51
|
Gao S, Lu R, Wang X, Chou J, Wang N, Huai X, Wang C, Zhao Y, Chen S. Immune response of macrophages on super-hydrophilic TiO2 nanotube arrays. J Biomater Appl 2020; 34:1239-1253. [DOI: 10.1177/0885328220903249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shang Gao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Ran Lu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Xin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Joshua Chou
- Advanced Tissue Regeneration and Drug Delivery Group, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Na Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaochen Huai
- Laboratory of Advanced Functional Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Caiyun Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yu Zhao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Su Chen
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
52
|
Wheelis SE, Biguetti CC, Natarajan S, Guida L, Hedden B, Garlet GP, Rodrigues DC. Investigation of the early healing response to dicationic imidazolium-based ionic liquids: a biocompatible coating for titanium implants. ACS Biomater Sci Eng 2020; 6:984-994. [PMID: 32656316 DOI: 10.1021/acsbiomaterials.9b01884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dicationic Imidazolum-based ionic liquids with amino acid anions (IonL) have been proposed as a multifunctional coating for titanium dental implants, as their properties have been shown to address multiple early complicating factors while maintaining host cell compatibility. This study aims to evaluate effects of this coating on host response in the absence of complicating oral factors during the early healing period using a subcutaneous implantation model in the rat. IonLs with the best cytocompatibility and antimicrobial properties (IonL-Phe, IonL-Met) were chosen as coatings. Three different doses were applied to cpTi disks and subcutaneously implanted into 36 male Lewis rats. Rats received 2 implants: 1 coated implant on one side and an uncoated implant on the contralateral sides (n=3 per formulation, per dose). Peri-implant tissue was evaluated 2 and 14 days after implantation with H&E staining and IHC markers associated with macrophage polarization as well as molecular analysis (qPCR) for inflammatory and healing markers. H&E stains revealed the presence of the coating, blood clots and inflammatory infiltrate at 2 days around all implants. At 14 days, inflammation had receded with more developed connective tissue with fibroblasts, blood vessels in certain doses of coated and uncoated samples with no foreign body giant cells. This study demonstrated that IonL at the appropriate concentration does not significantly interfere with and healing and Ti foreign body response. Results regarding optimal dose and formulation from this study will be applied in future studies using an oral osseointegration model.
Collapse
Affiliation(s)
| | - Claudia C Biguetti
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.,Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo São Paulo, Brazil
| | - Shruti Natarajan
- Department of Biological Sciences, University of Texas at Dallas
| | - Lidia Guida
- Deparment of Bioengineering, University of Texas at Dallas
| | - Brian Hedden
- Deparment of Bioengineering, University of Texas at Dallas
| | - Gustavo P Garlet
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo São Paulo, Brazil
| | | |
Collapse
|
53
|
Abaricia JO, Shah AH, Musselman RM, Olivares-Navarrete R. Hydrophilic titanium surfaces reduce neutrophil inflammatory response and NETosis. Biomater Sci 2020; 8:2289-2299. [DOI: 10.1039/c9bm01474h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutrophils are sensitive to biomaterial surface properties, controlling activation and inflammatory microenvironment, revealing a novel target for enhancing biomaterial integration.
Collapse
Affiliation(s)
- Jefferson O. Abaricia
- Department of Biomedical Engineering
- School of Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | - Arth H. Shah
- Department of Biomedical Engineering
- School of Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | - Ryan M. Musselman
- Department of Biomedical Engineering
- School of Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering
- School of Engineering
- Virginia Commonwealth University
- Richmond
- USA
| |
Collapse
|
54
|
Yu M, Liu Y, Yu X, Li J, Zhao W, Hu J, Cheng K, Weng W, Zhang B, Wang H, Dong L. Enhanced osteogenesis of quasi-three-dimensional hierarchical topography. J Nanobiotechnology 2019; 17:102. [PMID: 31581945 PMCID: PMC6777029 DOI: 10.1186/s12951-019-0536-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Natural extracellular matrices (ECMs) are three-dimensional (3D) and multi-scale hierarchical structure. However, coatings used as ECM-mimicking structures for osteogenesis are typically two-dimensional or single-scaled. Here, we design a distinct quasi-three-dimensional hierarchical topography integrated of density-controlled titania nanodots and nanorods. We find cellular pseudopods preferred to anchor deeply across the distinct 3D topography, dependently of the relative density of nanorods, which promote the osteogenic differentiation of osteoblast but not the viability of fibroblast. The in vivo experimental results further indicate that the new bone formation, the relative bone-implant contact as well as the push-put strength, are significantly enhanced on the 3D hierarchical topography. We also show that the exposures of HFN7.1 and mAb1937 critical functional motifs of fibronectin for cellular anchorage are up-regulated on the 3D hierarchical topography, which might synergistically promote the osteogenesis. Our findings suggest the multi-dimensions and multi-scales as vital characteristic of cell-ECM interactions and as an important design parameter for bone implant coatings.
Collapse
Affiliation(s)
- Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Yu Liu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaowen Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianhua Li
- Hangzhou Dental Hospital, Hangzhou, 310006, China
| | - Wenquan Zhao
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ji'an Hu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Bin Zhang
- The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, 310027, China.
| | - Huiming Wang
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
55
|
Hamlet SM, Lee RS, Moon H, Alfarsi MA, Ivanovski S. Hydrophilic titanium surface‐induced macrophage modulation promotes pro‐osteogenic signalling. Clin Oral Implants Res 2019; 30:1085-1096. [DOI: 10.1111/clr.13522] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen M. Hamlet
- Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
- School of Dentistry and Oral Health Griffith University Gold Coast Queensland Australia
| | - Ryan S.B. Lee
- School of Dentistry and Oral Health Griffith University Gold Coast Queensland Australia
- School of Dentistry The University of Queensland Herston Queensland Australia
| | - Ho‐Jin Moon
- School of Dentistry and Oral Health Griffith University Gold Coast Queensland Australia
- Department of Dental Materials, School of Dentistry Kyung Hee University Seoul Republic of Korea Australia
| | | | - Sašo Ivanovski
- School of Dentistry The University of Queensland Herston Queensland Australia
| |
Collapse
|
56
|
Wang Y, Qi H, Miron RJ, Zhang Y. Modulating macrophage polarization on titanium implant surface by poly(dopamine)-assisted immobilization of IL4. Clin Implant Dent Relat Res 2019; 21:977-986. [PMID: 31373150 DOI: 10.1111/cid.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/14/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the past few decades, very little research has been carried out to modify implant surfaces to improve osteointegration through the regulation of immune cells. PURPOSE The aim of this study is to investigate whether the poly(dopamine) (pDA)-assisted immobilization of IL4 on titanium surfaces could modulate the inflammatory profile of macrophages in vitro and search for the possibility of enhancing implant integration in this way. MATERIAL AND METHODS The surface composition, topography, and roughness of SLA, SLA-pDA, and SLA-pDA-IL4 discs were examined by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Then the releasing profile of the SLA-pDA-IL4 implants was recorded for 1 week and the bioactivity of released IL4 was investigated by ELISA. Then macrophage polarization was investigated via three methods including: (a) surface marker via immunofluorescence; (b) mRNA levels of M1 and M2 polarization markers via real-time PCR, and (c) cytokine release via ELISA. RESULTS SEM and EDS revealed that pDA and IL4 were coated successfully on SLA surfaces. The ELISA results showed that IL4 remained its bioactivity on SLA surface and were immobilized on the SLA surface. The immobilization of IL4 through pDA has no significant influence on the attachment, morphology, and proliferation of macrophages, while it increased the M2/M1 proportion in human macrophages revealed by immunofluorescence. The real-time PCR and ELISA results demonstrated that SLA-pDA-IL4 surface reduced the pro-inflammatory profile compared with SLA-pDA and SLA surfaces. CONCLUSIONS The SLA-pDA-IL4 surfaces described here is able to activate adherent macrophages into M2 phenotype and reduce the release of pro-inflammatory cytokines. Immobilization of IL4 via pDA is convenient and effective, thus providing an applicable way to control macrophage behavior upon implant insertion and is anticipated to accelerating further bone integration.
