver biopsy, 29 cases (53%) had fibrosis improvement of at least one Ishak stage, and, more interestingly, 25 cases (45%) had significant improvement in terms of Laennec substage, collagen percentage area, and liver stiffness despite remaining in the same Ishak stage. CONCLUSION This new classification highlights the importance of assessing and identifying the dynamic changes in the quality of fibrosis, especially relevant in the era of antiviral therapy.(Hepatology 2017;65:1438-1450).
Collapse
Affiliation(s)
- Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Lin Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yongpeng Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongxin Piao
- Infectious Department, Affiliated Hospital of Yanbian University, Yanji, China
| | - Lungen Lu
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Youqing Xu
- Department of Digestive System, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Feng
- Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guofeng Chen
- Second Liver Cirrhosis Diagnosis and Treatment Center, 302 Military Hospital of China, Beijing, China
| | - Huanwei Zheng
- Department of Infectious Disease, the Fifth Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Hai Li
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fudong Lv
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Tailing Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Aileen Wee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital, Singapore, Singapore
| | - Neil D Theise
- Departments of Pathology and Medicine (Division of Digestive Diseases), Mount Sinai Beth Israel Medical Center, New York, NY
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
62
|
Rókusz A, Veres D, Szücs A, Bugyik E, Mózes M, Paku S, Nagy P, Dezső K. Ductular reaction correlates with fibrogenesis but does not contribute to liver regeneration in experimental fibrosis models. PLoS One 2017; 12:e0176518. [PMID: 28445529 PMCID: PMC5405957 DOI: 10.1371/journal.pone.0176518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Background and aims Ductular reaction is a standard component of fibrotic liver tissue but its function is largely unknown. It is supposed to interact with the matrix producing myofibroblasts and compensate the declining regenerative capacity of hepatocytes. The relationship between the extent of fibrosis—ductular reaction, proliferative activity of hepatocytes and ductular reaction were studied sequentially in experimental hepatic fibrosis models. Methods Liver fibrosis/cirrhosis was induced in wild type and TGFβ overproducing transgenic mice by carbon tetrachloride and thioacetamide administration. The effect of thioacetamide was modulated by treatment with imatinib and erlotinib. The extent of ductular reaction and fibrosis was measured by morphometry following cytokeratin 19 immunofluorescent labeling and Picro Sirius staining respectively. The proliferative activity of hepatocytes and ductular reaction was evaluated by BrdU incorporation. The temporal distribution of the parameters was followed and compared within and between different experimental groups. Results There was a strong significant correlation between the extent of fibrosis and ductular reaction in each experimental group. Although imatinib and erlotinib temporarily decreased fibrosis this effect later disappeared. We could not observe negative correlation between the proliferation of hepatocytes and ductular reaction in any of the investigated models. Conclusions The stringent connection between ductular reaction and fibrosis, which cannot be influenced by any of our treatment regimens, suggests that there is a close mutual interaction between them instead of a unidirectional causal relationship. Our results confirm a close connection between DR and fibrogenesis. However, since the two parameters changed together we could not establish a causal relationship and were unable to reveal which was the primary event. The lack of inverse correlation between the proliferation of hepatocytes and ductular reaction questions that ductular reaction can compensate for the failing regenerative activity of hepatocytes. No evidences support the persistent antifibrotic property of imatinib or erlotinib.
