51
|
Touré A. Importance of SLC26 Transmembrane Anion Exchangers in Sperm Post-testicular Maturation and Fertilization Potential. Front Cell Dev Biol 2019; 7:230. [PMID: 31681763 PMCID: PMC6813192 DOI: 10.3389/fcell.2019.00230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
In mammals, sperm cells produced within the testis are structurally differentiated but remain immotile and are unable to fertilize the oocyte unless they undergo a series of maturation events during their transit in the male and female genital tracts. This post-testicular functional maturation is known to rely on the micro-environment of both male and female genital tracts, and is tightly controlled by the pH of their luminal milieus. In particular, within the epididymis, the establishment of a low bicarbonate (HCO3–) concentration contributes to luminal acidification, which is necessary for sperm maturation and subsequent storage in a quiescent state. Following ejaculation, sperm is exposed to the basic pH of the female genital tract and bicarbonate (HCO3–), calcium (Ca2+), and chloride (Cl–) influxes induce biochemical and electrophysiological changes to the sperm cells (cytoplasmic alkalinization, increased cAMP concentration, and protein phosphorylation cascades), which are indispensable for the acquisition of fertilization potential, a process called capacitation. Solute carrier 26 (SLC26) members are conserved membranous proteins that mediate the transport of various anions across the plasma membrane of epithelial cells and constitute important regulators of pH and HCO3– concentration. Most SLC26 members were shown to physically interact and cooperate with the cystic fibrosis transmembrane conductance regulator channel (CFTR) in various epithelia, mainly by stimulating its Cl– channel activity. Among SLC26 members, the function of SLC26A3, A6, and A8 were particularly investigated in the male genital tract and the sperm cells. In this review, we will focus on SLC26s contributions to ionic- and pH-dependent processes during sperm post-testicular maturation. We will specify the current knowledge regarding their functions, based on data from the literature generated by means of in vitro and in vivo studies in knock-out mouse models together with genetic studies of infertile patients. We will also discuss the limits of those studies, the current research gaps and identify some key points for potential developments in this field.
Collapse
Affiliation(s)
- Aminata Touré
- INSERM U1016, Centre National de la Recherche Scientifique, UMR 8104, Institut Cochin, Université de Paris, Paris, France
| |
Collapse
|
52
|
Weigel Muñoz M, Battistone MA, Carvajal G, Maldera JA, Curci L, Torres P, Lombardo D, Pignataro OP, Da Ros VG, Cuasnicú PS. Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-Rich Secretory Protein 1 (CRISP1). Biol Reprod 2019; 99:373-383. [PMID: 29481619 DOI: 10.1093/biolre/ioy048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/21/2018] [Indexed: 01/14/2023] Open
Abstract
Epididymal sperm protein CRISP1 has the ability to both regulate murine CatSper, a key sperm calcium channel, and interact with egg-binding sites during fertilization. In spite of its relevance for sperm function, Crisp1-/-mice are fertile. Considering that phenotypes can be influenced by the genetic background, in the present work mice from the original mixed Crisp1-/- colony (129/SvEv*C57BL/6) were backcrossed onto the C57BL/6 strain for subsequent analysis of their reproductive phenotype. Whereas fertility and fertilization rates of C57BL/6 Crisp1-/- males did not differ from those reported for mice from the mixed background, several sperm functional parameters were clearly affected by the genetic background. Crisp1-/- sperm from the homogeneous background exhibited defects in both the progesterone-induced acrosome reaction and motility not observed in the mixed background, and normal rather than reduced protein tyrosine phosphorylation. Additional studies revealed a significant decrease in sperm hyperactivation as well as in cAMP and protein kinase A (PKA) substrate phosphorylation levels in sperm from both colonies. The finding that exposure of mutant sperm to a cAMP analog and phosphodiesterase inhibitor overcame the sperm functional defects observed in each colony indicated that a common cAMP-PKA signaling defect led to different phenotypes depending on the genetic background. Altogether, our observations indicate that the phenotype of CRISP1 null males is modulated by the genetic context and reveal new roles for the protein in both the functional events and signaling pathways associated to capacitation.
Collapse
Affiliation(s)
- Mariana Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - María A Battistone
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Guillermo Carvajal
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Julieta A Maldera
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Ludmila Curci
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Pablo Torres
- Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Lombardo
- Instituto de Investigación y Tecnología en Reproducción Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar P Pignataro
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanina G Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Patricia S Cuasnicú
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
53
|
Cyclin-CDK Complexes are Key Controllers of Capacitation-Dependent Actin Dynamics in Mammalian Spermatozoa. Int J Mol Sci 2019; 20:ijms20174236. [PMID: 31470670 PMCID: PMC6747110 DOI: 10.3390/ijms20174236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional maturation process to acquire the competence to fertilize the female egg. During this process, called capacitation, the actin cytoskeleton dramatically changes its organization. First, actin fibers polymerize, forming a network over the anterior part of the sperm cells head, and then it rapidly depolymerizes and disappears during the exocytosis of the acrosome content (the acrosome reaction (AR)). Here, we developed a computational model representing the actin dynamics (AD) process on mature spermatozoa. In particular, we represented all the molecular events known to be involved in AD as a network of nodes linked by edges (the interactions). After the network enrichment, using an online resource (STRING), we carried out the statistical analysis on its topology, identifying the controllers of the system and validating them in an experiment of targeted versus random attack to the network. Interestingly, among them, we found that cyclin-dependent kinase (cyclin–CDK) complexes are acting as stronger controllers. This finding is of great interest since it suggests the key role that cyclin–CDK complexes could play in controlling AD during sperm capacitation, leading us to propose a new and interesting non-genomic role for these molecules.
Collapse
|
54
|
Alonso CAI, Lottero-Leconte R, Luque GM, Vernaz ZJ, Di Siervi N, Gervasi MG, Buffone MG, Davio C, Perez-Martinez S. MRP4-mediated cAMP efflux is essential for mouse spermatozoa capacitation. J Cell Sci 2019; 132:jcs.230565. [PMID: 31253671 DOI: 10.1242/jcs.230565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
Mammalian spermatozoa must undergo biochemical and structural changes to acquire the capacity for fertilization, in a process known as capacitation. Activation of PKA enzymes is essential for capacitation, and thus cAMP levels are tightly regulated during this process. Previously, we demonstrated that during capacitation, bovine spermatozoa extrude cAMP through multidrug resistance-associated protein 4 (MRP4, also known as ABCC4), which regulates intracellular levels of the nucleotide and provides cAMP to the extracellular space. Here, we report the presence of functional MRP4 in murine spermatozoa, since its pharmacological inhibition with MK571 decreased levels of extracellular cAMP. This also produced a sudden increase in PKA activity, with decreased tyrosine phosphorylation at the end of capacitation. Blockade of MRP4 inhibited induction of acrosome reaction, hyperactivation and in vitro fertilization. Moreover, MRP4 inhibition generated an increase in Ca2+ levels mediated by PKA, and depletion of Ca2+ salts from the medium prevented the loss of motility and phosphotyrosine inhibition produced by MK571. These results were supported using spermatozoa from CatSper Ca2+ channel knockout mice. Taken together, these results suggest that cAMP efflux via MRP4 plays an essential role in mouse sperm capacitation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- C A I Alonso
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - R Lottero-Leconte
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - G M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Z J Vernaz
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - N Di Siervi
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - M G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - M G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - C Davio
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - S Perez-Martinez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
55
|
Pini T, de Graaf SP, Druart X, Tsikis G, Labas V, Teixeira-Gomes AP, Gadella BM, Leahy T. Binder of Sperm Proteins 1 and 5 have contrasting effects on the capacitation of ram spermatozoa. Biol Reprod 2019; 98:765-775. [PMID: 29415221 DOI: 10.1093/biolre/ioy032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/01/2018] [Indexed: 11/13/2022] Open
Abstract
Binder of Sperm Proteins (BSPs) are the most abundant seminal plasma protein family in the ram and bull. They have been extensively studied in the bull but less is known about their function in ovine seminal plasma and current knowledge suggests that BSPs may have different effects in these two species. In the bull, they facilitate capacitation and destabilize the sperm membrane during in vitro handling, whereas in the ram, they appear to stabilize the sperm membrane and prevent cryopreservation-induced capacitation-like changes. Further investigation into the effects of BSPs on ram spermatozoa under capacitating conditions is required to further clarify their physiological roles in the ram. We investigated the effects of Binder of Sperm Proteins 1 and 5 on epididymal ram spermatozoa in conditions of low, moderate, and high cAMP. BSPs had minimal effects on sperm function in low-cAMP conditions, but caused significant changes under cAMP upregulation. BSP1 stabilized the membrane and qualitatively reduced protein tyrosine phosphorylation, but significantly increased cholesterol efflux and induced spontaneous acrosome reactions. BSP5 slightly increased spontaneous acrosome reactions and caused sperm necrosis. However, BSP5 had minimal effects on membrane lipid order and cholesterol efflux and did not inhibit protein tyrosine phosphorylation. These findings demonstrate that under maximal cAMP upregulation, BSP1 affected ram spermatozoa in a manner comparable to bull spermatozoa, while BSP5 did not.