Collapse
Affiliation(s)
- Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Haoning Qi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Richard J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yufeng Zhang
- Department of Oral Implantology, School of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
57
|
Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 2019; 94:112-131. [PMID: 31128320 DOI: 10.1016/j.actbio.2019.05.045] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
The main aim of this review study was to report the state of art on the nano-scale technological advancements of titanium implant surfaces to enhance the osseointegration process. Several methods of surface modification are chronologically described bridging ordinary methods (e.g. grit blasting and etching) and advanced physicochemical approaches such as 3D-laser texturing and biomimetic modification. Functionalization procedures by using proteins, peptides, and bioactive ceramics have provided an enhancement in wettability and bioactivity of implant surfaces. Furthermore, recent findings have revealed a combined beneficial effect of micro- and nano-scale modification and biomimetic functionalization of titanium surfaces. However, some technological developments of implant surfaces are not commercially available yet due to costs and a lack of clinical validation for such recent surfaces. Further in vitro and in vivo studies are required to endorse the use of enhanced biomimetic implant surfaces. STATEMENT OF SIGNIFICANCE: Grit-blasting followed by acid-etching is currently used for titanium implant modifications, although recent technological biomimetic physicochemical methods have revealed enhanced osteoconductive and anti-microbial outcomes. An improvement in wettability and bioactivity of titanium implant surfaces has been accomplished by combining micro and nano-scale modification and functionalization with protein, peptides, and bioactive compounds. Such morphological and chemical modification of the titanium surfaces induce the migration and differentiation of osteogenic cells followed by an enhancement of the mineral matrix formation that accelerate the osseointegration process. Additionally, the incorporation of bioactive molecules into the nanostructured surfaces is a promising strategy to avoid early and late implant failures induced by the biofilm accumulation.
Collapse
|
58
|
In vitro proinflammatory gene expression changes in human whole blood after contact with plasma-treated implant surfaces. J Craniomaxillofac Surg 2019; 47:1255-1261. [DOI: 10.1016/j.jcms.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 11/18/2022] Open
|
59
|
Zhang Y, Guo T, Li Q, Qin J, Ding X, Ye S, Zhao J, Zhou Y. Novel ultrafine-grained β-type Ti-28Nb-2Zr-8Sn alloy for biomedical applications. J Biomed Mater Res A 2019; 107:1628-1639. [PMID: 30916874 DOI: 10.1002/jbm.a.36679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Titanium alloys are widely accepted as orthopedic or dental implant materials in the medical field. It is important to evaluate the biocompatibility of an implant material prior to use. A new β-type ultrafine-grained Ti-28Nb-2Zr-8Sn (TNZS) alloy with low Young's modulus of 31.6 GPa was fabricated. This study aims to evaluate the biocompatibility of TNZS alloy. In this study, we examined the microstructure, chemical composition and surface wettability of the TNZS alloy. The mouse embryonic osteoblast MC3T3-E1 cells and human umbilical vein endothelial cells (HUVECs) were cultured to study the cytocompatibility of TNZS alloy. Also, we evaluated the proinflammatory response of TNZS alloy in vitro and in vivo. The results show that the TNZS did not cause cytotoxicity, genotoxicity to MC3T3-E1 cells and HUVECs. Whereas, the TNZS alloy could significantly promote the cell proliferation, cell spreading and cell adhesion of MC3T3-E1 cells and HUVECs, as well as facilitate the osteogenic differentiation of MC3T3-E1 cells. Moreover, the TNZS alloy did not induce any remarkable proinflammatory response in vitro and in vivo. Thus, the novel TNZS alloy with an elasticity closer to that of human bone is biologically safe and could be a potential candidate for biomedical implant application. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1628-1639, 2019.
Collapse
Affiliation(s)
- Yidi Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Tianqi Guo
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Qiushi Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.,Department of VIP, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jie Qin
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Xinxin Ding
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Shan Ye
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jinghui Zhao
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
60
|
In Vitro and In Vivo Evaluation of Titanium Surface Modification for Biological Aging by Electrolytic Reducing Ionic Water. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, using electrolytic reducing ionic water (S-100®), a novel surface treatment method safely and easily modifying the surface properties was evaluated in vitro and in vivo. Ti-6Al-4V disks were washed and the disks were kept standing on a clean bench for one and four weeks for aging. These disks were immersed in S-100® (S-100 group), immersed in ultra-pure water (Control group), or irradiated with ultraviolet light (UV group), and surface analysis, cell experiment, and animal experiment were performed using these disks. The titanium surface became hydrophilic in the S-100 group and the amount of protein adsorption and cell adhesion rate were improved in vitro. In vivo, new bone formation was noted around the disk. These findings suggested that surface treatment with S-100® adds bioactivity to the biologically aged titanium surface. We are planning to further investigate it and accumulate evidence for clinical application.
Collapse
|
61
|
Zhang Y, Cheng X, Jansen JA, Yang F, van den Beucken JJ. Titanium surfaces characteristics modulate macrophage polarization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:143-151. [DOI: 10.1016/j.msec.2018.10.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/24/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
|
62
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
63
|
Harder S, Quabius ES, Meinke F, Mehl C, Kern M. Changes in proinflammatory gene expression in human whole blood after contact with UV-conditioned implant surfaces. Clin Oral Investig 2019; 23:3731-3738. [PMID: 30666479 DOI: 10.1007/s00784-019-02801-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this in vitro study was to assess changes in the gene expression of proinflammatory cytokines in human whole blood after contact with titanium implant surfaces conditioned by UV light. To this end, expression levels of proinflammatory cytokines were analyzed in vitro in human whole blood. MATERIALS AND METHODS Dental implants made of grade 4 titanium were conditioned by UV light in a UV device and submerged in human whole blood. Unconditioned implants served as controls, and blood samples without implants served as the negative control group. Sampling was performed at 1, 8, and 24 h. Changes in the expression levels of interleukin-1β (IL1B) and tumor necrosis factor alpha (TNF) were assessed using RT-qPCR at the mRNA level. RESULTS The gene expression of IL1B was significantly suppressed in the test group over the observation period compared to the control group during the 1-8 h after having contact between the implant surface and the blood. The gene expression of TNF was not significantly altered by UV conditioning after 1 and 8 h of observation, but both cytokine expression levels were increased significantly after 24 h. CONCLUSIONS Differences in the gene expression of proinflammatory cytokines after insertion of UV-conditioned titanium implants can be assessed using a human whole blood test. UV-conditioned implant surfaces apparently suppress the release of IL1B in vitro. CLINICAL RELEVANCE The results of our publication demonstrate that modulation of the early inflammatory response in human whole blood is possible by surface treatment with UV light. In particular, the suppression of IL1B expression, especially after the initial contact of blood cells, may be beneficial in the osseointegration of titanium implants by positively influence the balance between rejection and acceptance of an implant.