Collapse
Affiliation(s)
- András Rókusz
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Dániel Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Armanda Szücs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Edina Bugyik
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Miklós Mózes
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Tumor Progression Research Group, Joint Research Organization of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Nagy
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Dezső
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
63
|
Human liver regeneration in advanced cirrhosis is organized by the portal tree. J Hepatol 2017; 66:778-786. [PMID: 27913222 DOI: 10.1016/j.jhep.2016.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS In advanced cirrhosis new hepatocytic nodules are generated by budding of ductules in areas of parenchymal extinction. However, the vascular alterations in the areas of parenchymal extinction, the blood supply and the structure of the new hepatocytic nodules have not been analyzed in detail. METHODS Explanted human cirrhotic livers of three different etiologies and two experimental rat models of cirrhosis were thoroughly examined. 3D reconstruction of the immunohistochemically stained serial sections and casting of human and experimental cirrhotic livers have been used to reveal the structural organization of the regenerative buds. RESULTS In areas of parenchymal extinction the skeleton of the liver, the portal tree is preserved. The developing regenerative nodules are positioned along the portal tree and are directly supplied by terminal portal venules. The expanding nodules grow along the trunks of the portal vein. Casting of human and experimental cirrhotic livers by colored resin confirms that nodules are supplied by portal blood. The two other members of the portal triads become separated from the portal veins. CONCLUSIONS As the structure of the hepatocyte nodules (centrally located portal vein branches, bile ducts at the periphery, hepatic veins and arteries in the connective tissue) impedes the restoration of normal liver structure, the basic architecture of hepatic tissue suffers permanent damage. We suggest that "budding" may initiate the second, irreversible stage of cirrhosis. LAY SUMMARY Cirrhosis is the final common outcome of long lasting hepatic injury defined as the destruction of the normal liver architecture by scar tissue. In the late phase of cirrhosis stem cells-derived hepatocyte nodules appear along the branches of the portal vein suggesting an important role of this specially composed blood vessels (containing digestive end-products from the stomach and intestines) in liver regeneration. Our results contribute to a better understanding of this serious liver disease.
Collapse
|
64
|
Gual P, Gilgenkrantz H, Lotersztajn S. Autophagy in chronic liver diseases: the two faces of Janus. Am J Physiol Cell Physiol 2017; 312:C263-C273. [PMID: 27903585 DOI: 10.1152/ajpcell.00295.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are the leading causes of cirrhosis and increase the risk of hepatocellular carcinoma and liver-related death. ALD and NAFLD share common pathogenic features extending from isolated steatosis to steatohepatitis and steatofibrosis, which can progress to cirrhosis and hepatocellular carcinoma. The pathophysiological mechanisms of the progression of NAFLD and ALD are complex and still unclear. Important links between the regulation of autophagy (macroautophagy and chaperone-mediated autophagy) and chronic liver diseases have been reported. Autophagy may protect against steatosis and progression to steatohepatitis by limiting hepatocyte injury and reducing M1 polarization, as well as promoting liver regeneration. Its role in fibrosis and hepatocarcinogenesis is more complex. It has pro- and antifibrogenic properties depending on the hepatic cell type concerned, and beneficial and deleterious effects on hepatocarcinogenesis at initiating and late phases, respectively. This review summarizes the latest advances on the role of autophagy in different stages of fatty liver disease progression and describes its divergent and cell-specific effects during chronic liver injury.