Collapse
Affiliation(s)
- Taylor Pini
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Simon P de Graaf
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Le Centre National de la Recherche Scientifique, Institut Francais du Cheval et de L'Equitation, Université de Tours, Nouzilly, France
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Le Centre National de la Recherche Scientifique, Institut Francais du Cheval et de L'Equitation, Université de Tours, Nouzilly, France
| | - Valerie Labas
- Plate-forme de Chirurgie et Imagerie pour la Recherche et l'Enseignement, Pôle d'Analyse et d'Imagerie des Biomolécules, Institut National de la Recherche Agronomique, Nouzilly, France
| | - Ana Paula Teixeira-Gomes
- Plate-forme de Chirurgie et Imagerie pour la Recherche et l'Enseignement, Pôle d'Analyse et d'Imagerie des Biomolécules, Institut National de la Recherche Agronomique, Nouzilly, France
| | - Barend M Gadella
- Department of Farm Animal Health and Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tamara Leahy
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
56
|
Regulation of boar sperm functionality by the nitric oxide synthase/nitric oxide system. J Assist Reprod Genet 2019; 36:1721-1736. [PMID: 31325069 PMCID: PMC6707978 DOI: 10.1007/s10815-019-01526-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Nitric oxide (NO) is a free radical synthesized mainly by nitric oxide synthases (NOSs). NO regulates many aspects in sperm physiology in different species. However, in vitro studies investigating NOS distribution, and how NO influences sperm capacitation and fertilization (IVF) in porcine, have been lacking. Therefore, our study aimed to clarify these aspects. Methods Two main experiments were conducted: (i) boar spermatozoa were capacitated in the presence/absence of S-nitrosoglutathione (GSNO), a NO donor, and two NOS inhibitors, NG-nitro-L-arginine methyl ester hydrochloride (L-NAME) and aminoguanidine hemisulfate salt (AG), and (ii) IVF was performed in the presence or not of these supplements, but neither the oocytes nor the sperm were previously incubated in the supplemented media. Results Our results suggest that NOS distribution could be connected to pathways which lead to capacitation. Treatments showed significant differences after 30 min of incubation, compared to time zero in almost all motility parameters (P < 0.05). When NOSs were inhibited, three protein kinase A (PKA) substrates (~ 75, ~ 55, and ~50 kDa) showed lower phosphorylation levels between treatments (P < 0.05). No differences were observed in total tyrosine phosphorylation levels evaluated by Western blotting nor in situ. The percentage of acrosome-reacted sperm and phosphatidylserine translocation was significantly lower with L-NAME. Both inhibitors reduced sperm intracellular calcium concentration and IVF parameters, but L-NAME impaired sperm ability to penetrate denuded oocytes. Conclusions These findings point out to the importance of both sperm and cumulus-oocyte-derived NO in the IVF outcome in porcine. Electronic supplementary material The online version of this article (10.1007/s10815-019-01526-6) contains supplementary material, which is available to authorized users.
Collapse
|
57
|
Dual Sensing of Physiologic pH and Calcium by EFCAB9 Regulates Sperm Motility. Cell 2019; 177:1480-1494.e19. [PMID: 31056283 PMCID: PMC8808721 DOI: 10.1016/j.cell.2019.03.047] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 11/24/2022]
Abstract
Varying pH of luminal fluid along the female reproductive tract is a physiological cue that modulates sperm motility. CatSper is a sperm-specific, pH-sensitive calcium channel essential for hyperactivated motility and male fertility. Multi-subunit CatSper channel complexes organize linear Ca2+ signaling nanodomains along the sperm tail. Here, we identify EF-hand calcium-binding domain-containing protein 9 (EFCAB9) as a bifunctional, cytoplasmic machine modulating the channel activity and the domain organization of CatSper. Knockout mice studies demonstrate that EFCAB9, in complex with the CatSper subunit, CATSPERζ, is essential for pH-dependent and Ca2+-sensitive activation of the CatSper channel. In the absence of EFCAB9, sperm motility and fertility is compromised, and the linear arrangement of the Ca2+ signaling domains is disrupted. EFCAB9 interacts directly with CATSPERζ in a Ca2+-dependent manner and dissociates at elevated pH. These observations suggest that EFCAB9 is a long-sought, intracellular, pH-dependent Ca2+ sensor that triggers changes in sperm motility.
Collapse
|
58
|
Macías-García B, García-Marín LJ, Bragado MJ, González-Fernández L. The calcium-sensing receptor regulates protein tyrosine phosphorylation through PDK1 in boar spermatozoa. Mol Reprod Dev 2019; 86:751-761. [PMID: 31074040 DOI: 10.1002/mrd.23160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/25/2022]
Abstract
Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium-sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3-phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H-89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.
Collapse
Affiliation(s)
- Beatriz Macías-García
- Research Institute of Biotechnology in Livestock and Cynegetic (INBIO G+C), University of Extremadura, Cáceres, Spain.,Animal Medicine Department, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| | - Luis J García-Marín
- Research Institute of Biotechnology in Livestock and Cynegetic (INBIO G+C), University of Extremadura, Cáceres, Spain.,Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| | - María J Bragado
- Research Institute of Biotechnology in Livestock and Cynegetic (INBIO G+C), University of Extremadura, Cáceres, Spain.,Department of Biochemistry and Molecular Biology and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| | - Lauro González-Fernández
- Research Institute of Biotechnology in Livestock and Cynegetic (INBIO G+C), University of Extremadura, Cáceres, Spain.,Department of Biochemistry and Molecular Biology and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain
| |
Collapse
|
59
|
Soriano-Úbeda C, Romero-Aguirregomezcorta J, Matás C, Visconti PE, García-Vázquez FA. Manipulation of bicarbonate concentration in sperm capacitation media improvesin vitro fertilisation output in porcine species. J Anim Sci Biotechnol 2019; 10:19. [PMID: 30899459 PMCID: PMC6410524 DOI: 10.1186/s40104-019-0324-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/17/2019] [Indexed: 05/30/2023] Open
Abstract
Background The in vivo concentration of bicarbonate (HCO3 -), one of the essential sperm capacitating effectors, varies greatly in the different environments sperm go through from cauda epididymis to the fertilisation site. On the contrary, porcine in vitro sperm capacitation and fertilisation media usually contains a standard concentration of 25 mmol/L, and one of the main problems presented is the unacceptable high incidence of polyspermy. This work hypothesised that by modifying the HCO3 - concentration of the medium, the output of in vitro sperm capacitation and fertilisation could be increased. Results Once exposed to the capacitation medium, the intracellular pH (pHi) of spermatozoa increased immediately even at low concentrations of HCO3 -, but only extracellular concentrations of and above 15 mmol/L increased the substrates protein kinase A phosphorylation (pPKAs). Although with a significant delay, 15 mmol/L of HCO3 - stimulated sperm linear motility and increased other late events in capacitation such as tyrosine phosphorylation (Tyr-P) to levels similar to those obtained with 25 mmol/L. This information allowed the establishment of a new in vitro fertilisation (IVF) system based on the optimization of HCO3 - concentration to 15 mmol/L, which led to a 25.3% increment of the viable zygotes (8.6% in the standard system vs. 33.9%). Conclusions Optimising HCO3 - concentrations allows for establishing an IVF method that significantly reduced porcine polyspermy and increased the production of viable zygotes. A concentration of 15 mmol/L of HCO3 - in the medium is sufficient to trigger the in vitro sperm capacitation and increase the fertilisation efficiency in porcine.
Collapse
Affiliation(s)
- Cristina Soriano-Úbeda
- 1Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.,2Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Jon Romero-Aguirregomezcorta
- 3Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia Spain
| | - Carmen Matás
- 1Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.,2Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA USA
| | - Francisco A García-Vázquez
- 1Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.,2Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
60
|
Allouche-Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn 2. Mol Reprod Dev 2019; 86:502-515. [PMID: 30746812 DOI: 10.1002/mrd.23128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/14/2018] [Accepted: 03/15/2018] [Indexed: 11/11/2022]
Abstract
To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyperactivated motility (HAM). The semen contains Zn2+ in millimolar concentrations, whereas in the female reproductive tract the concentration is around 1 µM. In this study, we characterize the role of Zn 2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of G protein-coupled receptor 39 (GPR39) type Zn-receptor localized mainly in the sperm tail. Zn 2+ at micromolar concentration stimulates HAM, which is mediated by a cascade involving GPR39-AC-cAMP-PKA-Src-EGFR and phospholipase C. Both the transmembrane adenylyl cyclase (AC) and the soluble-AC are involved in the stimulation of HAM by Zn 2+ . The development of HAM is precisely regulated by cyclic adenosine monophosphate, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn 2+ were added to the cells; low Zn 2+ stimulated HAM, whereas at relatively high Zn 2+ , no effect was seen. We further demonstrate that the Ca 2+ -channel CatSper involved in Zn 2+ -stimulated HAM. These data support a role for extracellular Zn 2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction.