Collapse
Affiliation(s)
- Sönke Harder
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University Kiel, Arnold-Heller Str. 16, 24105, Kiel, Germany.
| | - Elgar Susanne Quabius
- Institute of Immunology, Christian-Albrechts University Kiel, Kiel, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts University Kiel, Kiel, Germany
| | - Fabian Meinke
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University Kiel, Arnold-Heller Str. 16, 24105, Kiel, Germany
| | - Christian Mehl
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University Kiel, Arnold-Heller Str. 16, 24105, Kiel, Germany
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University Kiel, Arnold-Heller Str. 16, 24105, Kiel, Germany
| |
Collapse
|
64
|
Hotchkiss KM, Sowers KT, Olivares-Navarrete R. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Mater 2018; 35:176-184. [PMID: 30509481 DOI: 10.1016/j.dental.2018.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/14/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Roughened dental implants promote mesenchymal stem cell (MSCs) osteoblastic differentiation, and hydrophilic modifications induce anti-inflammatory macrophages activation. While the effect of different surface modifications on osseointegration of commercial dental implants have been compared in vivo and clinically, the initial cellular response to these modifications often overlooked. We aimed to characterize the macrophage inflammatory response and MSC osteogenesis across different commercially available implants in vitro. METHODS Six commercially available rough implants [OsseoSpeed™ (Astra-Tech™, Implant A); Osseotite® (Biomet 3i™, Implant B); TiUnite™ (Nobel-Biocare®, Implant C); Ti-SLA®, (Implant D), Roxolid® (RXD-SLA, Implant E), RXD-SLActive® (Implant F) (Straumann®)] were examined. Macrophages and MSCs were seeded directly on implants and cultured in custom vials. mRNA and protein levels of pro- (IL1B, IL6, IL17A, CXCL10, TNFa) and anti- (IL4, IL10, TGFB1) inflammatory markers were measured after 24 and 48h in macrophages. Osteoblastic differentiation of MSCs was assessed after seven days by alkaline phosphatase activity, osteocalcin, and angiogenic, osteogenic, and inflammatory markers by ELISA and qPCR (n=6/variable, ANOVA, post hoc Tukey HSD with α=0.05). RESULTS Hydrophilic implant F induced the highest level of osteogenic factor released from MSCs and anti-inflammatory factors from macrophages with the lowest level of pro-inflammatory factors. Alternatively, implants A and C supported lower levels of osteogenesis and increased secretion of pro-inflammatory factors. SIGNIFICANCE In this study, we successfully evaluated differences in cell response to commercially available clinical implants using an in vitro model. Data from this model suggest that not all surface modification procedures generate the same cell response.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Kegan T Sowers
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
65
|
Lu X, Li K, Xie Y, Qi S, Shen Q, Yu J, Huang L, Zheng X. Improved osteogenesis of boron incorporated calcium silicate coatings via immunomodulatory effects. J Biomed Mater Res A 2018; 107:12-24. [PMID: 29781148 DOI: 10.1002/jbm.a.36456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Osteoimmunology has revealed the importance of a favorable immune response for successful biomaterial-mediated osteogenesis. Boron-incorporated calcium silicate (Ca11 Si4 B2 O22 , B-CS) coating has been reported as a potential candidate for improving osteogenesis in orthopedic applications in vitro. However, relatively little is known about its effects on the immune response and subsequent osteogenesis. In this work, the immunomodulatory properties of the B-CS coating and its specific mechanism of action were explored. We found that the B-CS coating decreased M1 polarization and converted macrophages to the M2 phenotype via restraining the toll-like receptor signaling pathway, thus inducing a significant reduction in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines. Moreover, the B-CS coating inhibited osteoclastogenesis and osteoclastic activities by downregulating osteoclastogenic genes and inhibiting the RANKL/RANK system. BMP2 and VEGF were also significantly upregulated by macrophages and bone mesenchymal stem cells, leading to activation of the BMP2 signaling pathway and subsequent upregulation of osteogenesis-associated genes, finally promoting osteogenic differentiation. These findings show that the B-CS coating could be a promising coating material for hip and knee implants. Furthermore, incorporation of the element boron into bioceramic coatings could be a good strategy in the design of bone biomaterials with beneficial immune responses. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 12-24, 2019.
Collapse
Affiliation(s)
- Xiang Lu
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Qingyi Shen
- Department of Prosthodontics, Shanghai Stomatological Disease Center, Shanghai, 200031, People's Republic of China
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| |
Collapse
|
66
|
Gulati K, Moon HJ, Li T, Sudheesh Kumar PT, Ivanovski S. Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:624-630. [PMID: 30033295 DOI: 10.1016/j.msec.2018.05.075] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 05/10/2018] [Accepted: 05/26/2018] [Indexed: 01/08/2023]
Abstract
This letter describes a simple surface modification strategy based on a single-step electrochemical anodization towards generating dual micro- and nano-rough horizontally-aligned TiO2 nanopores on the surface of clinically utilized micro-grooved titanium implants. Primary macrophages, osteoblasts and fibroblasts were cultured on the nano-engineered implants, and it was demonstrated that the modified surfaces selectively reduced the proliferation of macrophages (immunomodulation), while augmenting the activity of osteoblasts (osseo-integration) and fibroblasts (soft-tissue integration). Additionally, the mechanically robust nanopores also stimulated osteoblast and fibroblast adhesion, attachment and alignment along the direction of the pores/grooves, while macrophages remained oval-shaped and sparsely distributed. This study for the first time reports the use of cost-effectively prepared nano-engineered titanium surface via anodization, with aligned multi-scale micro/nano features for selective cellular bioactivity, without the use of any therapeutics.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; School of Dentistry and Oral Health, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| | - Ho-Jin Moon
- School of Dentistry and Oral Health, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Tao Li
- School of Dentistry and Oral Health, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - P T Sudheesh Kumar
- School of Dentistry and Oral Health, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; School of Dentistry and Oral Health, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
67
|
Kosoff D, Yu J, Suresh V, Beebe DJ, Lang JM. Surface topography and hydrophilicity regulate macrophage phenotype in milled microfluidic systems. LAB ON A CHIP 2018; 18:3011-3017. [PMID: 30131982 PMCID: PMC6178814 DOI: 10.1039/c8lc00431e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Micromilling is an underutilized technique for fabricating microfluidic platforms that is well-suited for the diverse needs of the biologic community. This technique, however, produces culture surfaces that are considerably rougher than in commercially available culture platforms and the hydrophilicity of these surfaces can vary considerably depending on the choice of material. In this study, we evaluated the impact of surface topography and hydrophilicity in milled microfluidic devices on the cellular phenotype and function of primary human macrophages. We found that the rough culture surface within micromilled systems affected the phenotype of macrophages cultured in these devices. However, the presence, type, and magnitude of this effect was dependent on the surface hydrophilicity as well as exposure to chemical polarization signals. These findings confirm that while milled microfluidic systems are an effective platform for culture and analysis of primary macrophages, the topography and hydrophilicity of the culture surface within these systems should be considered in the planning and analysis of any macrophage experiments in which phenotype is relevant.
Collapse
Affiliation(s)
- David Kosoff
- Department of Medicine, Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
| | | | | | | | | |
Collapse
|
68
|
Taraballi F, Sushnitha M, Tsao C, Bauza G, Liverani C, Shi A, Tasciotti E. Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Adv Healthc Mater 2018; 7:e1800490. [PMID: 29995315 DOI: 10.1002/adhm.201800490] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Regenerative medicine technologies rely heavily on the use of well-designed biomaterials for therapeutic applications. The success of implantable biomaterials hinges upon the ability of the chosen biomaterial to negotiate with the biological barriers in vivo. The most significant of these barriers is the immune system, which is composed of a highly coordinated organization of cells that induce an inflammatory response to the implanted biomaterial. Biomimetic platforms have emerged as novel strategies that aim to use the principle of biomimicry as a means of immunomodulation. This principle has manifested itself in the form of biomimetic scaffolds that imitate the composition and structure of biological cells and tissues. Recent work in this area has demonstrated the promising potential these technologies hold in overcoming the barrier of the immune system and, thereby, improve their overall therapeutic efficacy. In this review, a broad overview of the use of these strategies across several diseases and future avenues of research utilizing these platforms is provided.