Collapse
Affiliation(s)
- Philippe Gual
- Inserm-U1065, C3M, Team 8 “Hepatic complications in obesity,” Nice, France
- Université Nice Côte d’Azur, Inserm, C3M, Nice, France
| | - Hélène Gilgenkrantz
- Institut Cochin, Inserm-U1016, CNRS UMR 8104, Université Paris-Descartes, Paris, France
| | - Sophie Lotersztajn
- Inserm-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France; and
- Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| |
Collapse
|
65
|
Ho CM, Chen HL. Expression of glutamine synthetase in hepatocyte progenitor cells derived from canal of Hering. Hepatology 2016; 64:2257. [PMID: 27618474 DOI: 10.1002/hep.28805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Cheng-Maw Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
66
|
Verdonk RC, Lozano MF, van den Berg AP, Gouw ASH. Bile ductal injury and ductular reaction are frequent phenomena with different significance in autoimmune hepatitis. Liver Int 2016; 36:1362-9. [PMID: 26849025 DOI: 10.1111/liv.13083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/01/2016] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS The significance of bile duct injury and ductular reaction in biopsies from autoimmune hepatitis patients is not clear. We aim to establish the prevalence and clinical relevance of both phenomena in autoimmune hepatitis. METHODS Cases of newly diagnosed, untreated autoimmune hepatitis without overlap syndrome were selected. Pretreatment and follow up biopsies were scored for inflammation, fibrosis, bile ductal injury and ductular reaction. RESULTS Thirty-five cases were studied of whom 14 cases had follow up biopsies. Bile duct injury was present in 29 cases (83%), mostly in a PBC-like pattern and was not correlated with demographical or laboratory findings. Ductular reaction, observed in 25 of 35 cases (71%) using conventional histology and in 30 of 32 cases (94%) using immunohistochemistry, was correlated with portal and lobular inflammation, interface hepatitis and centrilobular necrosis as well as bile duct injury and fibrosis. In 11 of 14 cases (79%) ductular reaction remained present on post-treatment biopsy whereas bile duct injury persisted in six of 14 (43%) of cases. CONCLUSIONS Bile duct injury and ductular reaction are very common in newly diagnosed autoimmune hepatitis and cannot be predicted biochemically. Bile duct injury may subside in the majority of treated AIH cases while DR tends to persist during follow up. These findings show that the two phenomena are part of the spectrum of AIH with dissimilar responses to treatment and do not necessarily point towards an overlap syndrome. Persistence of ductular reaction after treatment supports the notion that it represents a regenerative response.
Collapse
Affiliation(s)
- Robert C Verdonk
- Department of Gastroenterology & Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mallaki F Lozano
- Department of Pathology Medical Biology, Pathology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aad P van den Berg
- Department of Gastroenterology & Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annette S H Gouw
- Department of Pathology Medical Biology, Pathology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
67
|
Abstract
Liver regeneration has been studied for many decades and the mechanisms underlying regeneration of the normal liver following resection or moderate damage are well described. A large number of factors extrinsic (such as bile acids and circulating growth factors) and intrinsic to the liver interact to initiate and regulate liver regeneration. Less well understood, and more clinically relevant, are the factors at play when the abnormal liver is required to regenerate. Fatty liver disease, chronic scarring, prior chemotherapy and massive liver injury can all inhibit the normal programme of regeneration and can lead to liver failure. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or directly stimulate liver regeneration. Although animal models of liver regeneration have been highly instructive, the clinical relevance of some models could be improved to bridge the gap between our in vivo model systems and the clinical situation. Likewise, modern imaging techniques such as spectroscopy will probably improve our understanding of whole-organ metabolism and how this predicts the liver's regenerative capacity. This Review describes briefly the mechanisms underpinning liver regeneration, the models used to study this process, and discusses areas in which failed or compromised liver regeneration is clinically relevant.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Philip N Newsome
- Birmingham National Institute for Health Research (NIHR) Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Vincent Drive Birmingham, B15 2TT, UK
| |
Collapse
|
68
|
Itoh T. Stem/progenitor cells in liver regeneration. Hepatology 2016; 64:663-8. [PMID: 27227904 DOI: 10.1002/hep.28661] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/22/2016] [Accepted: 05/11/2016] [Indexed: 12/22/2022]
Abstract
In severely or chronically injured livers where the proliferative capacity of hepatocytes is compromised, putative stem/progenitor cells are supposed to be activated. These cells are generally characterized as biliary epithelial cell marker-positive cells that emerge ectopically in the parenchymal region of the liver, as determined by histopathological examination of various liver diseases in humans and animal models. Whereas the biliary system indeed harbors cells with stem/progenitor activity that can be defined ex vivo, genetic lineage tracing studies in mice have casted doubt on their exact contribution as the genuine stem/progenitor cell population that differentiates in situ into hepatocytes. Here, I briefly review recent advances in the characterization and certification of the stem/progenitor cells in the adult liver and discuss the ongoing and future challenges to further our understanding of the cellular basis of liver regeneration. (Hepatology 2016;64:663-668).
