51
|
Ramezani A, Nikravesh H, Faghihloo E. The roles of FOX proteins in virus-associated cancers. J Cell Physiol 2018; 234:3347-3361. [PMID: 30362516 DOI: 10.1002/jcp.27295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
Forkhead box (FOX) proteins play a crucial role in regulating the expression of genes involved in multiple biological processes, such as metabolism, development, differentiation, proliferation, apoptosis, migration, invasion, and longevity. Deregulation of FOX proteins is commonly associated with cancer initiation, progression, and chemotherapeutic drug resistance in many human tumors. FOX proteins deregulate through genetic events and the perturbation of posttranslational modification. The purpose of the present review is to describe the deregulation of FOX proteins by oncoviruses. Oncoviruses utilize various mechanisms to deregulate FOX proteins, including alterations in posttranslational modifications, cellular localization independently of posttranslational modifications, virus-encoded miRNAs, activation or suppression of a series of cell signaling pathways. This deregulation can affect proliferation, metastasis, chemotherapy resistance, and immunosuppression in virus-induced cancers and help to chronic viral infection, development of gluconeogenic responses, and inflammation. Since the PI3K/Akt/mTOR signaling pathway is the upstream FOXO, suppressing it can cause FOXO function to return, and this can be one of the reasons for patients to recover from the infection of the viruses used to treat these inhibitors. Hence, FOX proteins could serve as prognosis markers and target therapy specifically in cancers caused by oncoviruses.
Collapse
Affiliation(s)
- Ali Ramezani
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hojatolla Nikravesh
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Anticancer and Differentiation Properties of the Nitric Oxide Derivative of Lopinavir in Human Glioblastoma Cells. Molecules 2018; 23:molecules23102463. [PMID: 30261624 PMCID: PMC6222694 DOI: 10.3390/molecules23102463] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadly form of primary malignant brain tumor among adults. A promising emerging approach for GBM treatment may be offered from HIV protease inhibitors (HIV-PIs). In fact, in addition to their primary pharmacological activity in the treatment of HIV infection, they possess important anti-neoplastic effects. According to previous studies, the addition of a nitric oxide (NO) donating group to parental compounds can reduce their toxicity and enhance the anticancer action of various compounds, including HIV-PIs. In this study we compared the effects of the HIV-PI Lopinavir (Lopi) and of its NO-derivative Lopinavir-NO (Lopi-NO) on the in vitro growth of LN-229 and U-251 human GBM cell lines. Lopi-NO reduced the viability of LN-229 and U-251 cells at significantly lower concentrations than the parental drug. In particular, Lopi-NO inhibited tumor cell proliferation and induced the differentiation of U-251 cells toward an astrocyte-like phenotype without triggering significant cell death in both cell types. The anticancer effect of Lopi-NO was persistent even upon drug removal. Furthermore, Lopi-NO induced strong autophagy that did not appear to be related to its chemotherapeutic action. Overall, our results suggest that Lopi-NO could be a potential effective anticancer drug for GBM treatment.