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| | - Manuela Sushnitha
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Bioengineering Rice University Houston TX 77005 USA
| | - Christopher Tsao
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea University Bay Singleton Park Wales Swansea SA2 8PP UK
| | - Chiara Liverani
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Biosciences Laboratory Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Via Piero Maroncelli 40 47014 Meldola FC Italy
| | - Aaron Shi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Wiess School of Natural Sciences Rice University Houston TX 77251‐1892 USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
69
|
Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations. Biomaterials 2018; 182:202-215. [PMID: 30138783 DOI: 10.1016/j.biomaterials.2018.08.029] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
Abstract
Successful biomaterial implantation can be achieved by controlling the activation of the immune system. The innate immune system is typically the focus on synthetic material compatibility, but this study shows an effect of surface properties in the innate as well as the adaptive systems. These studies look at how macrophages respond to the implanted materials by releasing factors to regulate the microenvironment and recruit additional cells. Our research demonstrates how macrophage response to material surface properties can create changes in the adaptive immune response by altering T-helper cell populations and stem cell recruitment. Titanium (Ti) implants of varying wettability (rough, and rough-hydrophilic) were placed in the femur of 10-week-old male C57Bl/6, or macrophage ablated clodronate liposome injected and transgenic MaFIA (C57BL/6-Tg(Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6)2Bck/J) mice. The microenvironment surrounding Ti implants was assessed using custom PCR arrays at 3 and 7 days following implantation. Changes in specific T-helper, macrophage and stem cell populations were evaluated locally at the implant surface and systemically in the contralateral leg bone marrow and spleen by flow cytometry at 1, 3 and 7 days. Macrophage importance in T-helper and stem cell population changes with metallic surfaces was examined in both in vitro and in vivo with macrophage ablation models. We demonstrate that surface modifications applied to titanium implants to increase surface roughness and wettability can polarize the adaptive immune response towards a Th2, pro-wound healing phenotype, leading to faster resolution of inflammation and increased stem cell recruitment around rough hydrophilic implants with macrophages present.
Collapse
|
70
|
Scharnweber D, Bierbaum S, Wolf-Brandstetter C. Utilizing DNA for functionalization of biomaterial surfaces. FEBS Lett 2018; 592:2181-2196. [PMID: 29683477 DOI: 10.1002/1873-3468.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/27/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
DNA sequences are widely used for gene transfer into cells including a number of substrate surface-based supporting systems, but due to its singular structure property profile, DNA also offers multiple options for noncanonical applications. The special case of using DNA and oligodeoxyribonucleotide (ODN) structures for surface functionalization of biomedical implants is summarized here with the major focus on (a) immobilization or anchoring of nucleic acid structures on substrate surfaces, (b) incorporation of biologically active molecules (BAM) into such systems, and (c) biological characteristics of the resulting surfaces in vitro and in vivo. Sterilizations issues, important for potential clinical applications, are also considered.
Collapse
Affiliation(s)
- Dieter Scharnweber
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Germany
| | - Susanne Bierbaum
- Max Bergmann Center of Biomaterials, Technische Universität Dresden, Germany.,International Medical College, Münster, Germany
| | | |
Collapse
|
71
|
Gulati K, Hamlet SM, Ivanovski S. Tailoring the immuno-responsiveness of anodized nano-engineered titanium implants. J Mater Chem B 2018; 6:2677-2689. [PMID: 32254221 DOI: 10.1039/c8tb00450a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to its biocompatibility and corrosion resistance, titanium is one of the most commonly used implantable biomaterials. Numerous in vitro and in vivo investigations have established that titanium surfaces with a nanoscale topography outperform conventional smooth or micro-rough surfaces in terms of achieving desirable bonding with bone (i.e. enhanced bioactivity). Among these nanoscale topographical modifications, ordered nanostructures fabricated via electrochemical anodization, especially titania nanotubes (TNTs), are particularly attractive. This is due to their ability to augment bioactivity, deliver drugs and the potential for easy/cost-effective translation into the current implant market. However, the potential of TNT-modified implants to modulate the host immune-inflammatory response, which is critical for achieving timely osseointegration, remains relatively unexplored. Such immunomodulatory effects may be achieved by modifying the physical and chemical properties of the TNTs. Furthermore, therapeutic/bioactive enhancements performed on these nano-engineered implants (such as antibacterial or osteogenic functions) are likely to illicit an immune response which needs to be appropriately controlled. The lack of sufficient in-depth studies with respect to immune cell responses to TNTs has created research gaps that must be addressed in order to facilitate the design of the next generation of immuno-modulatory titanium implants. This review article focuses on the chemical, topographical and mechanical features of TNT-modified implants that can be manipulated in order to achieve immuno-modulation, as well as providing an insight into how modulating the immune response can augment implant performance.
Collapse
Affiliation(s)
- Karan Gulati
- School of Dentistry, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| | | | | |
Collapse
|
72
|
Xu B, Li A, Hao X, Guo R, Shi X, Cao X. PEGylated dendrimer-entrapped gold nanoparticles with low immunogenicity for targeted gene delivery. RSC Adv 2018; 8:1265-1273. [PMID: 35540884 PMCID: PMC9076948 DOI: 10.1039/c7ra11901a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022] Open
Abstract
The designed Au DENPs-PEG-FA compacts pDNA into cells to enhance gene transfection efficiency.
Collapse
Affiliation(s)
- Bei Xu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Aijun Li
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xinxin Hao
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Rui Guo
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xiangyang Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xueyan Cao
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| |
Collapse
|
73
|
Zhang Z, Xie Y, Pan H, Huang L, Zheng X. Influence of patterned titanium coatings on polarization of macrophage and osteogenic differentiation of bone marrow stem cells. J Biomater Appl 2017; 32:977-986. [PMID: 29237352 DOI: 10.1177/0885328217746802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterial surface topography plays a vital role in the osteointegration of implants by regulating the early cell responses and tissue growth-in. However, most of the previous researches focused on the effects of osteogenic cells, only a little is known about the immune cells which dominate osteogenesis after implanting. In this paper, patterned titanium coatings were fabricated and the effects of surface topography on the macrophage behaviors were investigated. On patterned titanium surface, macrophages preferred to polarize to M2, while macrophages on traditional titanium coatings presented higher M1 polarization. Nearly 70% higher expression of anti-inflammatory genes, including interleukin-4, interleukin-10, interleukin-1ra, and arginase, were detected on the patterned titanium coatings. While the pro-inflammatory genes, such as interleukin-1β, interleukin-6, tumor necrosis factor-α, interferon-γ, and inducible nitric oxide synthase were notably depressed. Up-regulation of the osteoinductive cytokines were also detected on the patterned coatings, which indicated advantageous osteogenic microenvironment provided by macrophages. Immunomodulation effect on osteogenesis was also investigated in this study. Stimulated with RAW cells/patterned coatings conditioned medium, bone marrow stem cells presented nearly 1.5 fold higher expression of osteogenic genes and more mineralization nodules than the traditional sprayed Ti coatings. All these results suggested that modulating materials with a patterned surface might be a valuable strategy to endow the implants with favorable osteoimmunomodulatory properties.
Collapse
Affiliation(s)
- Zequan Zhang
- 1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China.,2 University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, PR China
| | - Youtao Xie
- 1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China
| | - Houhua Pan
- 1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China
| | - Liping Huang
- 1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China
| | - Xuebin Zheng
- 1 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, PR China
| |
Collapse
|
74
|
Calciolari E, Mardas N, Dereka X, Anagnostopoulos AK, Tsangaris GT, Donos N. Protein expression during early stages of bone regeneration under hydrophobic and hydrophilic titanium domes. A pilot study. J Periodontal Res 2017; 53:174-187. [PMID: 29063586 DOI: 10.1111/jre.12498] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES There is significant evidence that, during the early stages of osseointegration, moderately rough hydrophilic (SLActive) surfaces can accelerate osteogenesis and increase bone-to-implant contact in comparison to hydrophobic (SLA) surfaces. However, very little is known regarding the molecular mechanisms behind the influence that surface chemistry modifications to increase hydrophilicity determine on bone healing. The aim of this study was to describe for the first time the proteins and related signalling pathways expressed during early osseous healing stages under SLA and SLActive titanium domes for guided bone regeneration. MATERIAL AND METHODS One SLA and 1 SLActive dome with an internal diameter of 5.0 mm and a height of 3.0 mm were secured to the parietal bones of nine 6-month-old male New Zealand rabbits. Three animals were randomly euthanized at 4, 7 and 14 days and the newly formed tissues retrieved under the domes were analysed with liquid chromatography-mass spectrometry/mass spectrometry. STRING and KEGG databases were applied for Gene Ontology and pathway analyses. RESULTS A different modulation of several pathways was detected between the 2 groups at all healing times. The main differences in the osseous healing response associated to the 2 surfaces were related to pathways involved in regulating the inflammatory response, differentiation of osteoblast precursors and skeletogenesis. At day 7, the highest number of proteins and the highest cellular activity were observed in both groups, although a more complex and articulated proteome in terms of cellular metabolism and signal transduction was observed in SLActive samples. CONCLUSION This is the first study describing the proteome expressed during early healing stages of guided bone regeneration and osseointegration. A combination of enhanced early osteogenic response and reduced inflammatory response were suggested for the hydrophilic group. Future studies are needed to corroborate these findings and explore the molecular effects of different titanium surfaces on the cascade of events taking place during bone formation.