Collapse
Affiliation(s)
- Tohru Itoh
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
69
|
Huch M, Dollé L. The plastic cellular states of liver cells: Are EpCAM and Lgr5 fit for purpose? Hepatology 2016; 64:652-62. [PMID: 26799921 PMCID: PMC4973669 DOI: 10.1002/hep.28469] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/25/2015] [Accepted: 01/17/2016] [Indexed: 12/14/2022]
Abstract
Adult liver cells have been considered restricted regarding their fate and lineage potential. That is, hepatocytes have been thought able only to generate hepatocytes and duct cells, only duct cells. While this may be the case for the majority of scenarios in a state of quiescence or homeostasis, evidence suggests that liver cells are capable of interconverting between cellular states of distinct phenotypic traits. This interconversion or plasticity had been suggested by classical studies using cellular markers, but recently lineage tracing approaches have proven that cells are highly plastic and retain an extraordinary ability to respond differently to normal tissue homeostasis, to tissue repair, or when challenged to expand ex vivo or to differentiate upon transplantation. Stemness, as "self-renewal and multipotency," seems not to be limited to a particular cell type but rather to a cellular state in which cells exhibit a high degree of plasticity and can move back and forth in different phenotypic states. For instance, upon damage cells can dedifferentiate to acquire stem cell potential that allows them to self-renew, repopulate a damaged tissue, and then undergo differentiation. In this review, we will discuss the evidence on cellular plasticity in the liver, focusing our attention on two markers, epithelial cell adhesion molecule and leucine-rich repeat-containing G protein-coupled receptor 5, which identify cells with stem cell potential. (Hepatology 2016;64:652-662).
Collapse
Affiliation(s)
- Meritxell Huch
- Wellcome Trust/Cancer Research UK‐Gurdon Institutethe Wellcome Trust‐Medical Research Council Stem Cell Institute, and Physiology, Development, and Neuroscience, University of CambridgeCambridgeUK
| | - Laurent Dollé
- Laboratory of Liver Cell BiologyDepartment of Basic Biomedical SciencesFaculty of Medicine and PharmacyFree University BrusselsBrusselsBelgium
| |
Collapse
|
70
|
Abstract
Under normal homeostatic conditions, hepatocyte renewal is a slow process and complete turnover likely takes at least a year. Studies of hepatocyte regeneration after a two-thirds partial hepatectomy (2/3 PH) have strongly suggested that periportal hepatocytes are the driving force behind regenerative re-population, but recent murine studies have brought greater complexity to the issue. Although periportal hepatocytes are still considered pre-eminent in the response to 2/3 PH, new studies suggest that normal homeostatic renewal is driven by pericentral hepatocytes under the control of Wnts, while pericentral injury provokes the clonal expansion of a subpopulation of periportal hepatocytes expressing low levels of biliary duct genes such as Sox9 and osteopontin. Furthermore, some clarity has been given to the debate on the ability of biliary-derived hepatic progenitor cells to generate physiologically meaningful numbers of hepatocytes in injury models, demonstrating that under appropriate circumstances these cells can re-populate the whole liver.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour Biology, Barts and The London School of Medicine and Dentistry, London, UK
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
71
|
Lanzoni G, Cardinale V, Carpino G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: A new reference frame for disease and regeneration. Hepatology 2016; 64:277-86. [PMID: 26524612 DOI: 10.1002/hep.28326] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/14/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Stem/progenitors for liver, biliary tree, and pancreas exist at early stages of development in the definitive ventral endoderm forming the foregut. In humans, they persist postnatally as part of a network, with evidence supporting their contributions to hepatic and pancreatic organogenesis throughout life. Multiple stem cell niches