Collapse
Affiliation(s)
| | - Danit Bakhshi
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Breitbart
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
61
|
García-Vázquez FA, Soriano-Úbeda C, Laguna-Barraza R, Izquierdo-Rico MJ, Navarrete FA, Visconti PE, Gutiérrez-Adán A, Coy P. Tissue plasminogen activator (tPA) of paternal origin is necessary for the success of in vitro but not of in vivo fertilisation in the mouse. Reprod Fertil Dev 2019; 31:433-442. [DOI: 10.1071/rd18175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/09/2018] [Indexed: 11/23/2022] Open
Abstract
Besides its fibrinolytic function, the plasminogen–plasmin (PLG–PLA) system is also involved in fertilisation, where plasminogen activators bind to plasminogen to produce plasmin, which modulates sperm binding to the zona pellucida. However, controversy exists, depending on the species, concerning the role of the different components of the system. This study focused its attention on the role of the PLG–PLA system on fertilisation in the mouse with special attention to tissue plasminogen activator (tPA). The presence of exogenous plasminogen reduced invitro fertilisation (IVF) rates and this decline was attenuated by the presence of plasmin inhibitors in combination with plasminogen. The incubation of spermatozoa with either oocytes or cumulus cells together with plasminogen did not change the acrosome reaction but reduced the number of spermatozoa attached. When spermatozoa from tPA−/− mice were used, the IVF rate decreased drastically, although the addition of exogenous tPA during gamete co-incubation under invitro conditions increased fertilisation success. Moreover, fertility could not be restored after invivo insemination of tPA−/− spermatozoa in the female ampulla, although tPA−/− males were able to fertilise invivo. This study suggests a regulatory role of the PLG–PLA system during fertilisation in the mouse with possible implications in human reproduction clinics, such as failures in tPA production, which could be partially resolved by the addition of exogenous tPA during IVF treatment.
Collapse
|
62
|
Beigi Harchegani A, Irandoost A, Mirnamniha M, Rahmani H, Tahmasbpour E, Shahriary A. Possible Mechanisms for The Effects of Calcium Deficiency on Male Infertility. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019. [PMID: 30291684 DOI: 10.2074/ijfs.2019.5420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Calcium (Ca) is a significant element that acts as an intracellular second messenger. It is necessary for many physiological processes in spermatozoa including spermatogenesis, sperm motility, capacitation, acrosome reaction and fertilization. Although influences of Ca deficiency on sperm function and male infertility have been widely studied, mechanisms for these abnormalities are not well considered. Poor sperm motility, impairment of chemotaxis, capacitation, acrosome reaction and steroidogenesis are the major mechanisms by which Ca deficiency induces male infertility. Therefore, an optimal seminal Ca concentration is required to strengthen sperm function and all steps leading to successful fertilization. Furthermore, identification of these mechanisms provides valuable information regarding the mechanisms of Ca deficiency on male reproductive system and the way for developing a better clinical approach. In this review, we aim to discuss the proposed cellular and molecular mechanisms of Ca deficiency on male reproductive system, sperm function and male fertility. Also we will discuss the valuable information currently available for the roles of Ca in male reproduction.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Irandoost
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdiyeh Mirnamniha
- Department of Medical Radiation Engineering, Central Tehran Branch, Islamic Azad, Tehran, Iran
| | - Hamid Rahmani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran. Electronic Address:
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
63
|
Beigi Harchegani A, Irandoost A, Mirnamniha M, Rahmani H, Tahmasbpour E, Shahriary A. Possible Mechanisms for The Effects of Calcium Deficiency on Male Infertility. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2018; 12:267-272. [PMID: 30291684 PMCID: PMC6186280 DOI: 10.22074/ijfs.2019.5420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/29/2018] [Indexed: 01/15/2023]
Abstract
Calcium (Ca) is a significant element that acts as an intracellular second messenger. It is necessary for many physi-
ological processes in spermatozoa including spermatogenesis, sperm motility, capacitation, acrosome reaction and
fertilization. Although influences of Ca deficiency on sperm function and male infertility have been widely studied,
mechanisms for these abnormalities are not well considered. Poor sperm motility, impairment of chemotaxis, capaci-
tation, acrosome reaction and steroidogenesis are the major mechanisms by which Ca deficiency induces male infertil-
ity. Therefore, an optimal seminal Ca concentration is required to strengthen sperm function and all steps leading to
successful fertilization. Furthermore, identification of these mechanisms provides valuable information regarding the
mechanisms of Ca deficiency on male reproductive system and the way for developing a better clinical approach. In
this review, we aim to discuss the proposed cellular and molecular mechanisms of Ca deficiency on male reproductive
system, sperm function and male fertility. Also we will discuss the valuable information currently available for the
roles of Ca in male reproduction.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Irandoost
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdiyeh Mirnamniha
- Department of Medical Radiation Engineering, Central Tehran Branch, Islamic Azad, Tehran, Iran
| | - Hamid Rahmani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran. Electronic Address:
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
64
|
Orta G, de la Vega-Beltran JL, Martín-Hidalgo D, Santi CM, Visconti PE, Darszon A. CatSper channels are regulated by protein kinase A. J Biol Chem 2018; 293:16830-16841. [PMID: 30213858 DOI: 10.1074/jbc.ra117.001566] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/05/2018] [Indexed: 11/06/2022] Open
Abstract
Mammalian sperm must undergo capacitation as a preparation for entering into hyperactivated motility, undergoing the acrosome reaction, and acquiring fertilizing ability. One of the initial capacitation events occurs when sperm encounter an elevated HCO3 - concentration. This anion activates the atypical adenylyl cyclase Adcy10, increases intracellular cAMP, and stimulates protein kinase A (PKA). Moreover, an increase in intracellular Ca2+ concentration ([Ca2+] i ) is essential for sperm capacitation. Although a cross-talk between cAMP-dependent pathways and Ca2+ clearly plays an essential role in sperm capacitation, the connection between these signaling events is incompletely understood. Here, using three different approaches, we found that CatSper, the main sperm Ca2+ channel characterized to date, is up-regulated by a cAMP-dependent activation of PKA in mouse sperm. First, HCO3 - and the PKA-activating permeable compound 8-Br-cAMP induced an increase in [Ca2+] i , which was blocked by the PKA peptide inhibitor PKI, and H89, another PKA inhibitor, also abrogated the 8-Br-cAMP response. Second, HCO3 - increased the membrane depolarization induced upon divalent cation removal by promoting influx of monovalent cations through CatSper channels, which was inhibited by PKI, H89, and the CatSper blocker HC-056456. Third, electrophysiological patch clamp, whole-cell recordings revealed that CatSper activity is up-regulated by HCO3 - and by direct cAMP injection through the patch-clamp pipette. The activation by HCO3 - and cAMP was also blocked by PKI, H89, Rp-cAMPS, and HC-056456, and electrophysiological recordings in sperm from CatSper-KO mice confirmed CatSper's role in these activation modes. Our results strongly suggest that PKA-dependent phosphorylation regulates [Ca2+] i homeostasis by activating CatSper channel complexes.
Collapse
Affiliation(s)
- Gerardo Orta
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - José Luis de la Vega-Beltran
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - David Martín-Hidalgo
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Celia M Santi
- Department of Obstetrics and Gynecology and.,Department of Neurosciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Alberto Darszon
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México,
| |
Collapse
|
65
|
Brukman NG, Nuñez SY, Puga Molina LDC, Buffone MG, Darszon A, Cuasnicu PS, Da Ros VG. Tyrosine phosphorylation signaling regulates Ca 2+ entry by affecting intracellular pH during human sperm capacitation. J Cell Physiol 2018; 234:5276-5288. [PMID: 30203545 DOI: 10.1002/jcp.27337] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
Abstract
Capacitation is a mandatory process for the acquisition of mammalian sperm fertilization competence and involves the activation of a complex and still not fully understood system of signaling pathways. Under in vitro conditions, there is an increase in both protein tyrosine phosphorylation (pTyr) and intracellular Ca2+ levels in several species. In human sperm, results from our group revealed that pTyr signaling can be blocked by inhibiting proline-rich tyrosine kinase 2 (PYK2). Based on the role of PYK2 in other cell types, we investigated whether the PYK2-dependent pTyr cascade serves as a sensor for Ca 2+ signaling during human sperm capacitation. Flow cytometry studies showed that exposure of sperm to the PYK2 inhibitor N-[2-[[[2-[(2,3-dihydro-2-oxo-1 H-indol-5-yl)amino]-5-(trifluoromethyl)-4-pyrimidinyl]amino]methyl]phenyl]- N-methyl-methanesulfonamide hydrate (PF431396) produced a significant and concentration-dependent reduction in intracellular Ca 2+ levels during capacitation. Further studies revealed that PF431396-treated sperm exhibited a decrease in the activity of CatSper, a key sperm Ca 2+ channel. In addition, time course studies during capacitation in the presence of PF431396 showed a significant and sustained decrease in both intracellular Ca 2+ and pH levels after 2 hr of incubation, temporarily coincident with the activation of PYK2 during capacitation. Interestingly, decreases in Ca 2+ levels and progressive motility caused by PF431396 were reverted by inducing intracellular alkalinization with NH 4 Cl, without affecting the pTyr blockage. Altogether, these observations support pTyr as an intracellular sensor for Ca 2+ entry in human sperm through regulation of cytoplasmic pH. These results contribute to a better understanding of the modulation of the polymodal CatSper and signaling pathways involved in human sperm capacitation.