Collapse
|
53
|
Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F. Gasotransmitters and the immune system: Mode of action and novel therapeutic targets. Eur J Pharmacol 2018; 834:92-102. [PMID: 30016662 DOI: 10.1016/j.ejphar.2018.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Gasotransmitters are a group of gaseous molecules, with pleiotropic biological functions. These molecules include nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). Abnormal production and metabolism of these molecules have been observed in several pathological conditions. The understanding of the role of gasotransmitters in the immune system has grown significantly in the past years, and independent studies have shed light on the effect of exogenous and endogenous gasotransmitters on immune responses. Moreover, encouraging results come from the efficacy of NO-, CO- and H2S -donors in preclinical animal models of autoimmune, acute and chronic inflammatory diseases. To date, data on the influence of gasotransmitters in immunity and immunopathology are often scattered and partial, and the scarcity of clinical trials using NO-, CO- and H2S -donors, reveals that more effort is warranted. This review focuses on the role of gasotransmitters in the immune system and covers the evidences on the possible use of gasotransmitters for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Stada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, Stada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Klaus Bendtzen
- Institute for Inflammation Research, Rigshospitalet, Copenhagen, Denmark
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
54
|
Hasanovic A, Ruggiero C, Jung S, Rapa I, Signetti L, Ben Hadj M, Terzolo M, Beuschlein F, Volante M, Hantel C, Lalli E, Mus-Veteau I. Targeting the multidrug transporter Patched potentiates chemotherapy efficiency on adrenocortical carcinoma in vitro and in vivo. Int J Cancer 2018; 143:199-211. [PMID: 29411361 DOI: 10.1002/ijc.31296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 02/06/2023]
Abstract
One of the crucial challenges in the clinical management of cancer is the resistance to chemotherapeutics. We recently demonstrated that the Hedgehog receptor Patched, which is overexpressed in many recurrent and metastatic cancers, is a multidrug transporter for chemotherapeutic agents such as doxorubicin. The present work provides evidences that Patched is expressed in adrenocortical carcinoma (ACC) patients, and is a major player of the doxorubicin efflux and the doxorubicin resistance in the human ACC cell line H295R. We discovered that methiothepin inhibits the doxorubicin efflux activity of Patched. This drug-like molecule enhances the cytotoxic, pro-apoptotic, antiproliferative and anticlonogenic effects of doxorubicin on ACC cells which endogenously overexpress Patched, and thereby mitigates the resistance of these cancer cells to doxorubicin. Moreover, we report that in mice the combination of methiothepin with doxorubicin prevents the development of xenografted ACC tumors more efficiently than doxorubicin alone by enhancing the accumulation of doxorubicin specifically in tumors without obvious undesirable side effects. Our results suggest that the use of an inhibitor of Patched drug efflux such as methiothepin in combination with doxorubicin could be a promising therapeutic option for adrenocortical carcinoma, and most likely also for other Patched-expressing cancers.
Collapse
Affiliation(s)
- Anida Hasanovic
- Université Côte d'Azur, Sophia Antipolis, Valbonne, France
- CNRS UMR7275, Sophia Antipolis, Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Valbonne, France
| | - Carmen Ruggiero
- Université Côte d'Azur, Sophia Antipolis, Valbonne, France
- CNRS UMR7275, Sophia Antipolis, Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Valbonne, France
| | - Sara Jung
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ida Rapa
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Laurie Signetti
- Université Côte d'Azur, Sophia Antipolis, Valbonne, France
- CNRS UMR7275, Sophia Antipolis, Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Valbonne, France
| | - Monia Ben Hadj
- Université Côte d'Azur, Sophia Antipolis, Valbonne, France
- CNRS UMR7275, Sophia Antipolis, Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Valbonne, France
| | - Massimo Terzolo
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland
| | - Marco Volante
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Constanze Hantel
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland
| | - Enzo Lalli
- Université Côte d'Azur, Sophia Antipolis, Valbonne, France
- CNRS UMR7275, Sophia Antipolis, Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Valbonne, France
| | - Isabelle Mus-Veteau
- Université Côte d'Azur, Sophia Antipolis, Valbonne, France
- CNRS UMR7275, Sophia Antipolis, Valbonne, France
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, Valbonne, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, Valbonne, France
| |
Collapse
|
55
|
Ayoub BM, Mowaka S, Safar MM, Ashoush N, Arafa MG, Michel HE, Tadros MM, Elmazar MM, Mousa SA. Repositioning of Omarigliptin as a once-weekly intranasal Anti-parkinsonian Agent. Sci Rep 2018; 8:8959. [PMID: 29895906 PMCID: PMC5997767 DOI: 10.1038/s41598-018-27395-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Drug repositioning is a revolution breakthrough of drug discovery that presents outstanding privilege with already safer agents by scanning the existing candidates as therapeutic switching or repurposing for marketed drugs. Sitagliptin, vildagliptin, saxagliptin & linagliptin showed antioxidant and neurorestorative effects in previous studies linked to DPP-4 inhibition. Literature showed that gliptins did not cross the blood brain barrier (BBB) while omarigliptin was the first gliptin that crossed it successfully in the present work. LC-MS/MS determination of once-weekly anti-diabetic DPP-4 inhibitors; omarigliptin & trelagliptin in plasma and brain tissue was employed after 2 h of oral administration to rats. The brain/plasma concentration ratio was used to deduce the penetration power through the BBB. Results showed that only omarigliptin crossed the BBB due to its low molecular weight & lipophilic properties suggesting its repositioning as antiparkinsonian agent. The results of BBB crossing will be of interest for researchers interested in Parkinson's disease. A novel intranasal formulation was developed using sodium lauryl sulphate surfactant to solubilize the lipophilic omarigliptin with penetration enhancing & antimicrobial properties. Intranasal administration showed enhanced brain/plasma ratio by 3.3 folds compared to the oral group accompanied with 2.6 folds increase in brain glucagon-like peptide-1 concentration compared to the control group.