persist in specific anatomical locations within the human biliary tree and pancreatic ducts. In liver and pancreas, replication of mature parenchymal cells ensures the physiological turnover and the restoration of parenchyma after minor injuries. Although actively debated, multiple observations indicate that stem/progenitor cells contribute to repair pervasive, chronic injuries. The most primitive of the stem/progenitor cells, biliary tree stem cells, are found in peribiliary glands within extrahepatic and large intrahepatic bile ducts. Biliary tree stem cells are comprised of multiple subpopulations with traits suggestive of maturational lineage stages and yet capable of self-replication and multipotent differentiation, being able to differentiate to mature liver cells (hepatocytes, cholangiocytes) and mature pancreatic cells (including functional islet endocrine cells). Hepatic stem cells are located within canals of Hering and bile ductules and are capable of differentiating to hepatocyte and cholangiocyte lineages. The existence, phenotype, and anatomical location of stem/progenitors in the adult pancreas are actively debated. Ongoing studies suggest that pancreatic stem cells reside within the biliary tree, primarily the hepatopancreatic common duct, and are rare in the pancreas proper. Pancreatic ducts and pancreatic duct glands harbor committed pancreatic progenitors. CONCLUSION The hepatic, biliary, and pancreatic network of stem/progenitor cell niches should be considered as a framework for understanding liver and pancreatic regeneration after extensive or chronic injuries and for the study of human chronic diseases affecting these organs. (Hepatology 2016;64:277-286).
Collapse
Affiliation(s)
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| |
Collapse
|
72
|
Reid LM. Stem/progenitor cells and reprogramming (plasticity) mechanisms in liver, biliary tree, and pancreas. Hepatology 2016; 64:4-7. [PMID: 27102721 DOI: 10.1002/hep.28606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Lola M Reid
- Department of Cell Biology and Physiology Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
73
|
Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD) Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway. PLoS One 2016; 11:e0157246. [PMID: 27310371 PMCID: PMC4911160 DOI: 10.1371/journal.pone.0157246] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/26/2016] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease is one of the most important causes of liver-related morbidity in children. In non-alcoholic fatty liver disease, the activation of liver resident macrophage pool is a central event in the progression of liver injury. The aims of the present study were to evaluate the polarization of liver macrophages and the possible role of Wnt3a production by macrophages in hepatic progenitor cell response in the progression of pediatric non-alcoholic fatty liver disease. 32 children with biopsy-proven non-alcoholic fatty liver disease were included. 20 out of 32 patients were treated with docosahexaenoic acid for 18 months and biopsies at the baseline and after 18 months were included. Hepatic progenitor cell activation, macrophage subsets and Wnt/β-catenin pathway were evaluated by immunohistochemistry and immunofluorescence. Our results indicated that in pediatric non-alcoholic fatty liver disease, pro-inflammatory macrophages were the predominant subset. Macrophage polarization was correlated with Non-alcoholic fatty liver disease Activity Score, ductular reaction, and portal fibrosis; docosahexaenoic acid treatment determined a macrophage polarization towards an anti-inflammatory phenotype in correlation with the reduction of serum inflammatory cytokines, with increased macrophage apoptosis, and with the up-regulation of macrophage Wnt3a expression; macrophage Wnt3a expression was correlated with β-catenin phosphorylation in hepatic progenitor cells and signs of commitment towards hepatocyte fate. In conclusion, macrophage polarization seems to have a key role in the progression of pediatric non-alcoholic fatty liver disease; the modulation of macrophage polarization could drive hepatic progenitor cell response by Wnt3a production.
