51
|
Madhavan K, Frid MG, Hunter K, Shandas R, Stenmark KR, Park D. Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting. J Biomed Mater Res B Appl Biomater 2018; 106:278-290. [PMID: 28130878 PMCID: PMC6080858 DOI: 10.1002/jbm.b.33853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/15/2016] [Accepted: 01/01/2017] [Indexed: 12/19/2022]
Abstract
The optimization of biomechanical and biochemical properties of a vascular graft to render properties relevant to physiological environments is a major challenge today. These critical properties of a vascular graft not only regulate its stability and integrity, but also control invasion of cells for scaffold remodeling permitting its integration with native tissue. In this work, we have synthesized a biomimetic scaffold by electrospinning a blend of a polyurea, poly(serinol hexamethylene urea) (PSHU), and, a polyester, poly-ε-caprolactone (PCL). Mechanical properties of the scaffold were varied by varying polymer blending ratio and electrospinning flow rate. Mechanical characterization revealed that scaffolds with lower PSHU content relative to PCL content resulted in elasticity close to native mammalian arteries. We also found that increasing electrospinning flow rates also increased the elasticity of the matrix. Optimization of elasticity generated scaffolds that enabled vascular smooth muscle cells (SMCs) to adhere, grow and maintain a SMC phenotype. The 30/70 scaffold also underwent slower degradation than scaffolds with higher PSHU content, thereby, providing the best option for in vivo remodeling. Further, Gly-Arg-Gly-Asp-Ser (RGD) covalently conjugated to the polyurea backbone in 30/70 scaffold resulted in significantly increased clotting times. Reducing surface thrombogenicity by the conjugation of RGD is critical to avoiding intimal hyperplasia. Hence, biomechanical and biochemical properties of a vascular graft can be balanced by optimizing synthesis parameters and constituent components. For these reasons, the optimized RGD-conjugated 30/70 scaffold electrospun at 2.5 or 5 mL/h has great potential as a suitable material for vascular grafting applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 278-290, 2018.
Collapse
Affiliation(s)
- Krishna Madhavan
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria G. Frid
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kendall Hunter
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kurt R. Stenmark
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
52
|
Zuluaga M, Gregnanin G, Cencetti C, Di Meo C, Gueguen V, Letourneur D, Meddahi-Pellé A, Pavon-Djavid G, Matricardi P. PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: a cardiovascular approach. ACTA ACUST UNITED AC 2017; 13:015020. [PMID: 28875946 DOI: 10.1088/1748-605x/aa8a86] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
After myocardial infarction, the heart's mechanical properties and its intrinsic capability to recover are compromised. To improve this recovery, several groups have developed cardiac patches based on different biomaterials strategies. Here, we developed polyvinylalcohol/dextran (PVA/Dex) elastic hydrogel patches, obtained through the freeze thawing (FT) process, with the aim to deliver locally a potent natural antioxidant molecule, astaxanthin, and to assist the heart's response against the generated myofibril stress. Extensive rheological and dynamo-mechanical characterization of the effect of the PVA molecular weight, number of freeze-thawing cycles and Dex addition on the mechanical properties of the resulting hydrogels, were carried out. Hydrogel systems based on PVA 145 kDa and PVA 47 kDa blended with Dex 40 kDa, were chosen as the most promising candidates for this application. In order to improve astaxanthin solubility, an inclusion system using hydroxypropyl-β-cyclodextrin was prepared. This system was posteriorly loaded within the PVA/Dex hydrogels. PVA145/Dex 1FT and PVA47/Dex 3FT showed the best rheological and mechanical properties when compared to the other studied systems; environmental scanning electron microscope and confocal imaging evidenced a porous structure of the hydrogels allowing astaxanthin release. In vitro cellular behavior was analyzed after 24 h of contact with astaxanthin-loaded hydrogels. In vivo subcutaneous biocompatibility was performed in rats using PVA145/Dex 1FT, as the best compromise between mechanical support and astaxanthin delivery. Finally, ex vivo and in vivo experiments showed good mechanical and compatibility properties of this hydrogel. The obtained results showed that the studied materials have a potential to be used as myocardial patches to assist infarcted heart mechanical function and to reduce oxidative stress by the in situ release of astaxanthin.