Collapse
Affiliation(s)
- Bassam M Ayoub
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt.
| | - Shereen Mowaka
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Marwa M Safar
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmacology & Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini st., Cairo, Egypt
| | - Nermeen Ashoush
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
| | - Mona G Arafa
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmaceutics Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Chemotheraputic Unit, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Haidy E Michel
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, El-Abaseya, Cairo, Egypt
| | - Mariam M Tadros
- Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, El-Abaseya, Cairo, Egypt
| | - Mohamed M Elmazar
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
- Pharmacology & Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
56
|
Vadhadiya PM, Jean MA, Bouzriba C, Tremblay T, Lagüe P, Fortin S, Boukouvalas J, Giguère D. Diversity-Oriented Synthesis of Diol-Based Peptidomimetics as Potential HIV Protease Inhibitors and Antitumor Agents. Chembiochem 2018; 19:1779-1791. [PMID: 29858881 DOI: 10.1002/cbic.201800247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Peptidomimetic HIV protease inhibitors are an important class of drugs used in the treatment of AIDS. The synthesis of a new type of diol-based peptidomimetics is described. Our route is flexible, uses d-glucal as an inexpensive starting material, and makes minimal use of protection/deprotection cycles. Binding affinities from molecular docking simulations suggest that these compounds are potential inhibitors of HIV protease. Moreover, the antiproliferative activities of compounds 33 a, 35 a, and 35 b on HT-29, M21, and MCF7 cancer cell lines are in the low micromolar range. The results provide a platform that could facilitate the development of medically relevant asymmetrical diol-based peptidomimetics.
Collapse
Affiliation(s)
- Paresh M Vadhadiya
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Marc-Alexandre Jean
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Chahrazed Bouzriba
- CHU de Québec-Université Laval Research Center, Oncology Division, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Quebec City, QC, G1L 3L5, Canada
- Faculté de Pharmacie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Thomas Tremblay
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Patrick Lagüe
- Départment de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, 1045, Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Sébastien Fortin
- CHU de Québec-Université Laval Research Center, Oncology Division, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Quebec City, QC, G1L 3L5, Canada
- Faculté de Pharmacie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - John Boukouvalas
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Denis Giguère
- Département de Chimie, Université Laval-RQRM, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
57
|
He K, Duan G, Li Y. Dehydroeffusol inhibits viability and epithelial-mesenchymal transition through the Hedgehog and Akt/mTOR signaling pathways in neuroblastoma cells. Eur J Pharmacol 2018; 829:93-101. [PMID: 29665365 DOI: 10.1016/j.ejphar.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 01/06/2023]
Abstract
Neuroblastoma (NB) is the most predominant extracranial solid tumor of infancy in the world. However, current chemotherapy has limited efficacy for more advanced stages of NB due to acquired chemoresistance or acute toxicity in NB patients. Therefore, effective novel anti-NB drugs are desperately needed. The present study aimed to investigate the effects of dehydroeffusol (DHE), a phenanthrene isolated from J. effuses, on NB cells and its underlying mechanism. The results showed that DHE treatment effectively inhibited NB cell viability in a dose-dependent manner. Moreover, DHE treatment suppressed the epithelial-mesenchymal transition (EMT) process in NB cells by promoting the expression of E-cadherin (E-cad) and restraining the expressions of N-cadherin (N-cad) and vimentin. Also, the invasive capacity and expression of MMP-2 and MMP-9 in NB cells were inhibited by DHE. Furthermore, DHE suppressed the hedgehog (Hh) and the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in NB cells. In conclusion, DHE effectively inhibited the viability and EMT through inactivating the Hh and the Akt/mTOR signaling pathways in NB cells, providing a novel evidence that DHE may be a potential anti-NB drug candidate.