Collapse
|
74
|
Bromodomain and extraterminal (BET) proteins regulate biliary-driven liver regeneration. J Hepatol 2016; 64:316-325. [PMID: 26505118 PMCID: PMC4718879 DOI: 10.1016/j.jhep.2015.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS During liver regeneration, hepatocytes are derived from pre-existing hepatocytes. However, if hepatocyte proliferation is compromised, biliary epithelial cells (BECs) become the source of new hepatocytes. We recently reported on a zebrafish liver regeneration model in which BECs extensively contribute to hepatocytes. Using this model, we performed a targeted chemical screen to identify important factors that regulate BEC-driven liver regeneration, the mechanisms of which remain largely unknown. METHODS Using Tg(fabp10a:CFP-NTR) zebrafish, we examined the effects of 44 selected compounds on BEC-driven liver regeneration. Liver size was assessed by fabp10a:DsRed expression; liver marker expression was analyzed by immunostaining, in situ hybridization and quantitative PCR. Proliferation and apoptosis were also examined. Moreover, we used a mouse liver injury model, choline-deficient, ethionine-supplemented (CDE) diet. RESULTS We identified 10 compounds that affected regenerating liver size. Among them, only bromodomain and extraterminal domain (BET) inhibitors, JQ1 and iBET151, blocked both Prox1 and Hnf4a induction in BECs. BET inhibition during hepatocyte ablation blocked BEC dedifferentiation into hepatoblast-like cells (HB-LCs). Intriguingly, after JQ1 washout, liver regeneration resumed, indicating temporal, but not permanent, perturbation of liver regeneration by BET inhibition. BET inhibition after hepatocyte ablation suppressed the proliferation of newly generated hepatocytes and delayed hepatocyte maturation. Importantly, Myca overexpression, in part, rescued the proliferation defect. Furthermore, oval cell numbers in mice fed CDE diet were greatly reduced upon JQ1 administration, supporting the zebrafish findings. CONCLUSIONS BET proteins regulate BEC-driven liver regeneration at multiple steps: BEC dedifferentiation, HB-LC proliferation, the proliferation of newly generated hepatocytes, and hepatocyte maturation.
Collapse
|
75
|
Alison MR, Lin WR. Diverse routes to liver regeneration. J Pathol 2016; 238:371-374. [PMID: 26510495 DOI: 10.1002/path.4667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022]
Abstract
The liver's ability to regenerate is indisputable; for example, after a two-thirds partial hepatectomy in rats all residual hepatocytes can divide, questioning the need for a specific stem cell population. On the other hand, there is a potential stem cell compartment in the canals of Hering, giving rise to ductular reactions composed of hepatic progenitor cells (HPCs) when the liver's ability to regenerate is hindered by replicative senescence, but the functional relevance of this response has been questioned. Several papers have now clarified regenerative mechanisms operative in the mouse liver, suggesting that the liver is possibly unrivalled in its versatility to replace lost tissue. Under homeostatic conditions a perivenous population of clonogenic hepatocytes operates, whereas during chronic damage a minor population of periportal clonogenic hepatocytes come to the fore, while the ability of HPCs to completely replace the liver parenchyma has now been shown.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Tumour Biology, Barts and the London School of Medicine and Dentistry, London, UK
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
76
|
Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration. Stem Cells Int 2016; 2016:3658013. [PMID: 26880956 PMCID: PMC4737003 DOI: 10.1155/2016/3658013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
Niches containing stem/progenitor cells are present in different anatomical locations along the human biliary tree and within liver acini. The most primitive stem/progenitors, biliary tree stem/progenitor cells (BTSCs), reside within peribiliary glands located throughout large extrahepatic and intrahepatic bile ducts. BTSCs are multipotent and can differentiate towards hepatic and pancreatic cell fates. These niches' matrix chemistry and other characteristics are undefined. Canals of Hering (bile ductules) are found periportally and contain hepatic stem/progenitor cells (HpSCs), participating in the renewal of small intrahepatic bile ducts and being precursors to hepatocytes and cholangiocytes. The niches also contain precursors to hepatic stellate cells and endothelia, macrophages, and have a matrix chemistry rich in hyaluronans, minimally sulfated proteoglycans, fetal collagens, and laminin. The microenvironment furnishes key signals driving HpSC activation and differentiation. Newly discovered third niches are pericentral within hepatic acini, contain Axin2+ unipotent hepatocytic progenitors linked on their lateral borders to endothelia forming the central vein, and contribute to normal turnover of mature hepatocytes. Their relationship to the other stem/progenitors is undefined. Stem/progenitor niches have important implications in regenerative medicine for the liver and biliary tree and in pathogenic processes leading to diseases of these tissues.