Collapse
Affiliation(s)
- Nicolás Gastón Brukman
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Sol Yanel Nuñez
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Lis Del Carmen Puga Molina
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Gabriel Buffone
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Patricia Sara Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Vanina Gabriela Da Ros
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
66
|
Ritagliati C, Luque GM, Stival C, Baro Graf C, Buffone MG, Krapf D. Lysine acetylation modulates mouse sperm capacitation. Sci Rep 2018; 8:13334. [PMID: 30190490 PMCID: PMC6127136 DOI: 10.1038/s41598-018-31557-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Abstract
Mammalian sperm are unable to fertilize the egg immediately after ejaculation. To gain fertilization competence, they need to undergo a series of modifications inside the female reproductive tract, known as capacitation. Capacitation involves several molecular events such as phosphorylation cascades, hyperpolarization of the plasma membrane and intracellular Ca2+ changes, which prepare the sperm to develop two essential features for fertilization competence: hyperactivation and acrosome reaction. Since sperm cells lack new protein biosynthesis, post-translational modification of existing proteins plays a crucial role to obtain full functionality. Here, we show the presence of acetylated proteins in murine sperm, which increase during capacitation. Pharmacological hyperacetylation of lysine residues in non-capacitated sperm induces activation of PKA, hyperpolarization of the sperm plasma membrane, CatSper opening and Ca2+ influx, all capacitation-associated molecular events. Furthermore, hyperacetylation of non-capacitated sperm promotes hyperactivation and prepares the sperm to undergo acrosome reaction. Together, these results indicate that acetylation could be involved in the acquisition of fertilization competence of mammalian sperm.
Collapse
Affiliation(s)
- Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, 2000, Argentina
| | - Guillermina M Luque
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, C1428ADN, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, 2000, Argentina
| | - Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, 2000, Argentina
| | - Mariano G Buffone
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, C1428ADN, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, 2000, Argentina.
| |
Collapse
|
67
|
Goodson SG, White S, Stevans AM, Bhat S, Kao CY, Jaworski S, Marlowe TR, Kohlmeier M, McMillan L, Zeisel SH, O'Brien DA. CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns. Biol Reprod 2018; 97:698-708. [PMID: 29036474 DOI: 10.1093/biolre/iox120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022] Open
Abstract
The ability to accurately monitor alterations in sperm motility is paramount to understanding multiple genetic and biochemical perturbations impacting normal fertilization. Computer-aided sperm analysis (CASA) of human sperm typically reports motile percentage and kinematic parameters at the population level, and uses kinematic gating methods to identify subpopulations such as progressive or hyperactivated sperm. The goal of this study was to develop an automated method that classifies all patterns of human sperm motility during in vitro capacitation following the removal of seminal plasma. We visually classified CASA tracks of 2817 sperm from 18 individuals and used a support vector machine-based decision tree to compute four hyperplanes that separate five classes based on their kinematic parameters. We then developed a web-based program, CASAnova, which applies these equations sequentially to assign a single classification to each motile sperm. Vigorous sperm are classified as progressive, intermediate, or hyperactivated, and nonvigorous sperm as slow or weakly motile. This program correctly classifies sperm motility into one of five classes with an overall accuracy of 89.9%. Application of CASAnova to capacitating sperm populations showed a shift from predominantly linear patterns of motility at initial time points to more vigorous patterns, including hyperactivated motility, as capacitation proceeds. Both intermediate and hyperactivated motility patterns were largely eliminated when sperm were incubated in noncapacitating medium, demonstrating the sensitivity of this method. The five CASAnova classifications are distinctive and reflect kinetic parameters of washed human sperm, providing an accurate, quantitative, and high-throughput method for monitoring alterations in motility.
Collapse
Affiliation(s)
- Summer G Goodson
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA
| | - Sarah White
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alicia M Stevans
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Sanjana Bhat
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Chia-Yu Kao
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott Jaworski
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA
| | - Tamara R Marlowe
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA
| | - Martin Kohlmeier
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven H Zeisel
- University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Deborah A O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
68
|
Puga Molina LC, Luque GM, Balestrini PA, Marín-Briggiler CI, Romarowski A, Buffone MG. Molecular Basis of Human Sperm Capacitation. Front Cell Dev Biol 2018; 6:72. [PMID: 30105226 PMCID: PMC6078053 DOI: 10.3389/fcell.2018.00072] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
In the early 1950s, Austin and Chang independently described the changes that are required for the sperm to fertilize oocytes in vivo. These changes were originally grouped under name of “capacitation” and were the first step in the development of in vitro fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable number of observations led to characterization of the molecular steps behind this process. The discovery of certain sperm-specific molecules and the possibility to record ion currents through patch-clamp approaches helped to integrate the initial biochemical observation with the activity of ion channels. This is of particular importance in the male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm must control all these changes that occur during their transit through the male and female reproductive tracts by complex signaling cascades that include post-translational modifications. This review is focused on the principal molecular mechanisms that govern human sperm capacitation with particular emphasis on comparing all the reported pieces of evidence with the mouse model.
Collapse
Affiliation(s)
- Lis C Puga Molina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Clara I Marín-Briggiler
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
69
|
Dressen C, Schwaller B, Vegh G, Leleux F, Gall D, Lebrun P, Lybaert P. Characterization and potential roles of calretinin in rodent spermatozoa. Cell Calcium 2018; 74:94-101. [PMID: 30015247 DOI: 10.1016/j.ceca.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
Calretinin has been detected in various excitable cells but the presence and putative roles of such a calcium-binding protein has never been characterized in sperm. Epididymal spermatozoa were collected from C57Bl6 (wild-type, WT) or calretinin knockout (CR-/-) mice and Wistar rats. A specific staining for calretinin was detected by immunofluorescence in the principal piece of the flagellum, both in WT mouse and rat spermatozoa. Western blots confirmed the expression of calretinin in rat and WT spermatozoa as well as its absence in CR-/- mice. No significant difference was observed in the spontaneous acrosome reaction between WT and CR-/- sperm. The addition of the calcium-ionophore A-23187, Thapsigargin or Progesterone to WT or CR-/- incubated spermatozoa induced increases in the acrosome reaction but the stimulatory effects were identical in both genotypes. Motility measurements assessed by computer-assisted sperm analysis indicated that, under basal non-stimulatory conditions, CR-/- sperm exhibited a lower curvilinear velocity and a smaller lateral head movement amplitude, although no difference was observed for the beat cross frequency. After incubation with 25 mM NH4Cl, the curvilinear velocity, the amplitude of the lateral head movement and the hyperactivation were increased, while the beat cross frequency was decreased, in both genotypes. Evaluation of the in vivo fertility potential indicated that the CR-/- litter sizes were clearly reduced compared to the WT litter sizes. Our study describes, for the first time, the expression of calretinin in sperm. These data extend the potential implication of calcium-binding proteins in the sperm calcium-signaling cascade and bring new insights into the understanding of sperm physiology.
Collapse
Affiliation(s)
- Cindy Dressen
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Grégory Vegh
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabienne Leleux
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - David Gall
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Lebrun
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Pascale Lybaert
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
70
|
Luque GM, Dalotto-Moreno T, Martín-Hidalgo D, Ritagliati C, Puga Molina LC, Romarowski A, Balestrini PA, Schiavi-Ehrenhaus LJ, Gilio N, Krapf D, Visconti PE, Buffone MG. Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J Cell Physiol 2018; 233:9685-9700. [PMID: 29953592 DOI: 10.1002/jcp.26883] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
Mammalian sperm must undergo a functionally defined process called capacitation to be able to fertilize oocytes. They become capacitated in vivo by interacting with the female reproductive tract or in vitro in a defined capacitation medium that contains bovine serum albumin, calcium (Ca2+ ), and bicarbonate (HCO3 - ). In this work, sperm were double stained with propidium iodide and the Ca2+ dye Fluo-4 AM and analyzed by flow cytometry to determine changes in intracellular Ca2+ concentration ([Ca2+ ]i ) in individual live sperm. An increase in [Ca2+ ]i was observed in a subpopulation of capacitated live sperm when compared with noncapacitated ones. Sperm exposed to the capacitating medium displayed a rapid increase in [Ca2+ ]i within 1 min of incubation, which remained sustained for 90 min. These rise in [Ca2+ ]i after 90 min of incubation in the capacitating medium was evidenced by an increase in the normalized median fluorescence intensity. This increase was dependent on the presence of extracellular Ca2+ and, at least in part, reflected the contribution of a new subpopulation of sperm with higher [Ca2+ ]i . In addition, it was determined that the capacitation-associated [Ca2+ ]i increase was dependent of CatSper channels, as sperm derived from CatSper knockout (CatSper KO) or incubated in the presence of CatSper inhibitors failed to increase [Ca2+ ]i . Surprisingly, a minimum increase in [Ca2+ ]i was also observed in CatSper KO sperm suggesting the existence of other Ca2+ transport systems. Altogether, these results indicate that a subpopulation of sperm increases [Ca2+ ]i very rapidly during capacitation mainly due to a CatSper-mediated influx of extracellular Ca2+ .