Collapse
Affiliation(s)
- E Calciolari
- Centre for Clinical Oral Research, Institute of Dentistry, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London (QMUL), Bart's & The London School of Dentistry & Medicine, London, UK
| | - N Mardas
- Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London (QMUL), Bart's & The London School of Dentistry & Medicine, London, UK
| | - X Dereka
- Department of Periodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - A K Anagnostopoulos
- Proteomics Research Unit, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - G T Tsangaris
- Proteomics Research Unit, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - N Donos
- Centre for Clinical Oral Research, Institute of Dentistry, Queen Mary University of London (QMUL), Barts and The London School of Medicine and Dentistry, London, UK.,Centre for Oral Immunobiology and Regenerative Medicine, Queen Mary University of London (QMUL), Bart's & The London School of Dentistry & Medicine, London, UK
| |
Collapse
|
75
|
Barthes J, Ciftci S, Ponzio F, Knopf-Marques H, Pelyhe L, Gudima A, Kientzl I, Bognár E, Weszl M, Kzhyshkowska J, Vrana NE. Review: the potential impact of surface crystalline states of titanium for biomedical applications. Crit Rev Biotechnol 2017; 38:423-437. [PMID: 28882077 DOI: 10.1080/07388551.2017.1363707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In many biomedical applications, titanium forms an interface with tissues, which is crucial to ensure its long-term stability and safety. In order to exert control over this process, titanium implants have been treated with various methods that induce physicochemical changes at nano and microscales. In the past 20 years, most of the studies have been conducted to see the effect of topographical and physicochemical changes of titanium surface after surface treatments on cells behavior and bacteria adhesion. In this review, we will first briefly present some of these surface treatments either chemical or physical and we explain the biological responses to titanium with a specific focus on adverse immune reactions. More recently, a new trend has emerged in titanium surface science with a focus on the crystalline phase of titanium dioxide and the associated biological responses. In these recent studies, rutile and anatase are the major two polymorphs used for biomedical applications. In the second part of this review, we consider this emerging topic of the control of the crystalline phase of titanium and discuss its potential biological impacts. More in-depth analysis of treatment-related surface crystalline changes can significantly improve the control over titanium/host tissue interface and can result in considerable decreases in implant-related complications, which is currently a big burden on the healthcare system.
Collapse
Affiliation(s)
- Julien Barthes
- a Fundamental Research Unit , Protip Medical , Strasbourg , France.,b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France
| | - Sait Ciftci
- b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France.,c Service ORL , Hopitaux Universitaires de Strasbourg , Strasbourg , France
| | - Florian Ponzio
- b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France.,d Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg , Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Faculté de Chirurgie Dentaire , Strasbourg , France
| | - Helena Knopf-Marques
- b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France.,d Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg , Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Faculté de Chirurgie Dentaire , Strasbourg , France
| | - Liza Pelyhe
- e Department of Materials Science and Engineering, Faculty of Mechanical Engineering , Budapest University of Technology and Economics , Budapest , Hungary
| | - Alexandru Gudima
- f Medical Faculty Mannheim , Institute of Transfusion Medicine and Immunology, University of Heidelberg , Mannheim , Germany
| | - Imre Kientzl
- e Department of Materials Science and Engineering, Faculty of Mechanical Engineering , Budapest University of Technology and Economics , Budapest , Hungary
| | - Eszter Bognár
- e Department of Materials Science and Engineering, Faculty of Mechanical Engineering , Budapest University of Technology and Economics , Budapest , Hungary.,g MTA-BME Research Group for Composite Science and Technology , Budapest , Hungary
| | - Miklós Weszl
- h Department of Biophysics and Radiation Biology , Semmelweis University , Budapest , Hungary
| | - Julia Kzhyshkowska
- f Medical Faculty Mannheim , Institute of Transfusion Medicine and Immunology, University of Heidelberg , Mannheim , Germany.,i German Red Cross Blood Service Baden-Württemberg-Hessen , Mannheim , Germany
| | - Nihal Engin Vrana
- a Fundamental Research Unit , Protip Medical , Strasbourg , France.,b INSERM, UMR-S 1121 , , "Biomatériaux et Bioingénierie" , Strasbourg Cedex , France
| |
Collapse
|
76
|
Insua A, Monje A, Wang HL, Miron RJ. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res A 2017; 105:2075-2089. [DOI: 10.1002/jbm.a.36060] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Angel Insua
- Department of Periodontics and Oral Medicine; The University of Michigan; Ann Arbor Michigan
| | - Alberto Monje
- Department of Periodontics and Oral Medicine; The University of Michigan; Ann Arbor Michigan
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine; The University of Michigan; Ann Arbor Michigan
| | - Richard J. Miron
- Department of Periodontology; Nova Southeastern University; Fort Lauderdale Florida
| |
Collapse
|
77
|
Omar M, Klawonn F, Brand S, Stiesch M, Krettek C, Eberhard J. Transcriptome-Wide High-Density Microarray Analysis Reveals Differential Gene Transcription in Periprosthetic Tissue From Hips With Chronic Periprosthetic Joint Infection vs Aseptic Loosening. J Arthroplasty 2017; 32:234-240. [PMID: 27474510 DOI: 10.1016/j.arth.2016.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Differentiating between periprosthetic hip infection and aseptic hip prosthesis loosening can be challenging, especially in patients with chronic infections. This study used whole-genome microarray analysis to investigate the transcriptomes of periprosthetic hip tissues to identify genes that are differentially transcripted between chronic periprosthetic hip infection and aseptic hip prosthesis loosening. METHODS In this pilot study, a total of 24 patients with either chronic periprosthetic hip infection (n = 12) or aseptic hip prosthesis loosening (n = 12) were analyzed. Periprosthetic hip infection was diagnosed based on modified criteria of the Musculoskeletal Infection Society. To evaluate differences in gene transcription, whole-genome microarray analysis was performed on the mRNA of periprosthetic tissue. RESULTS Microarray analysis revealed differential gene transcription in periprosthetic hip tissue affected by chronic hip infection vs aseptic hip prosthesis loosening. A total of 39 genes had area under the curve values greater than 0.9 for diagnosing chronic periprosthetic hip infection; 5 genes had annotations relevant to infection and metabolism. The 39 genes also included 7 genes that were differentially transcribed but that have no apparent connection to immune response processes plus 27 genes with unknown function. CONCLUSION Differences in gene transcription profiles might represent novel diagnostic targets that can be used to differentiate between chronic periprosthetic hip infections and aseptic hip prosthesis loosening. Secondary metabolites of differentially transcripted genes might serve as easily accessible markers for detecting chronic periprosthetic joint infection in future.