Collapse
Affiliation(s)
- Kang He
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, PR China.
| | - Guoqing Duan
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, PR China
| | - Yanyang Li
- Department of Pediatrics, Huaihe Hospital of Henan University, Kaifeng, PR China
| |
Collapse
|
58
|
Seabra AB, Durán N. Nitric oxide donors for prostate and bladder cancers: Current state and challenges. Eur J Pharmacol 2018; 826:158-168. [PMID: 29501865 DOI: 10.1016/j.ejphar.2018.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) is an endogenous molecule that plays pivotal physiological and pathophysiological roles, particularly in cancer biology. Generally, low concentrations of NO (pico- to nanomolar range) lead to tumor promotion. In contrast, high NO concentrations (micromolar range) have pro-apoptotic functions, leading to tumor suppression, and in this case, NO is involved in immune surveillance. Under oxidative stress, inducible NO synthase (iNOS) produces high NO concentrations for antineoplastic activities. Prostate and bladder cancers are the most commonly detected cancers in men, and are related to cancer death in males. This review summarizes the state of the art of NO/NO donors in combating prostate and bladder cancers, highlighting the importance of NO donors in cancer treatment, and the limitations and challenges to be overcome. In addition, the combination of NO donors with classical therapies (radio- or chemotherapy) in the treatment of prostate and bladder cancers is also presented and discussed. The combination of NO donors with conventional anticancer drugs is reported to inhibit tumor growth, since NO is able to sensitize tumor cells, enhancing the efficacy of the traditional drugs. Although important progress has been made, more studies are still necessary to definitely translate the administration of NO donors to clinical sets. The purpose of this review is to inspire new avenues in this topic.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil; NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Santo André, SP, Brazil.
| | - Nelson Durán
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil; NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Santo André, SP, Brazil; Chemistry Institute, Biol. Chem. Lab., Universidade Estadual de Campinas, CP 6154, CEP 13083-970, Campinas, SP, Brazil
| |
Collapse
|
59
|
Goulielmaki E, Kaforou S, Venugopal K, Loukeris TG, Siden-Kiamos I, Koussis K. Distinct effects of HIV protease inhibitors and ERAD inhibitors on zygote to ookinete transition of the malaria parasite. Mol Biochem Parasitol 2018; 220:10-14. [DOI: 10.1016/j.molbiopara.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 02/02/2023]
|
60
|
Nagao Y, Hisanaga T, Utsumi T, Egami H, Kawato Y, Hamashima Y. Enantioselective Synthesis of Nelfinavir via Asymmetric Bromocyclization of Bisallylic Amide. J Org Chem 2018; 83:7290-7295. [DOI: 10.1021/acs.joc.8b00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yoshihiro Nagao
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsunari Hisanaga
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takahiro Utsumi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuji Kawato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
61
|
Quirk K, Ganapathy-Kanniappan S. Is There an Opportunity for Current Chemotherapeutics to Up-regulate MIC-A/B Ligands? Front Pharmacol 2017; 8:732. [PMID: 29089892 PMCID: PMC5651020 DOI: 10.3389/fphar.2017.00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are critical effectors of the immune system. NK cells recognize unhealthy cells by specific ligands [e.g., MHC- class I chain related protein A or B (MIC-A/B)] for further elimination by cytotoxicity. Paradoxically, cancer cells down-regulate MIC-A/B and evade NK cell’s anticancer activity. Recent data indicate that cellular-stress induces MIC-A/B, leading to enhanced sensitivity of cancer cells to NK cell-mediated cytotoxicity. In this Perspective article, we hypothesize that current chemotherapeutics at sub-lethal, non-toxic dose may promote cellular-stress and up-regulate the expression of MIC-A/B ligands to augment cancer’s sensitivity to NK cell-mediated cytotoxicity. Preliminary data from two human breast cancer cell lines, MDA-MB-231 and T47D treated with clinically relevant therapeutics such as doxorubicin, paclitaxel and methotrexate support the hypothesis. The goal of this Perspective is to underscore the prospects of current chemotherapeutics in NK cell immunotherapy, and discuss potential challenges and opportunities to improve cancer therapy.