Collapse
Affiliation(s)
- Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tomas Dalotto-Moreno
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - David Martín-Hidalgo
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA
| | - Carla Ritagliati
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Lis C Puga Molina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Liza J Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolas Gilio
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
71
|
Liu H, Li W, Zhang Y, Zhang Z, Shang X, Zhang L, Zhang S, Li Y, Somoza AV, Delpi B, Gerton GL, Foster JA, Hess RA, Pazour GJ, Zhang Z. IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation. Biol Reprod 2018; 96:993-1006. [PMID: 28430876 DOI: 10.1093/biolre/iox029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/13/2017] [Indexed: 12/25/2022] Open
Abstract
Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. However, IFT25, a component of the IFT complex, is not required for the formation of cilia in somatic tissues. In mice, the gene is highly expressed in the testis, and its expression is upregulated during the final phase when sperm flagella are formed. To investigate the role of IFT25 in sperm flagella formation, the gene was specifically disrupted in male germ cells. All homozygous knockout mice survived to adulthood and did not show any gross abnormalities. However, all homozygous knockout males were completely infertile. Sperm numbers were reduced and these sperm were completely immotile. Multiple morphological abnormalities were observed in sperm, including round heads, short and bent tails, with some tails showing branched flagella and others with frequent abnormal thicknesses, as well as swollen tips of the tail. Transmission electron microscopy revealed that flagellar accessory structures, including the fibrous sheath and outer dense fibers, were disorganized, and most sperm had also lost the "9+2" microtubule structure. In the testis, IFT25 forms a complex with other IFT proteins. In Ift25 knockout testes, IFT27, an IFT25 binding partner, was missing, and IFT20 and IFT81 levels were also reduced. Our findings suggest that IFT25, although not necessary for the formation of cilia in somatic cells, is indispensable for sperm flagellum formation and male fertility in mice.
Collapse
Affiliation(s)
- Hong Liu
- School of Public Health and Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yong Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Dermatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengang Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| | - Ling Zhang
- School of Public Health and Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shiyang Zhang
- School of Public Health and Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yanwei Li
- Department of Computer Science, Wellesley College, Wellesley, Massachusetts, USA
| | - Andres V Somoza
- Department of Humanities and Sciences, Honor College, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brandon Delpi
- Department of Biology, Randolph-Macon College, Ashland, Virginia, USA
| | - George L Gerton
- Center for Research on Reproduction and Women's Health Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James A Foster
- Department of Biology, Randolph-Macon College, Ashland, Virginia, USA
| | - Rex A Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zhibing Zhang
- School of Public Health and Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
72
|
González-Fernández L, Macías-García B, Calle-Guisado V, García-Marín LJ, Bragado MJ. Calmodulin inhibitors increase the affinity of Merocyanine 540 for boar sperm membrane under non-capacitating conditions. J Reprod Dev 2018; 64:445-449. [PMID: 29887540 PMCID: PMC6189568 DOI: 10.1262/jrd.2018-021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We aimed to test whether the calmodulin (CaM) inhibitors, calmidazolium (CZ) and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), can be used to assess lipid disorder by flow
cytometry using Merocyanine 540 (M540). Boar spermatozoa were incubated in non-capacitating conditions for 10 min at room temperature with 1 μM CZ, 200 μM W-7, or 1 mM 8-bromoadenosine
3′,5′-cyclic monophosphate (8-Br-cAMP). Then, sperm were 1) directly evaluated, 2) centrifuged and washed prior to evaluation, or 3) diluted with PBS prior to evaluation. Direct evaluation
showed an increase in high M540 fluorescence in spermatozoa treated with the inhibitors (4.7 ± 1.8 [control] vs. 70.4 ± 4.0 [CZ] and 71.4 ± 4.2 [W-7], mean % ± SD, P <
0.001); washing decreased the percentage of sperm showing high M540 fluorescence for W-7 (4.8 ± 2.2, mean % ± SD) but not for CZ (69.4 ± 3.9, mean % ± SD, P < 0.001), and dilution showed
an increase in high M540 fluorescence for both CZ and W-7; 8-Br-cAMP did not induce a rise in sperm showing high M540 fluorescence. Therefore, special care must be taken when M540 is used in
spermatozoa with CaM inhibitors.
Collapse
Affiliation(s)
- Lauro González-Fernández
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain
| | - Beatriz Macías-García
- Jesús Usón Minimally Invasive Surgery Centre (CCMIJU), Assisted Reproduction Unit, 10071 Cáceres, Spain
| | - Violeta Calle-Guisado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain
| | - Luis Jesús García-Marín
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain
| | - María Julia Bragado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
73
|
Allouche-Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn 2. Mol Reprod Dev 2018; 85:543-556. [PMID: 29750435 DOI: 10.1002/mrd.22996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/15/2018] [Indexed: 11/08/2022]
Abstract
To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyperactivated motility (HAM). The semen contains Zn2+ in millimolar concentrations, whereas in the female reproductive tract, the concentration is around 1 µM. In this study, we characterize the role of Zn2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of GPR39-type Zn-receptor localized mainly in the sperm tail. Zn2+ at micromolar concentration stimulates HAM, which is mediated by a cascade involving GPR39-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A-tyrosine kinase Src (Src)-epidermal growth factor receptor and phospholipase C. Both the transmembrane AC and the soluble-AC are involved in the stimulation of HAM by Zn2+ . The development of HAM is precisely regulated by cAMP, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn2+ were added to the cells; low Zn2+ stimulated HAM, whereas at relatively high Zn2+ , no effect was seen. We further demonstrate that the Ca2+ -channel CatSper involved in Zn2+ -stimulated HAM. These data support a role for extracellular Zn2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction.
Collapse
Affiliation(s)
| | - Danit Bakhshi
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
74
|
Wiggins SV, Steegborn C, Levin LR, Buck J. Pharmacological modulation of the CO 2/HCO 3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 2018; 190:173-186. [PMID: 29807057 DOI: 10.1016/j.pharmthera.2018.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic AMP (cAMP), the prototypical second messenger, has been implicated in a wide variety of (often opposing) physiological processes. It simultaneously mediates multiple, diverse processes, often within a single cell, by acting locally within independently-regulated and spatially-restricted microdomains. Within each microdomain, the level of cAMP will be dependent upon the balance between its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). In mammalian cells, there are many PDE isoforms and two types of adenylyl cyclases; the G protein regulated transmembrane adenylyl cyclases (tmACs) and the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase (sAC). Discriminating the roles of individual cyclic nucleotide microdomains requires pharmacological modulators selective for the various PDEs and/or adenylyl cyclases. Such tools present an opportunity to develop therapeutics specifically targeted to individual cAMP dependent pathways. The pharmacological modulators of tmACs have recently been reviewed, and in this review, we describe the current status of pharmacological tools available for studying sAC.
Collapse
Affiliation(s)
- Shakarr V Wiggins
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
75
|
Águila L, Felmer R, Arias ME, Navarrete F, Martin-Hidalgo D, Lee HC, Visconti P, Fissore R. Defective sperm head decondensation undermines the success of ICSI in the bovine. Reproduction 2018; 154:307-318. [PMID: 28751536 DOI: 10.1530/rep-17-0270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022]
Abstract
The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whether in vitro maturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI, in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, although in vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation by in vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu of in vitro-matured oocytes and to replicate the molecular changes associated with in vivo capacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.
Collapse
Affiliation(s)
- Luis Águila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile.,School of Veterinary Medicine, Faculty of Sciences, Universidad Mayor Sede Temuco, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Felipe Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction, Research Institute INBIO G+C, University of Extremadura, Caceres, Spain.,Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rafael Fissore
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
76
|
Ritagliati C, Baro Graf C, Stival C, Krapf D. Regulation mechanisms and implications of sperm membrane hyperpolarization. Mech Dev 2018; 154:33-43. [PMID: 29694849 DOI: 10.1016/j.mod.2018.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Mammalian sperm are unable to fertilize the egg immediately after ejaculation. In order to gain fertilization competence, they need to undergo a series of biochemical and physiological modifications inside the female reproductive tract, known as capacitation. Capacitation correlates with two essential events for fertilization: hyperactivation, an asymmetric and vigorous flagellar motility, and the ability to undergo the acrosome reaction. At a molecular level, capacitation is associated to: phosphorylation cascades, modification of membrane lipids, alkalinization of the intracellular pH, increase in the intracellular Ca2+ concentration and hyperpolarization of the sperm plasma membrane potential. Hyperpolarization is a crucial event in capacitation since it primes the sperm to undergo the exocytosis of the acrosome content, essential to achieve fertilization of the oocyte.