Collapse
Affiliation(s)
- Mohamed Omar
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Frank Klawonn
- Department of Biostatistics, Helmholtz Centre for Infection Research, Braunschweig, Germany; Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Stephan Brand
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | | | - Jörg Eberhard
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
78
|
Seidling R, Lehmann LJ, Lingner M, Mauermann E, Obertacke U, Schwarz MLR. Analysis of the osseointegrative force of a hyperhydrophilic and nanostructured surface refinement for TPS surfaces in a gap healing model with the Göttingen minipig. J Orthop Surg Res 2016; 11:119. [PMID: 27751181 PMCID: PMC5067893 DOI: 10.1186/s13018-016-0434-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/31/2016] [Indexed: 12/02/2022] Open
Abstract
Background A lot of advantages can result in a high wettability as well as a nanostructure at a titanium surface on bone implants. Thus, the aim of this study was to evaluate the osseointegrative potential of a titan plasma-sprayed (TPS) surface refinement by acid-etching with chromosulfuric acid. This results in a hyperhydrophilic surface with a nanostructure and an extreme high wetting rate. Methods In total, 72 dumbbell shape titan implants were inserted in the spongy bone of the femora of 18 Göttingen minipigs in a conservative gap model. Thirty-six titan implants were coated with a standard TPS surface and 36 with the hyperhydrophilic chromosulfuric acid (CSA) surface. After a healing period of 4, 8, and 12 weeks, the animals were killed. The chronological healing process was histomorphometrically analyzed. Results The de novo bone formation, represented by the bone area (BA), is increased by approximately 1.5 times after 12 weeks with little additional benefit by use of the CSA surface. The bone-to-implant contact (BIC), which represents osseoconductive forces, shows results with a highly increased osteoid production in the CSA implants beginning at 8 and 12 weeks compared to TPS. This culminates in a 17-fold increase in BIC after a healing period of 12 weeks. After 4 weeks, significantly more osteoid was seen in the gap as de novo formation in the CSA group (p = 0.0062). Osteoid was also found more frequently after 12 weeks at the CSA-treated surface (p = 0.0355). The site of implantation, intertrochanteric or intercondylar, may influence on the de novo bone formation in the gap. Conclusions There is a benefit by the CSA surface treatment of the TPS layer for osseointegration over an observation time up to 12 weeks. Significant differences were able to be shown in two direct comparisons between the CSA and the TPS surface for osteoid formation in the gap model. Further trials may reveal the benefit of the CSA treatment of the TPS layer involving mechanical tests if possible. Electronic supplementary material The online version of this article (doi:10.1186/s13018-016-0434-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roland Seidling
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Department of Anesthesia and Intensive Care Medicine, Asklepios Südpfalzklinik Kandel, Luitpoldstr. 14, 76870, Kandel, Germany
| | - Lars J Lehmann
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Clinic of Trauma and Hand Surgery, Vincentius-Kliniken gAG Karlsruhe, Südendstr. 32, 76137, Karlsruhe, Germany
| | - Manuel Lingner
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Clinic for Anaesthesia, Intensive Care and Pain Therapy, BG Trauma Centre, Ludwig-Guttmann-Str. 13, 67071, Ludwigshafen, Germany
| | - Eckhard Mauermann
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Department for Anesthesia, Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Udo Obertacke
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Markus L R Schwarz
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
79
|
Boddupalli A, Zhu L, Bratlie KM. Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes. Adv Healthc Mater 2016; 5:2575-2594. [PMID: 27593734 DOI: 10.1002/adhm.201600532] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Indexed: 12/12/2022]
Abstract
This review focuses on materials and methods used to induce phenotypic changes in macrophages and fibroblasts. Herein, we give a brief overview on how changes in macrophages and fibroblasts phenotypes are critical biomarkers for identification of implant acceptance, wound healing effectiveness, and are also essential for evaluating the regenerative capabilities of some hybrid strategies that involve the combination of natural and synthetic materials. The different types of cells present during the host response have been extensively studied for evaluating the reaction to different materials and there are varied material approaches towards fabrication of biocompatible substrates. We discuss how natural and synthetic materials have been used to engineer desirable outcomes in lung, heart, liver, skin, and musculoskeletal implants, and how certain properties such as rigidity, surface shape, and porosity play key roles in the progression of the host response. Several fabrication strategies are discussed to control the phenotype of infiltrating macrophages and fibroblasts: decellularization of scaffolds, surface coatings, implant shape, and pore size apart from biochemical signaling pathways that can inhibit or accelerate unfavorable host responses. It is essential to factor all the different design principles and material fabrication criteria for evaluating the choice of implant materials or regenerative therapeutic strategies.
Collapse
Affiliation(s)
- Anuraag Boddupalli
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Lida Zhu
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
| | - Kaitlin M. Bratlie
- Department of Chemical & Biological Engineering; Iowa State University; 2114 Sweeney Hall Ames IA 50011 USA
- Department of Materials Science & Engineering; Iowa State University; 2220 Hoover Hall Ames IA 50011 USA
- Division of Materials Science & Engineering; Ames National Laboratory; 126 Metals Development Ames IA 50011 USA
| |
Collapse
|
80
|
Lee RSB, Hamlet SM, Ivanovski S. The influence of titanium surface characteristics on macrophage phenotype polarization during osseous healing in type I diabetic rats: a pilot study. Clin Oral Implants Res 2016; 28:e159-e168. [DOI: 10.1111/clr.12979] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Ryan S. B. Lee
- School of Dentistry and Oral Health; Centre for Medicine and Oral Health; Griffith Health Institute; Griffith University (Gold Coast Campus); Southport QLD Australia
- Menzies Health Institute Queensland; Griffith University; Gold Coast QLD Australia
| | - Stephen M. Hamlet
- School of Dentistry and Oral Health; Centre for Medicine and Oral Health; Griffith Health Institute; Griffith University (Gold Coast Campus); Southport QLD Australia
- Menzies Health Institute Queensland; Griffith University; Gold Coast QLD Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health; Centre for Medicine and Oral Health; Griffith Health Institute; Griffith University (Gold Coast Campus); Southport QLD Australia
- Menzies Health Institute Queensland; Griffith University; Gold Coast QLD Australia
| |
Collapse
|
81
|
Evaluation of the antineoplastic activity of gallic acid in oral squamous cell carcinoma under hypoxic conditions. Anticancer Drugs 2016; 27:407-16. [PMID: 26849170 DOI: 10.1097/cad.0000000000000342] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of the current study was to develop and test a theoretical model that could explain the mechanism of action of gallic acid (GA) in the oral squamous cell carcinoma context for the first time. The theoretical model was developed using bioinformatics and interaction network analysis to evaluate the effect of GA on oral squamous cell carcinoma. In a second step to confirm theoretical results, migration, invasion, proliferation, and gene expression (Col1A1, E-cadherin, HIF-1α, and caspase-3) were performed under normoxic and hypoxic conditions. Our study indicated that treatment with GA resulted in the inhibition of cell proliferation, migration, and invasion in neoplastic cells. Observation of the molecular mechanism showed that GA upregulates E-cadherin expression and downregulates Col1A1 and HIF-1α expression, suggesting that GA might be a potential anticancer compound. In conclusion, the present study demonstrated that GA significantly reduces cell proliferation, invasion, and migration by increasing E-cadherin and repressing Col1A1.
Collapse
|
82
|
Li LJ, Kim SN, Cho SA. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces. J Adv Prosthodont 2016; 8:235-40. [PMID: 27350860 PMCID: PMC4919496 DOI: 10.4047/jap.2016.8.3.235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 02/03/2023] Open
Abstract
PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies.