Collapse
|
77
|
Rókusz A, Nagy E, Gerlei Z, Veres D, Dezső K, Paku S, Szücs A, Hajósi-Kalcakosz S, Pávai Z, Görög D, Kóbori L, Fehérvári I, Nemes B, Nagy P. Quantitative morphometric and immunohistochemical analysis and their correlates in cirrhosis--A study on explant livers. Scand J Gastroenterol 2016; 51:86-94. [PMID: 26166621 DOI: 10.3109/00365521.2015.1067902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Reproducible structural analysis was made on cirrhotic human liver samples in order to reveal potential connections between morphological and laboratory parameters. MATERIAL AND METHODS Large histological samples were taken from segment VII of 56 cirrhotic livers removed in connection with liver transplantation. Picro Sirius red and immunohistochemically (smooth muscle actin [SMA], cytokeratin 7 [CK7], Ki-67) stained sections were digitalized and morphometric evaluation was performed. RESULTS The Picro Sirius-stained fibrotic area correlated with the average thickness of the three broadest septa, extent of SMA positivity, alkaline phosphatase (ALP) values and it was lower in the viral hepatitis related cirrhoses than in samples with non-viral etiology. The extent of SMA staining increased with the CK7-positive ductular reaction. The proliferative activity of the hepatocytes correlated positively with the Ki-67 labeling of the ductular cells and inversely with the septum thickness. These data support the potential functional connection among different structural components, for example, myofibroblasts, ductular reaction and fibrogenesis but challenges the widely proposed role of ductular cells in regeneration. CONCLUSION Unbiased morphological characterization of cirrhotic livers can provide valuable, clinically relevant information. Similar evaluation of routine core biopsies may increase the significance of this 'Gold Standard' examination.
Collapse
Affiliation(s)
- András Rókusz
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Eszter Nagy
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Zsuzsanna Gerlei
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - Dániel Veres
- c 3 Department of Biophysics and Radiation Biology, Semmelweis University , 1094, Tűzoltó utca 37-47, Budapest, Hungary
| | - Katalin Dezső
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Sándor Paku
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary.,d 4 Tumor Progression Research Group, Joint Research Organization of the Hungarian Academy of Sciences and Semmelweis University , 1051, Nádor utca 7, Budapest, Hungary
| | - Armanda Szücs
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Szofia Hajósi-Kalcakosz
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| | - Zoltán Pávai
- e 5 Department of Anatomy and Embryology, University of Medicine and Pharmacy Targu Mures , 540139, Gh. Marinescu 38, Targu Mures, Romania
| | - Dénes Görög
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - László Kóbori
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - Imre Fehérvári
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - Balázs Nemes
- b 2 Department of Transplantation and Surgery, Semmelweis University , 1085, Baross utca 23, Budapest, Hungary
| | - Péter Nagy
- a 1 First Department of Pathology and Experimental Cancer Research, Semmelweis University , 1085, Üllői út 26, Budapest, Hungary
| |
Collapse
|
78
|
Tsolaki E, Yannaki E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World J Gastroenterol 2015; 21:12334-12350. [PMID: 26604641 PMCID: PMC4649117 DOI: 10.3748/wjg.v21.i43.12334] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
The existing mismatch between the great demand for liver transplants and the number of available donor organs highlights the urgent need for alternative therapeutic strategies in patients with acute or chronic liver failure. The rapidly growing knowledge on stem cell biology and the intrinsic repair processes of the liver has opened new avenues for using stem cells as a cell therapy platform in regenerative medicine for hepatic diseases. An impressive number of cell types have been investigated as sources of liver regeneration: adult and fetal liver hepatocytes, intrahepatic stem cell populations, annex stem cells, adult bone marrow-derived hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, embryonic stem cells, and induced pluripotent stem cells. All these highly different cell types, used either as cell suspensions or, in combination with biomaterials as implantable liver tissue constructs, have generated great promise for liver regeneration. However, fundamental questions still need to be addressed and critical hurdles to be overcome before liver cell therapy emerges. In this review, we summarize the state-of-the-art in the field of stem cell-based therapies for the liver along with existing challenges and future perspectives towards a successful liver cell therapy that will ultimately deliver its demanding goals.