Collapse
Affiliation(s)
- Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina.
| | - Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina; Laboratorio de Especialidades Reproductivas, Facultad de Ciencias Bioquimicas y Farmacéuticas, UNR, Rosario 2000, Argentina.
| |
Collapse
|
77
|
Fu J, Yang Q, Li Y, Li P, Wang L, Li X. A mechanism by which Astragalus polysaccharide protects against ROS toxicity through inhibiting the protein dephosphorylation of boar sperm preserved at 4 °C. J Cell Physiol 2018; 233:5267-5280. [PMID: 29231961 DOI: 10.1002/jcp.26321] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023]
Abstract
Numerous studies have shown that Astragalus polysaccharide (APS) has strong antioxidant effects and high practical value for preserving semen at low temperatures in vitro. However, to date, little attention has been paid to the precise mechanism of APS in sperm preservation at 4 °C. Thus, to gain further insight into the protective effects of APS, the present study was performed to assess the changes in sperm quality parameters, antioxidant capacity, ATP content, and protein phosphorylation levels. Here, we demonstrated that supplementation with APS could effectively preserve boar sperm quality parameters such as sperm motility, acrosome integrity, and mitochondrial membrane potential. Moreover, we found that the positive effects of APS on boar sperm quality were mainly due to the elimination of excessive mitochondrial ROS, the improvement of antioxidant capacities and the enhancement of ATP levels. Interestingly, by conducting a series of studies on protein phosphorylation, we also discovered that APS could protect boar sperm from oxidative stress and energy deficiency through inhibiting the protein dephosphorylation caused by ROS via the cAMP-PKA signaling pathway. To our knowledge, this is the first exploration of the molecular mechanism underlying the protective roles of APS toward ROS toxicity from the perspective of energy metabolism and protein modification. This study comprehensively provides novel insights into the action mechanism of the protective effects of antioxidants on sperm stored at 4 °C and reveals the practical feasibility of using APS as a boar semen extender supplement for assisted reproductive technology.
Collapse
Affiliation(s)
- Jieli Fu
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Qiangzhen Yang
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yuhua Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Peifei Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Lirui Wang
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xinhong Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| |
Collapse
|
78
|
Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017; 5:204-218. [PMID: 28297559 DOI: 10.1111/andr.12320] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
After leaving the testis, spermatozoa have not yet acquired the ability to move progressively and are unable to fertilize oocytes. To become fertilization competent, they must go through an epididymal maturation process in the male, and capacitation in the female tract. Epididymal maturation can be defined as those changes occurring to spermatozoa in the epididymis that render the spermatozoa the ability to capacitate in the female tract. As part of this process, sperm cells undergo a series of biochemical and physiological changes that require incorporation of new molecules derived from the epididymal epithelium, as well as post-translational modifications of endogenous proteins synthesized during spermiogenesis in the testis. This review will focus on epididymal maturation events, with emphasis in recent advances in the understanding of the molecular basis of this process.
Collapse
Affiliation(s)
- M G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - P E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
79
|
Saewu A, Kadunganattil S, Raghupathy R, Kongmanas K, Diaz-Astudillo P, Hermo L, Tanphaichitr N. Clusterin in the mouse epididymis: possible roles in sperm maturation and capacitation. Reproduction 2017; 154:867-880. [DOI: 10.1530/rep-17-0518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/17/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023]
Abstract
Clusterin (CLU) is known as an extracellular chaperone for proteins under stress, thus preventing them from aggregation and precipitation. We showed herein that CLU, expressed by principal cells of the mouse caput epididymis, was present in high amounts in the lumen. In the cauda epididymis, CLU bound tightly to the sperm head surface and its amount on total sperm was similar to that in the bathing luminal fluid. In both immotile and motile caudal epididymal sperm, CLU was localized over the entire sperm head except at the convex ridge, although in the motile sperm population, the CLU immunofluorescence pattern was distinctively mottled with a lower intensity. However, when motile sperm became capacitated, CLU was relocalized to the head hook region, with immunofluorescence intensity being higher than that on the non-capacitated counterparts. Under a slightly acidic pH of the epididymal lumen, CLU may chaperone some luminal proteins and deliver them onto the sperm surface. Immunoprecipitation of epididymal fluid proteins indicated that CLU interacted with SED1, an important egg-binding protein present in a high amount in the epididymal lumen. In a number of non-capacitated sperm, fractions of SED1 and CLU co-localized, but after capacitation, SED1 and CLU dissociated from one another. While CLU moved to the sperm head hook, SED1 translocated to the head convex ridge, the egg-binding site. Overall, CLU localization patterns can serve as biomarkers of immotile sperm, and non-capacitated and capacitated sperm in mice. The chaperone role of CLU may also be important for sperm maturation and capacitation.
Collapse
|
80
|
Whitfield M, Guiton R, Rispal J, Acar N, Kocer A, Drevet JR, Saez F. Dyslipidemia alters sperm maturation and capacitation in LXR-null mice. Reproduction 2017; 154:827-842. [DOI: 10.1530/rep-17-0467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
Lipid metabolism disorders (dyslipidemia) are causes of male infertility, but little is known about their impact on male gametes when considering post-testicular maturation events, given that studies concentrate most often on endocrine dysfunctions and testicular consequences. In this study, three-month-old wild-type (wt) and Liver-X-Receptors knock out (Lxrα;β−/−) males were fed four weeks with a control or a lipid-enriched diet containing 1.25% cholesterol (high cholesterol diet (HCD)). The HCD triggered a dyslipidemia leading to sperm post-testicular alterations and infertility. Sperm lipids were analyzed by LC–MS and those fromLxrα;β−/−males fed the HCD showed higher chol/PL and PC/PE ratios compared towt-HCD (P < 0.05) and lower oxysterol contents compared to wt (P < 0.05) orLxrα;β−/−(P < 0.05). These modifications impaired membrane-associated events triggering the tyrosine phosphorylation normally occurring during the capacitation process, as shown by phosphotyrosine Western blots. Using flow cytometry, we showed that a smaller subpopulation of spermatozoa fromLxrα;β−/−-HCD males could raise their membrane fluidity during capacitation (P < 0.05 vswtorwt-HCD) as well as their intracellular calcium concentration (P < 0.05 vsLxrα;β−/−andP < 0.001 vswt). The accumulation of the major sperm calcium efflux pump (PMCA4) was decreased inLxrα;β−/−males fed the HCD (P < 0.05 vsLxrα;β−/−andP < 0.001 vswt). This study is the first showing an impact of dyslipidemia on post-testicular sperm maturation with consequences on the capacitation signaling cascade. It may lead to the identification of fertility prognostic markers in this pathophysiological situation, which could help clinicians to better understand male infertilities which are thus far classified as idiopathic.
Collapse
|
81
|
Wang L, Li P, Wen Y, Yang Q, Zhen L, Fu J, Li Y, Li S, Han C, Li X. Vitamin C exerts novel protective effects against cadmium toxicity in mouse spermatozoa by inducing the dephosphorylation of dihydrolipoamide dehydrogenase. Reprod Toxicol 2017; 75:23-32. [PMID: 29158198 DOI: 10.1016/j.reprotox.2017.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) has been reported to inhibit mouse sperm motility by inducing the tyrosine phosphorylation of dihydrolipoamide dehydrogenase (DLD). This study aimed to assess the potential effects of vitamin C (Vc) on ameliorating Cd-induced tyrosine phosphorylation of DLD and the specific underlying mechanism. Vc induced the dephosphorylation of DLD or inhibited the tyrosine phosphorylation of DLD. Accordingly, DLD activity, nicotinamide adenine dinucleotide hydrogen (NADH) levels, ATP levels and motility parameters were all restored to normal levels by Vc. Moreover, the effects of Vc on ameliorating these indicators had striking similarities to the effects of ethylenediaminetetraacetic acid (EDTA). In addition, neither the antioxidant melatonin nor the universal oxidant H2O2 influenced the tyrosine phosphorylation of DLD. Hence, the protective effects of Vc on the tyrosine phosphorylation of DLD might be attributed to its binding to Cd ions outside or inside sperm, and were not due to its antioxidant properties.
Collapse
Affiliation(s)
- Lirui Wang
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Peifei Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yi Wen
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Qiangzhen Yang
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Linqing Zhen
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Jieli Fu
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yuhua Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Sisi Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Chengxiao Han
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xinhong Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
82
|
Somashekar L, Selvaraju S, Parthipan S, Patil SK, Binsila BK, Venkataswamy MM, Karthik Bhat S, Ravindra JP. Comparative sperm protein profiling in bulls differing in fertility and identification of phosphatidylethanolamine-binding protein 4, a potential fertility marker. Andrology 2017; 5:1032-1051. [DOI: 10.1111/andr.12404] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/27/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- L. Somashekar
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
- Department of Biochemistry; Jain University; Bengaluru India
| | - S. Selvaraju
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
| | - S. Parthipan
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
- Department of Biochemistry; Jain University; Bengaluru India
| | - S. K. Patil
- Department of Anatomy and Histology; Veterinary College; Bengaluru India
| | - B. K. Binsila
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
| | - M. M. Venkataswamy
- Neurobiology Research Centre; Department of Neurovirology; National Institute of Mental Health and Neurosciences; Bengaluru India
| | - S. Karthik Bhat
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
| | - J. P. Ravindra
- Reproductive Physiology Laboratory; Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bengaluru India
| |
Collapse
|
83
|
Sun XH, Zhu YY, Wang L, Liu HL, Ling Y, Li ZL, Sun LB. The Catsper channel and its roles in male fertility: a systematic review. Reprod Biol Endocrinol 2017; 15:65. [PMID: 28810916 PMCID: PMC5558725 DOI: 10.1186/s12958-017-0281-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The Catsper channel is a sperm-specific, Ca2+-permeable, pH-dependent, and low voltage-dependent channel that is essential for the hyperactivity of sperm flagellum, chemotaxis towards the egg, capacitation and acrosome reaction. All of these physiological events require calcium entry into sperm cells. Remarkably, Catsper genes are exclusively expressed in the testis during spermatogenesis, and are sensitive to ion channel-induced pH change, such as NHEs, Ca2+ATPase, K+ channel, Hv1 channel and HCO3- transporters. Furthermore, the Catsper channel is regulated by some physiological stimulants, such as progesterone, cyclic nucleotides (e.g., cAMP, cGMP), zona pellucida (ZP) glycoproteins and bovine serum albumin (BSA). All of these factors normally stimulate Ca2+ entry into sperm through the Catsper channel. In addition, the Catsper channel may be a potential target for male infertility treatment or contraception. This review will focus on the structure, functions, regulation mechanisms and medicinal targets of the Catsper channel.