Collapse
Affiliation(s)
- Kendel Quirk
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shanmugasundaram Ganapathy-Kanniappan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
62
|
Meier-Stephenson V, Riemer J, Narendran A. The HIV protease inhibitor, nelfinavir, as a novel therapeutic approach for the treatment of refractory pediatric leukemia. Onco Targets Ther 2017; 10:2581-2593. [PMID: 28553123 PMCID: PMC5440076 DOI: 10.2147/ott.s136484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Refractory pediatric leukemia remains one of the leading causes of death in children. Intensification of current chemotherapy regimens to improve the outcome in these children is often limited by the effects of drug resistance and cumulative toxicity. Hence, the search for newer agents and novel therapeutic approaches are urgently needed to formulate the next-generation early-phase clinical trials for these patients. MATERIALS AND METHODS A comprehensive library of antimicrobials, including eight HIV protease inhibitors (nelfinavir [NFV], saquinavir, indinavir, ritonavir, amprenavir, atazanavir, lopinavir, and darunavir), was tested against a panel of pediatric leukemia cells by in vitro growth inhibition studies. Detailed target modulation studies were carried out by Western blot analyses. In addition, drug synergy experiments with conventional and novel antitumor agents were completed to identify effective treatment regimens for future clinical trials. RESULTS Several of the HIV protease inhibitors showed cytotoxicity at physiologically relevant concentrations (half-maximal inhibitory concentration values ranging from 1-24 µM). In particular, NFV was found to exhibit the most potent antileukemic properties across all cell lines tested. Mechanistic studies show that NFV leads to the induction of autophagy and apoptosis possibly through the induction of endoplasmic reticulum stress. Furthermore, interference with cell signaling pathways, including Akt and mTOR, was also noted. Finally, drug combination studies have identified agents with potential for synergy with NFV in its antileukemic activity. These include JQ1 (BET inhibitor), AT101 (Bcl-2 family inhibitor), and sunitinib (TK inhibitor). CONCLUSION Here, we show data demonstrating the potential of a previously unexplored group of drugs to address an unmet therapeutic need in pediatric oncology. The data presented provide preclinical supportive evidence and rationale for future studies of these agents for refractory leukemia in children.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- Department of Oncology, Cumming School of Medicine, University of Calgary.,Department of Pediatrics, Alberta Children's Hospital
| | - Justin Riemer
- Department of Oncology, Cumming School of Medicine, University of Calgary.,Department of Pediatrics, Alberta Children's Hospital
| | - Aru Narendran
- Department of Oncology, Cumming School of Medicine, University of Calgary.,Department of Pediatrics, Alberta Children's Hospital.,Pediatric Oncology Experimental Therapeutics Investigators Consortium (POETIC) Laboratory, Calgary, AB, Canada
| |
Collapse
|