Collapse
Affiliation(s)
- M Zuluaga
- INSERM, U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Paris 13 University, Sorbonne Paris Cite 99, Av. Jean-Baptiste Clément, F-93430 Villetaneuse, France. INSERM, U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, CHU X. Bichat, 46 rue H. Huchard, F-75018 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Neufeld MJ, Lutzke A, Jones WM, Reynolds MM. Nitric Oxide Generation from Endogenous Substrates Using Metal-Organic Frameworks: Inclusion within Poly(vinyl alcohol) Membranes To Investigate Reactivity and Therapeutic Potential. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35628-35641. [PMID: 28976734 PMCID: PMC6322413 DOI: 10.1021/acsami.7b11846] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cu-BTTri (H3BTTri = 1,3,5-tris[1H-1,2,3-triazol-5-yl]benzene) is a water-stable, copper-based metal-organic framework (MOF) that exhibits the ability to generate therapeutic nitric oxide (NO) from S-nitrosothiols (RSNOs) available within the bloodstream. Immobilization of Cu-BTTri within a polymeric membrane may allow for localized NO generation at the blood-material interface. This work demonstrates that Cu-BTTri can be incorporated within hydrophilic membranes prepared from poly(vinyl alcohol) (PVA), a polymer that has been examined for numerous biomedical applications. Following immobilization, the ability of the MOF to produce NO from the endogenous RSNO S-nitrosoglutathione (GSNO) is not significantly inhibited. Poly(vinyl alcohol) membranes containing dispersions of Cu-BTTri were tested for their ability to promote NO release from a 10 μM initial GSNO concentration at pH 7.4 and 37 °C, and NO production was observed at levels associated with antithrombotic therapeutic effects without significant copper leaching (<1%). Over 3.5 ± 0.4 h, 10 wt % Cu-BTTri/PVA membranes converted 97 ± 6% of GSNO into NO, with a maximum NO flux of 0.20 ± 0.02 nmol·cm-2·min-1. Furthermore, it was observed for the first time that Cu-BTTri is capable of inducing NO production from GSNO under aerobic conditions. At pH 6.0, the NO-forming reaction of 10 wt % Cu-BTTri/PVA membrane was accelerated by 22%, while an opposite effect was observed in the case of aqueous copper(II) chloride. Reduced temperature (20 °C) and the presence of the thiol-blocking reagent N-ethylmaleimide (NEM) impair the NO-forming reaction of Cu-BTTri/PVA with GSNO, with both conditions resulting in a decreased NO yield of 16 ± 1% over 3.5 h. Collectively, these findings suggest that Cu-BTTri/PVA membranes may have therapeutic utility through their ability to generate NO from endogenous substrates. Moreover, this work provides a more comprehensive analysis of the parameters that influence Cu-BTTri efficacy, permitting optimization for potential medical applications.
Collapse
Affiliation(s)
- Megan J. Neufeld
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Alec Lutzke
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - W. Matthew Jones
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Corresponding Author: . Tel.: + 1 970 491 3775
| |
Collapse
|
54
|
Bag MA, Valenzuela LM. Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review. Int J Mol Sci 2017; 18:E1422. [PMID: 28771174 PMCID: PMC5577991 DOI: 10.3390/ijms18081422] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
Water has a key role in the functioning of all biological systems, it mediates many biochemical reactions, as well as other biological activities such as material biocompatibility. Water is often considered as an inert solvent, however at the molecular level, it shows different behavior when sorbed onto surfaces like polymeric implants. Three states of water have been recognized: non-freezable water, which does not freeze even at -100 °C; intermediate water, which freezes below 0 °C; and, free water, which freezes at 0 °C like bulk water. This review describes the different states of water and the techniques for their identification and quantification, and analyzes their relationship with hemocompatibility in polymer surfaces. Intermediate water content higher than 3 wt % is related to better hemocompatibility for poly(ethylene glycol), poly(meth)acrylates, aliphatic carbonyls, and poly(lactic-co-glycolic acid) surfaces. Therefore, characterizing water states in addition to water content is key for polymer selection and material design for medical applications.