Collapse
Affiliation(s)
- Lin-Jie Li
- Department of Prosthodontics, College of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - So-Nam Kim
- CSM IMPLANT Surface Treatment Institute, Daegu, Republic of Korea
| | - Sung-Am Cho
- Department of Prosthodontics, College of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
83
|
Vishwakarma A, Bhise NS, Evangelista MB, Rouwkema J, Dokmeci MR, Ghaemmaghami AM, Vrana NE, Khademhosseini A. Engineering Immunomodulatory Biomaterials To Tune the Inflammatory Response. Trends Biotechnol 2016; 34:470-482. [DOI: 10.1016/j.tibtech.2016.03.009] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022]
|
84
|
Hotchkiss KM, Ayad NB, Hyzy SL, Boyan BD, Olivares-Navarrete R. Dental implant surface chemistry and energy alter macrophage activationin vitro. Clin Oral Implants Res 2016; 28:414-423. [DOI: 10.1111/clr.12814] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Kelly M. Hotchkiss
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| | - Nancy B. Ayad
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| | - Sharon L. Hyzy
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University; Georgia Institute of Technology; Atlanta GA USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering; School of Engineering; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
85
|
Zhang J, Ma J, Long K, Jin L, Liu Y, Zhou C, Tian S, Chen L, Luo Z, Tang Q, Jiang A, Wang X, Wang D, Jiang Z, Wang J, Li X, Li M. Dynamic gene expression profiles during postnatal development of porcine subcutaneous adipose. PeerJ 2016; 4:e1768. [PMID: 26989614 PMCID: PMC4793310 DOI: 10.7717/peerj.1768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 02/04/2023] Open
Abstract
A better understanding of the control of lipogenesis is of critical importance for both human and animal physiology. This requires a better knowledge of the changes of gene expression during the process of adipose tissue development. Thus, the objective of the current study was to determine the effects of development on subcutaneous adipose tissue gene expression in growing and adult pigs. Here, we present a comprehensive investigation of mRNA transcriptomes in porcine subcutaneous adipose tissue across four developmental stages using digital gene expression profiling. We identified 3,274 differential expressed genes associated with oxidative stress, immune processes, apoptosis, energy metabolism, insulin stimulus, cell cycle, angiogenesis and translation. A set of universally abundant genes (ATP8, COX2, COX3, ND1, ND2, SCD and TUBA1B) was found across all four developmental stages. This set of genes may play important roles in lipogenesis and development. We also identified development-related gene expression patterns that are linked to the different adipose phenotypes. We showed that genes enriched in significantly up-regulated profiles were associated with phosphorylation and angiogenesis. In contrast, genes enriched in significantly down-regulated profiles were related to cell cycle and cytoskeleton organization, suggesting an important role for these biological processes in adipose growth and development. These results provide a resource for studying adipose development and promote the pig as a model organism for researching the development of human obesity, as well as being used in the pig industry.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China.,Department of Animal Science, Southwest University at Rongchang, Chongqing, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yihui Liu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Chaowei Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China.,Department of Aquaculture, Southwest University at Rongchang, Chongqing, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing, China
| | - Lei Chen
- Chongqing Academy of Animal Science, Chongqing, China
| | - Zonggang Luo
- Department of Animal Science, Southwest University at Rongchang, Chongqing, China.,Chongqing Academy of Animal Science, Chongqing, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - An'an Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Dawei Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
86
|
Multifunctional commercially pure titanium for the improvement of bone integration: Multiscale topography, wettability, corrosion resistance and biological functionalization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:384-393. [DOI: 10.1016/j.msec.2015.11.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/22/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022]
|
87
|
Lee CH, Kim YJ, Jang JH, Park JW. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces. NANOTECHNOLOGY 2016; 27:085101. [PMID: 26807875 DOI: 10.1088/0957-4484/27/8/085101] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.
Collapse
Affiliation(s)
- Chung-Ho Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412, Korea
| | | | | | | |
Collapse
|
88
|
Hotchkiss KM, Reddy GB, Hyzy SL, Schwartz Z, Boyan BD, Olivares-Navarrete R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater 2016; 31:425-434. [PMID: 26675126 PMCID: PMC4728000 DOI: 10.1016/j.actbio.2015.12.003] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 11/23/2022]
Abstract
Biomaterial surface properties including chemistry, topography, and wettability regulate cell response. Previous studies have shown that increasing surface roughness of metallic orthopaedic and dental implants improved bone formation around the implant. Little is known about how implant surface properties can affect immune cells that generate a wound healing microenvironment. The aim of our study was to examine the effect of surface modifications on macrophage activation and cytokine production. Macrophages were cultured on seven surfaces: tissue culture polystyrene (TCPS) control; hydrophobic and hydrophilic smooth Ti (PT and oxygen-plasma-treated (plasma) PT); hydrophobic and hydrophilic microrough Ti (SLA and plasma SLA), and hydrophobic and hydrophilic nano-and micro-rough Ti (aged modSLA and modSLA). Smooth Ti induced inflammatory macrophage (M1-like) activation, as indicated by increased levels of interleukins IL-1β, IL-6, and TNFα. In contrast, hydrophilic rough titanium induced macrophage activation similar to the anti-inflammatory M2-like state, increasing levels of interleukins IL-4 and IL-10. These results demonstrate that macrophages cultured on high surface wettability materials produce an anti-inflammatory microenvironment, and this property may be used to improve the healing response to biomaterials. STATEMENT OF SIGNIFICANCE Metals like titanium (Ti) are common in orthopaedics and dentistry due to their ability to integrate with surrounding tissue and good biocompatibility. Roughness- and wettability-increasing surface modifications promote osteogenic differentiation of stem cells on Ti. While these modifications increase production of osteoblastic factors and bone formation, little is known about their effect on immune cells. The initial host response to a biomaterial is controlled primarily by macrophages and the factors they secrete in response to the injury caused by surgery and the material cues. Here we demonstrate the effect of surface roughness and wettability on the activation and production of inflammatory factors by macrophages. Control of inflammation will inform the design of surface modification procedures to direct the immune response and enhance the success of implanted materials.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gireesh B Reddy
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, GA, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
89
|
Alvarez MM, Liu JC, Trujillo-de Santiago G, Cha BH, Vishwakarma A, Ghaemmaghami AM, Khademhosseini A. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications. J Control Release 2016; 240:349-363. [PMID: 26778695 DOI: 10.1016/j.jconrel.2016.01.026] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/21/2022]
Abstract
Macrophages are key players in many physiological scenarios including tissue homeostasis. In response to injury, typically the balance between macrophage sub-populations shifts from an M1 phenotype (pro-inflammatory) to an M2 phenotype (anti-inflammatory). In tissue engineering scenarios, after implantation of any device, it is desirable to exercise control on this M1-M2 progression and to ensure a timely and smooth transition from the inflammatory to the healing stage. In this review, we briefly introduce the current state of knowledge regarding macrophage function and nomenclature. Next, we discuss the use of controlled release strategies to tune the balance between the M1 and M2 phenotypes in the context of tissue engineering applications. We discuss recent literature related to the release of anti-inflammatory molecules (including nucleic acids) and the sequential release of cytokines to promote a timely M1-M2 shift. In addition, we describe the use of macrophages as controlled release agents upon stimulation by physical and/or mechanical cues provided by scaffolds. Moreover, we discuss current and future applications of "smart" implantable scaffolds capable of controlling the cascade of biochemical events related to healing and vascularization. Finally, we provide our opinion on the current challenges and the future research directions to improve our understanding of the M1-M2 macrophage balance and properly exploit it in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Julie C Liu
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; School of Chemical Engineering and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Byung-Hyun Cha
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ajaykumar Vishwakarma
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Microsystems Technologies Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
90
|
Tan J, Zhao C, Wang Y, Li Y, Duan K, Wang J, Weng J, Feng B. Nano-topographic titanium modulates macrophage response in vitro and in an implant-associated rat infection model. RSC Adv 2016. [DOI: 10.1039/c6ra22667a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nano-structured titanium in an infection environment can effectively regulate the inflammatory response and promote the tissue remodeling within initial implantation.