Collapse
Affiliation(s)
- Xiang-hong Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Ying-ying Zhu
- 0000 0001 0455 0905grid.410645.2Department of pharmacy, College of pharmacy of Qingdao University, Qingdao, China
| | - Lin Wang
- grid.412521.1Department of clinical laboratory, the affiliated hospital of Qingdao University Medical College, Qingdao, China
| | - Hong-ling Liu
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Yong Ling
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Zong-li Li
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Li-bo Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| |
Collapse
|
84
|
Hachem A, Godwin J, Ruas M, Lee HC, Ferrer Buitrago M, Ardestani G, Bassett A, Fox S, Navarrete F, de Sutter P, Heindryckx B, Fissore R, Parrington J. PLCζ is the physiological trigger of the Ca 2+ oscillations that induce embryogenesis in mammals but conception can occur in its absence. Development 2017; 144:2914-2924. [PMID: 28694258 DOI: 10.1242/dev.150227] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022]
Abstract
Activation of the egg by the sperm is the first, vital stage of embryogenesis. The sperm protein PLCζ has been proposed as the physiological agent that triggers the Ca2+ oscillations that normally initiate embryogenesis. Consistent with this, recombinant PLCζ induces Ca2+ oscillations in eggs and debilitating mutations in the PLCZ1 gene are associated with infertility in men. However, there has been no evidence that knockout of the gene encoding PLCζ abolishes the ability of sperm to induce Ca2+ oscillations in eggs. Here, we show that sperm derived from Plcz1-/- male mice fail to trigger Ca2+ oscillations in eggs, cause polyspermy and thus demonstrate that PLCζ is the physiological trigger of these Ca2+ oscillations. Remarkably, some eggs fertilized by PLCζ-null sperm can develop, albeit at greatly reduced efficiency, and after a significant time-delay. In addition, Plcz1-/- males are subfertile but not sterile, suggesting that in the absence of PLCζ, spontaneous egg activation can eventually occur via an alternative route. This is the first demonstration that in vivo fertilization without the normal physiological trigger of egg activation can result in offspring. PLCζ-null sperm now make it possible to resolve long-standing questions in fertilization biology, and to test the efficacy and safety of procedures used to treat human infertility.
Collapse
Affiliation(s)
- Alaa Hachem
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Margarida Ruas
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Hoi Chang Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Minerva Ferrer Buitrago
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Goli Ardestani
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Andrew Bassett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sebastian Fox
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Felipe Navarrete
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - Petra de Sutter
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Rafael Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, 661 North Pleasant Street, Amherst, MA 01003-9286, USA
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
85
|
Bellezza I, Minelli A. Adenosine in sperm physiology. Mol Aspects Med 2017; 55:102-109. [DOI: 10.1016/j.mam.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
86
|
Baek S, Lee ST, Hwang JY, Park KH, Yun JI. Identification of capacitation inducers customized to sperm retrieved from inbred mouse epididymis. Biochem Biophys Res Commun 2017; 488:273-277. [DOI: 10.1016/j.bbrc.2017.04.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022]
|
87
|
Macías-García B, Lopes G, Rocha A, González-Fernández L. Role of the Calcium-Sensing Receptor (CaSR) in bovine gametes and during in vitro fertilization. Theriogenology 2017; 95:69-74. [PMID: 28460682 DOI: 10.1016/j.theriogenology.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023]
Abstract
Calcium Sensing Receptor (CaSR) is a G-protein coupled receptor which senses extracellular calcium and activates diverse intracellular pathways. The objective of our work was to demonstrate the presence of CaSR in bovine gametes and its possible role in fertilization and embryo development. The location of CaSR was demonstrated by immunofluorescence in bovine gametes; additionally bovine sperm were incubated with 5, 10 and 15 μM of the specific CaSR inhibitor NPS2143 in a Tyrode's Albumin Lactate Pyruvate medium (4 h). Sperm viability was maintained for all concentrations tested while total motility decreased significantly at 10 and 15 μM. Addition of 15 μM of NPS2143 during oocyte in vitro maturation did not alter the maturation rate. When NPS2143 (15 μM) was added to the fertilization medium during sperm-oocyte co-incubation the cleavage, morula and blastocyst rates remained unchanged. To confirm if 15 μM of NPS2143 exerted any effect on embryo development, NPS2143 was added to the embryo culture medium. Cleavage rates remained unchanged when 15 μM of NPS2143 was added to the culture medium (79.1 ± 6.8 vs. 73.7 ± 5.3; mean % ± SEM; p > 0.05, control vs. inhibitor). By contrast, development to the morula (46.6 ± 7.3 vs. 24.3 ± 4.3; mean % ± SEM; p < 0.05) and blastocyst stages (29.9 ± 9.0 vs. 9.9 ± 3.6; mean % ± SEM; p < 0.05) decreased (control vs. inhibitor). Our results demonstrate a key role of CaSR on sperm motility and embryo development but not on oocyte maturation or fertilization in the bovine species.
Collapse
Affiliation(s)
- Beatriz Macías-García
- CECA/ICETA - Animal Sciences Centre, ICBAS - Abel Salazar Biomedical Institute, University of Porto, Portugal; Assisted Reproduction Unit, Minimally Invasive Surgery Centre Jesús Usón (CCMIJU), Cáceres, Spain
| | - Graça Lopes
- CECA/ICETA - Animal Sciences Centre, ICBAS - Abel Salazar Biomedical Institute, University of Porto, Portugal
| | - Antonio Rocha
- CECA/ICETA - Animal Sciences Centre, ICBAS - Abel Salazar Biomedical Institute, University of Porto, Portugal
| | - Lauro González-Fernández
- CECA/ICETA - Animal Sciences Centre, ICBAS - Abel Salazar Biomedical Institute, University of Porto, Portugal.
| |
Collapse
|
88
|
Soriano-Úbeda C, García-Vázquez FA, Romero-Aguirregomezcorta J, Matás C. Improving porcine in vitro fertilization output by simulating the oviductal environment. Sci Rep 2017. [PMCID: PMC5356470 DOI: 10.1038/srep43616] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Differences between the in vitro and in vivo environment in which fertilization occurs seem to play a key role in the low efficiency of porcine in vitro fertilization (IVF). This work proposes an IVF system based on the in vivo oviductal periovulatory environment. The combined use of an IVF medium at the pH found in the oviduct in the periovulatory stage (pHe 8.0), a mixture of oviductal components (cumulus-oocyte complex secretions, follicular fluid and oviductal periovulatory fluid, OFCM) and a device that interposes a physical barrier between gametes (an inverted screw cap of a Falcon tube, S) was compared with the classical system at pHe 7.4, in a 4-well multidish (W) lacking oviduct biological components. The results showed that the new IVF system reduced polyspermy and increased the final efficiency by more than 48%. This higher efficiency seems to be a direct consequence of a reduced sperm motility and lower capacitating status and it could be related to the action of OFCM components over gametes and to the increase in the sperm intracellular pH (pHi) caused by the higher pHe used. In conclusion, a medium at pH 8.0 supplemented with OFCM reduces polyspermy and improves porcine IVF output.