Collapse
Affiliation(s)
- Min A Bag
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| | - Loreto M Valenzuela
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
- Research Center for Nanotechnology and Advanced Materials "CIEN-UC", Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| |
Collapse
|
55
|
Flores-Arriaga JC, de Jesús Pozos-Guillén A, Escobar-García DM, Grandfils C, Cerda-Cristerna BI. Cell viability and hemocompatibility evaluation of a starch-based hydrogel loaded with hydroxyapatite or calcium carbonate for maxillofacial bone regeneration. Odontology 2017; 105:398-407. [PMID: 28386653 DOI: 10.1007/s10266-017-0301-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022]
Abstract
The objective of this study is to evaluate the cell viability and hemocompatibility of starch-based hydrogels for maxillofacial bone regeneration. Seven starch-based hydrogels were prepared: three loaded with 0.5, 1 and 2% calcium carbonate (Sigma Aldrich, St. Louis, MO, USA); three loaded with 2, 3 and 4% hydroxyapatite (Sigma Aldrich); and one not loaded as a control. A 10 M NaOH was then added to induce hydrogel formation. Human osteoblasts were cultured on each hydrogel for 72 h. An MTS assay (Cell Titer96; PROMEGA, Madison, WI, USA) was used to assess cell viability. Hemocompatibility testing was conducted with normal human blood in the following conditions: 100 mg of each hydrogel in contact with 900 µL of whole blood for 15 min at 37 °C under lateral stirring. Higher percentages of cell viability were observed in starch-based hydrogels loaded with hydroxyapatite as compared with the control. The hemolysis test showed a hemolysis level lower than 2%. Activated partial thromboplastin time and prothrombin time were unchanged, while platelet counting showed a slight decrease when compared with controls.
Collapse
|
56
|
Bisker G, Iverson NM, Ahn J, Strano MS. A pharmacokinetic model of a tissue implantable insulin sensor. Adv Healthc Mater 2015; 4:87-97. [PMID: 25080048 PMCID: PMC6438194 DOI: 10.1002/adhm.201400264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/23/2014] [Indexed: 12/31/2022]
Abstract
While implantable sensors such as the continuous glucose monitoring system have been widely studied, both experimentally and mathematically, relatively little attention has been applied to the potential of insulin sensors. Such sensors can provide feedback control for insulin infusion systems and pumps and provide platforms for the monitoring of other biomarkers in vivo. In this work, the first pharmacokinetic model of an affinity sensor is developed for insulin operating subcutaneously in the limit of where mass transfer across biological membranes reaches a steady state. Using a physiological, compartmental model for glucose, insulin, and glucagon metabolism, the maximum sensor response and its delay time relative to plasma insulin concentration, are calculated based on sensor geometry, placement, and insulin binding parameters for a sensor localized within adipose tissue. A design relation is derived linking sensor dynamics to insulin time lag and placement within human tissue. The model should find utility in understanding dynamic insulin responses and forms the basis of model predictive control algorithms that incorporate sensor dynamics.
Collapse
Affiliation(s)
- Gili Bisker
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | | | | | | |
Collapse
|
57
|
Watson N, Divers R, Kedar R, Mehindru A, Mehindru A, Borlongan MC, Borlongan CV. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy 2014; 17:18-24. [PMID: 25442786 DOI: 10.1016/j.jcyt.2014.08.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multi-potent cells that have the capability of differentiating into adipogenic, osteogenic, chondrogenic and neural cells. With these multiple capabilities, MSCs have been highly regarded as an effective transplantable cell source for regenerative medicine. A large bank of these cells can be found in several regions of the human umbilical cord, including the umbilical cord lining, the subendothelial layer, the perivascular zone and, most important, in Wharton jelly (WJ). These cells, all umbilical cord-derived MSCs, are durable, have large loading capacities and are considered ethical to harvest because the umbilical cord is often considered waste. These logistical advantages make WJ as appealing source of stem cells for transplant therapy. In particular, WJ is a predominantly good source of cells because MSCs in WJ are maintained in an early embryologic phase and therefore have retained some of the primitive stemness properties. WJ-MSCs can easily differentiate into a plethora of cell types leading to a variety of applications. In addition, WJ-MSCs are slightly easier to harvest compared with other MSCs (such as bone marrow-derived MSCs). The fascinating stemness properties and therapeutic potential of WJ-MSCs provide great promise in many aspects of regenerative medicine and should be considered for further investigations as safe and effective donor cells for transplantation therapy in many debilitating disorders, which are discussed here. We previously reviewed the therapeutic potential of WJ-MSCs and now provide an update on their recent preclinical and clinical applications.