Collapse
Affiliation(s)
- Jing Tan
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Chanjuan Zhao
- West China Second University Hospital
- Sichuan University
- China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Yiting Li
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Ke Duan
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Bo Feng
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| |
Collapse
|
91
|
Miron RJ, Bosshardt DD. OsteoMacs: Key players around bone biomaterials. Biomaterials 2015; 82:1-19. [PMID: 26735169 DOI: 10.1016/j.biomaterials.2015.12.017] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Osteal macrophages (OsteoMacs) are a special subtype of macrophage residing in bony tissues. Interesting findings from basic research have pointed to their vast and substantial roles in bone biology by demonstrating their key function in bone formation and remodeling. Despite these essential findings, much less information is available concerning their response to a variety of biomaterials used for bone regeneration with the majority of investigation primarily focused on their role during the foreign body reaction. With respect to biomaterials, it is well known that cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials. Here they demonstrate extremely plastic phenotypes with the ability to differentiate towards classical M1 or M2 macrophages, or subsequently fuse into osteoclasts or multinucleated giant cells (MNGCs). These MNGCs have previously been characterized as foreign body giant cells and associated with biomaterial rejection, however more recently their phenotypes have been implicated with wound healing and tissue regeneration by studies demonstrating their expression of key M2 markers around biomaterials. With such contrasting hypotheses, it becomes essential to better understand their roles to improve the development of osteo-compatible and osteo-promotive biomaterials. This review article expresses the necessity to further study OsteoMacs and MNGCs to understand their function in bone biomaterial tissue integration including dental/orthopedic implants and bone grafting materials.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Oral Surgery and Stomatology, Department of Periodontology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| | - Dieter D Bosshardt
- Department of Oral Surgery and Stomatology, Department of Periodontology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| |
Collapse
|
92
|
Shanbhag S, Shanbhag V, Stavropoulos A. Genomic analyses of early peri-implant bone healing in humans: a systematic review. Int J Implant Dent 2015; 1:5. [PMID: 27747627 PMCID: PMC5005705 DOI: 10.1186/s40729-015-0006-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/27/2015] [Indexed: 01/22/2023] Open
Abstract
Objective The objective of the study was to systematically review the literature for studies reporting gene expression analyses (GEA) of the biological processes involved in early human peri-implant bone healing. Methods Electronic databases (MEDLINE, EMBASE) were searched in duplicate. Controlled and uncontrolled studies reporting GEA of human peri-implant tissues - including ≥5 patients and ≥2 time points - during the first 4 weeks of healing were eligible for inclusion. Methodological quality and risk of bias were also assessed. Results Four exploratory studies were included in reporting GEA of either tissues attached to SLA or SLActive implants after 4 to 14 days or cells attached to TiOBlast or Osseospeed implants after 3 to 7 days. A total of 111 implants from 43 patients were analyzed using validated array methods; however, considerable heterogeneity and risk of bias were detected. A consistent overall pattern of gene expression was observed; genes representing an immuno-inflammatory response were overexpressed at days 3 to 4, followed by genes representing osteogenic processes at day 7. Genes representing bone remodeling, angiogenesis, and neurogenesis were expressed concomitantly with osteogenesis. Several regulators of these processes, such as cytokines, growth factors, transcription factors, and signaling pathways, were identified. Implant surface properties seemed to influence the healing processes at various stages via differential gene expression. Conclusion Limited evidence from gene expression studies in humans indicates that osteogenic processes commence within the first post-operative week and they appear influenced at various stages by implant surface properties.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Periodontology, Faculty of Odontology, Malmö University, Carl Gustafs väg 34, 214 21, Malmö, Sweden.,Centre for Oral Rehabilitation & Implant Dentistry, 1 Laxmi Niwas, 87 Bajaj Road, Vile Parle West, Mumbai, 400056, India
| | - Vivek Shanbhag
- Centre for Oral Rehabilitation & Implant Dentistry, 1 Laxmi Niwas, 87 Bajaj Road, Vile Parle West, Mumbai, 400056, India
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Carl Gustafs väg 34, 214 21, Malmö, Sweden.
| |
Collapse
|
93
|
Rostam HM, Singh S, Vrana NE, Alexander MR, Ghaemmaghami AM. Impact of surface chemistry and topography on the function of antigen presenting cells. Biomater Sci 2015. [DOI: 10.1039/c4bm00375f] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The impact of biomaterial surface topography and chemistry on antigen presenting cells’ phenotype and function.
Collapse
Affiliation(s)
- H. M. Rostam
- Immunology and Tissue Modelling Group
- School of Life Science
- University of Nottingham
- Queen's Medical Centre
- Nottingham
| | - S. Singh
- Immunology and Tissue Modelling Group
- School of Life Science
- University of Nottingham
- Queen's Medical Centre
- Nottingham
| | - N. E. Vrana
- Université de Strasbourg
- Faculté de Chirurgie Dentaire
- France
- Protip SAS
- Strasbourg
| | - M. R. Alexander
- Interface and Surface Analysis Centre
- School of Pharmacy
- University of Nottingham
- UK
| | - A. M. Ghaemmaghami
- Immunology and Tissue Modelling Group
- School of Life Science
- University of Nottingham
- Queen's Medical Centre
- Nottingham
| |
Collapse
|
94
|
Neacsu P, Mazare A, Cimpean A, Park J, Costache M, Schmuki P, Demetrescu I. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int J Biochem Cell Biol 2014; 55:187-95. [DOI: 10.1016/j.biocel.2014.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 08/08/2014] [Accepted: 09/04/2014] [Indexed: 12/24/2022]
|
95
|
Alfarsi MA, Hamlet SM, Ivanovski S. The Effect of Platelet Proteins Released in Response to Titanium Implant Surfaces on Macrophage Pro-Inflammatory Cytokine Gene Expression. Clin Implant Dent Relat Res 2014; 17:1036-47. [PMID: 24909201 DOI: 10.1111/cid.12231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Platelets are one of the earliest cell types to interact with surgically inserted titanium implants. This in vitro study investigated the effect of titanium surface-induced platelet releasate on macrophage cytokine gene expression. MATERIALS AND METHODS To mimic the in vivo temporal sequence of platelet arrival and protein production at the implant surface and the subsequent effect of these proteins on mediators of the immune response, the levels of platelet attachment and activation in response to culture on smooth polished, sandblasted and acid-etched (SLA), and hydrophilic-modified SLA (modSLA) titanium surfaces were first determined by microscopy and protein assay. The subsequent effect of the platelet-released proteins on human THP-1 macrophage cytokine gene expression was determined by polymerase chain reaction array after 1 and 3 days of macrophage culture on the titanium surfaces in platelet-releasate conditioned media. RESULTS Platelet attachment was surface dependent with decreased attachment observed on the hydrophilic (modSLA) surface. The platelet releasate, when considered independently of the surface effect, elicited an overall pro-inflammatory response in macrophage cytokine gene expression, that is, the expression of typical pro-inflammatory cytokine genes such as TNF, IL1a, IL1b, and CCL1 was significantly up-regulated whereas the expression of anti-inflammatory cytokine genes such as IL10, CxCL12, and CxCL13 was significantly down-regulated. However, following platelet exposure to different surface modifications, the platelet releasate significantly attenuated the macrophage pro-inflammatory response to microrough (SLA) titanium and hastened an anti-inflammatory response to hydrophilic (modSLA) titanium. CONCLUSIONS Theses results demonstrate that titanium surface topography and chemistry are able to influence the proteomic profile released by platelets, which can subsequently influence macrophage pro-inflammatory cytokine expression. This immunomodulation may be an important mechanism via which titanium surface modification influences osseointegration.
Collapse
Affiliation(s)
- Mohammed A Alfarsi
- Griffith Health Institute, Molecular basis of Disease Program and School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia.,College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Stephen M Hamlet
- Griffith Health Institute, Molecular basis of Disease Program and School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - Saso Ivanovski
- Griffith Health Institute, Molecular basis of Disease Program and School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| |
Collapse
|
96
|
ALFARSI MA, HAMLET SM, IVANOVSKI S. Titanium surface hydrophilicity enhances platelet activation. Dent Mater J 2014; 33:749-56. [DOI: 10.4012/dmj.2013-221] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|