Collapse
|
79
|
Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells. Nat Commun 2015; 6:8070. [PMID: 26437858 PMCID: PMC4600730 DOI: 10.1038/ncomms9070] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022] Open
Abstract
The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells—newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies. With no cell lines available, investigating the aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs) has proved problematic. Here, Oikawa et al. establish a model of hFL-HCCs as a transplantable tumour line maintained in immune-compromised mice, which proves rich in cancer stem cells.
Collapse
|
80
|
Michalopoulos GK, Khan Z. Liver Stem Cells: Experimental Findings and Implications for Human Liver Disease. Gastroenterology 2015; 149:876-882. [PMID: 26278502 PMCID: PMC4584191 DOI: 10.1053/j.gastro.2015.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023]
Abstract
Evidence from human histopathology and experimental studies with rodents and zebrafish has shown that hepatocytes and cholangiocytes may function as facultative stem cells for each other in conditions of impaired regeneration. The interpretation of the findings derived from these studies has generated considerable discussion and some controversies. This review examines the evidence obtained from the different experimental models and considers implications that these studies may have for human liver disease.
Collapse
Affiliation(s)
| | - Zahida Khan
- Department of Pediatric Gastroenterology University of Pittsburgh School of Medicine
| |
Collapse
|
81
|
Walther V, Alison MR. Cell lineage tracing in human epithelial tissues using mitochondrial DNA mutations as clonal markers. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:103-17. [PMID: 26302049 DOI: 10.1002/wdev.203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/20/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
The study of cell lineages through heritable genetic lineage tracing is well established in experimental animals, particularly mice. While such techniques are not feasible in humans, we have taken advantage of the fact that the mitochondrial genome is highly prone to nonpathogenic mutations and such mutations can be used as clonal markers to identify stem cell derived clonal populations in human tissue sections. A mitochondrial DNA (mtDNA) mutation can spread by a stochastic process through the several copies of the circular genome in a single mitochondrion, and then through the many mitochondria in a single cell, a process called 'genetic drift.' This process takes many years and so is likely to occur only in stem cells, but once established, the fate of stem cell progeny can be followed. A cell having at least 80% of its mtDNA genomes bearing the mutation results in a demonstrable deficiency in mtDNA-encoded cytochrome c oxidase (CCO), optimally detected in frozen tissue sections by dual-color histochemistry, whereby CCO activity stains brown and CCO deficiency is highlighted by subsequent succinate dehydrogenase activity, staining the CCO-deficient areas blue. Cells with CCO deficiency can be laser captured and subsequent mtDNA sequencing can ascertain the nature of the mutation. If all cells in a CCO-deficient area have an identical mutation, then a clonal population has been identified; the chances of the same mutation initially arising in separate cells are highly improbable. The technique lends itself to the study of both normal epithelia and can answer several questions in tumor biology. WIREs Dev Biol 2016, 5:103-117. doi: 10.1002/wdev.203 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Viola Walther
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Malcolm R Alison
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
82
|
Reid LM. Paradoxes in studies of liver regeneration: Relevance of the parable of the blind men and the elephant. Hepatology 2015; 62:330-3. [PMID: 26013054 DOI: 10.1002/hep.27917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Lola M Reid
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|