Collapse
Affiliation(s)
- Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ryan Divers
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Roshan Kedar
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ankur Mehindru
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Anuj Mehindru
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mia C Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida.
| |
Collapse
|
58
|
Aubry P, Brochet E, Fretay XHD, Bouton-Brochet S, Ibrahim H, Arrault X, Hvass U, Juliard JM. Early Malfunction of Polyvinyl Alcohol Membrane–Covered Atrial Septal Defect Closure Devices. Circ Cardiovasc Interv 2014; 7:721-2. [DOI: 10.1161/circinterventions.114.001429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Pierre Aubry
- From the Department of Cardiology (P.A., E.B., S.B.-B., J.-M.J.), Department of Anesthesiology (H.I.), Department of Pharmacy (X.A.), and Department of Cardiac Surgery (U.H.), Groupe Hospitalier Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France; and Department of Cardiology, Centre Hospitalier Régional, Orléans, France (X.H.d.F.)
| | - Eric Brochet
- From the Department of Cardiology (P.A., E.B., S.B.-B., J.-M.J.), Department of Anesthesiology (H.I.), Department of Pharmacy (X.A.), and Department of Cardiac Surgery (U.H.), Groupe Hospitalier Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France; and Department of Cardiology, Centre Hospitalier Régional, Orléans, France (X.H.d.F.)
| | - Xavier Halna du Fretay
- From the Department of Cardiology (P.A., E.B., S.B.-B., J.-M.J.), Department of Anesthesiology (H.I.), Department of Pharmacy (X.A.), and Department of Cardiac Surgery (U.H.), Groupe Hospitalier Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France; and Department of Cardiology, Centre Hospitalier Régional, Orléans, France (X.H.d.F.)
| | - Sophie Bouton-Brochet
- From the Department of Cardiology (P.A., E.B., S.B.-B., J.-M.J.), Department of Anesthesiology (H.I.), Department of Pharmacy (X.A.), and Department of Cardiac Surgery (U.H.), Groupe Hospitalier Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France; and Department of Cardiology, Centre Hospitalier Régional, Orléans, France (X.H.d.F.)
| | - Hassan Ibrahim
- From the Department of Cardiology (P.A., E.B., S.B.-B., J.-M.J.), Department of Anesthesiology (H.I.), Department of Pharmacy (X.A.), and Department of Cardiac Surgery (U.H.), Groupe Hospitalier Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France; and Department of Cardiology, Centre Hospitalier Régional, Orléans, France (X.H.d.F.)
| | - Xavier Arrault
- From the Department of Cardiology (P.A., E.B., S.B.-B., J.-M.J.), Department of Anesthesiology (H.I.), Department of Pharmacy (X.A.), and Department of Cardiac Surgery (U.H.), Groupe Hospitalier Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France; and Department of Cardiology, Centre Hospitalier Régional, Orléans, France (X.H.d.F.)
| | - Ulrik Hvass
- From the Department of Cardiology (P.A., E.B., S.B.-B., J.-M.J.), Department of Anesthesiology (H.I.), Department of Pharmacy (X.A.), and Department of Cardiac Surgery (U.H.), Groupe Hospitalier Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France; and Department of Cardiology, Centre Hospitalier Régional, Orléans, France (X.H.d.F.)
| | - Jean-Michel Juliard
- From the Department of Cardiology (P.A., E.B., S.B.-B., J.-M.J.), Department of Anesthesiology (H.I.), Department of Pharmacy (X.A.), and Department of Cardiac Surgery (U.H.), Groupe Hospitalier Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France; and Department of Cardiology, Centre Hospitalier Régional, Orléans, France (X.H.d.F.)
| |
Collapse
|