Collapse
|
89
|
Chung JJ, Miki K, Kim D, Shim SH, Shi HF, Hwang JY, Cai X, Iseri Y, Zhuang X, Clapham DE. CatSperζ regulates the structural continuity of sperm Ca 2+ signaling domains and is required for normal fertility. eLife 2017; 6. [PMID: 28226241 PMCID: PMC5362262 DOI: 10.7554/elife.23082] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
We report that the Gm7068 (CatSpere) and Tex40 (CatSperz) genes encode novel subunits of a 9-subunit CatSper ion channel complex. Targeted disruption of CatSperz reduces CatSper current and sperm rheotactic efficiency in mice, resulting in severe male subfertility. Normally distributed in linear quadrilateral nanodomains along the flagellum, the complex lacking CatSperζ is disrupted at ~0.8 μm intervals along the flagellum. This disruption renders the proximal flagellum inflexible and alters the 3D flagellar envelope, thus preventing sperm from reorienting against fluid flow in vitro and efficiently migrating in vivo. Ejaculated CatSperz-null sperm cells retrieved from the mated female uterus partially rescue in vitro fertilization (IVF) that failed with epididymal spermatozoa alone. Human CatSperε is quadrilaterally arranged along the flagella, similar to the CatSper complex in mouse sperm. We speculate that the newly identified CatSperζ subunit is a late evolutionary adaptation to maximize fertilization inside the mammalian female reproductive tract. DOI:http://dx.doi.org/10.7554/eLife.23082.001 Male mammals ejaculate millions of sperm cells each time they mate with a female. Only a few of these cells manage to travel up the female’s reproductive tract to reach the egg, and usually only one sperm fertilizes it. Freshly ejaculated sperm are incapable of fertilizing eggs and have to undergo several changes within the female to become able to do so. One crucial change occurs in the sperm tail, which starts to beat vigorously in a whip-like motion. This type of movement – known as hyperactivated motility – enables the sperm to swim towards the egg, push through a sticky coating that surrounds it, and then burrow into it. Hyperactivated motility is triggered when calcium ions enter the sperm cell via a specific channel protein known as CatSper, which is found in the membrane that surrounds the cell. CatSper channels form groups (known as complexes) with several other proteins that are arranged in a unique pattern of four straight ‘stripes’ running down the tail of the sperm. This arrangement is necessary for hyperactivated motility and mutations in the genes that encode these proteins can lead to infertility in males. The CatSper channel complex is known to contain seven proteins: four that form a pore through which calcium ions can enter, and three accessory proteins whose roles in hyperactivated motility are less clear. Chung et al. identified two genes in mice that encode new accessory proteins in the CatSper channel complex named CatSper epsilon and CatSper zeta. Further experiments analyzed the role of CatSper zeta in more detail. Mutant males that lack CatSper zeta have fragmented patterns of CatSper stripes in the tails of their sperm. Moreover, fewer calcium ions were able to pass through the channels to enter the cell. Together, this made the sperm tail more rigid, which prevented it from moving efficiently within the female, resulting in reduced fertility. Chung et al. also found that the mutant sperm were less able to penetrate the egg than normal sperm. During evolution, the gene that encodes CatSper zeta appeared first in mammals and may represent an adaptation that improved the chances of a sperm fertilizing the egg inside the reproductive tract of female mammals. Future challenges will be to explore how the CatSper channel assembles on the membrane of sperm and find out exactly how calcium ions trigger hyperactivated motility. DOI:http://dx.doi.org/10.7554/eLife.23082.002
Collapse
Affiliation(s)
- Jean-Ju Chung
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
| | - Kiyoshi Miki
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Doory Kim
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| | - Sang-Hee Shim
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| | - Huanan F Shi
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
| | - Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
| | - Xinjiang Cai
- Department of Medicine, James J. Perters VA Bronx, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Yusuf Iseri
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| | - David E Clapham
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
90
|
Abstract
Fertilization, the union of an oocyte and a sperm, is a fundamental process that restores the diploid genome and initiates embryonic development. For the sperm, fertilization is the end of a long journey, one that starts in the male testis before transitioning to the female reproductive tract's convoluted tubule architecture. Historically, motile sperm were thought to complete this journey using luck and numbers. A different picture of sperm has emerged recently as cells that integrate complex sensory information for navigation. Chemical, physical, and thermal cues have been proposed to help guide sperm to the waiting oocyte. Molecular mechanisms are being delineated in animal models and humans, revealing common features, as well as important differences. Exposure to pheromones and nutritional signals can modulate guidance mechanisms, indirectly impacting sperm motility performance and fertility. These studies highlight the importance of sensory information and signal transduction in fertilization.
Collapse
Affiliation(s)
- Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
91
|
Puga Molina LC, Pinto NA, Torres Rodríguez P, Romarowski A, Vicens Sanchez A, Visconti PE, Darszon A, Treviño CL, Buffone MG. Essential Role of CFTR in PKA-Dependent Phosphorylation, Alkalinization, and Hyperpolarization During Human Sperm Capacitation. J Cell Physiol 2016; 232:1404-1414. [PMID: 27714810 DOI: 10.1002/jcp.25634] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 12/17/2022]
Abstract
Mammalian sperm require to spend a limited period of time in the female reproductive tract to become competent to fertilize in a process called capacitation. It is well established that HCO3- is essential for capacitation because it activates the atypical soluble adenylate cyclase ADCY10 leading to cAMP production, and promotes alkalinization of cytoplasm, and membrane hyperpolarization. However, how HCO3- is transported into the sperm is not well understood. There is evidence that CFTR activity is involved in the human sperm capacitation but how this channel is integrated in the complex signaling cascades associated with this process remains largely unknown. In the present work, we have analyzed the extent to which CFTR regulates different events in human sperm capacitation. We observed that inhibition of CFTR affects HCO3- -entrance dependent events resulting in lower PKA activity. CFTR inhibition also affected cAMP/PKA-downstream events such as the increase in tyrosine phosphorylation, hyperactivated motility, and acrosome reaction. In addition, we demonstrated for the first time, that CFTR and PKA activity are essential for the regulation of intracellular pH, and membrane potential in human sperm. Addition of permeable cAMP partially recovered all the PKA-dependent events altered in the presence of inh-172 which is consistent with a role of CFTR upstream of PKA activation. J. Cell. Physiol. 232: 1404-1414, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lis C Puga Molina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Nicolás A Pinto
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Paulina Torres Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Alberto Vicens Sanchez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, Massachusetts
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
92
|
Young SAM, Miyata H, Satouh Y, Aitken RJ, Baker MA, Ikawa M. CABYR is essential for fibrous sheath integrity and progressive motility in mouse spermatozoa. J Cell Sci 2016; 129:4379-4387. [PMID: 27802166 DOI: 10.1242/jcs.193151] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022] Open
Abstract
Ca2+-binding tyrosine-phosphorylation-regulated protein (CABYR) has been implicated in sperm physiological function in several in vitro studies. It has also been implicated as a potential cause of and diagnostic tool in asthenozoospermic human males. CABYR is known to be localized to the fibrous sheath, an accessory structure in the flagellar principal piece. Utilizing the CRISPR-Cas9 technology, we have knocked out this gene in mice to understand its role in male fertility. Cabyr-knockout male mice showed severe subfertility with a defect in sperm motility as well as a significant disorganization in the fibrous sheath. Further, abnormal configuration of doublet microtubules was observed in the Cabyr-knockout spermatozoa, suggesting that the fibrous sheath is important for the correct organization of the axoneme. Our results show that it is the role of CABYR in the formation of the fibrous sheath that is essential for male fertility.
Collapse
Affiliation(s)
- Samantha A M Young
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuhkoh Satouh
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Robert John Aitken
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan .,Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
93
|
Gervasi MG, Visconti PE. Chang's meaning of capacitation: A molecular perspective. Mol Reprod Dev 2016; 83:860-874. [PMID: 27256723 DOI: 10.1002/mrd.22663] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/31/2016] [Indexed: 02/04/2023]
Abstract
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
94
|
Ramos-Espiritu L, Kleinboelting S, Navarrete FA, Alvau A, Visconti PE, Valsecchi F, Starkov A, Manfredi G, Buck H, Adura C, Zippin JH, van den Heuvel J, Glickman JF, Steegborn C, Levin LR, Buck J. Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nat Chem Biol 2016; 12:838-44. [PMID: 27547922 PMCID: PMC5030147 DOI: 10.1038/nchembio.2151] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/23/2016] [Indexed: 12/22/2022]
Abstract
The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.
Collapse
Affiliation(s)
- Lavoisier Ramos-Espiritu
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | | | - Felipe A Navarrete
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Antonio Alvau
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Federica Valsecchi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Anatoly Starkov
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Hannes Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Carolina Adura
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, New York, USA
| | | | - J Fraser Glickman
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
95
|
Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9795409. [PMID: 27642606 PMCID: PMC5013236 DOI: 10.1155/2016/9795409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022]
Abstract
Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy.
Collapse
|
96
|
Navarrete FA, Alvau A, Lee HC, Levin LR, Buck J, Leon PMD, Santi CM, Krapf D, Mager J, Fissore RA, Salicioni AM, Darszon A, Visconti PE. Transient exposure to calcium ionophore enables in vitro fertilization in sterile mouse models. Sci Rep 2016; 6:33589. [PMID: 27627854 PMCID: PMC5024339 DOI: 10.1038/srep33589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022] Open
Abstract
Mammalian sperm acquire fertilizing capacity in the female tract in a process called capacitation. At the molecular level, capacitation requires protein kinase A activation, changes in membrane potential and an increase in intracellular calcium. Inhibition of these pathways results in loss of fertilizing ability in vivo and in vitro. We demonstrated that transient incubation of mouse sperm with Ca2+ ionophore accelerated capacitation and rescued fertilizing capacity in sperm with inactivated PKA function. We now show that a pulse of Ca2+ ionophore induces fertilizing capacity in sperm from infertile CatSper1 (Ca2+ channel), Adcy10 (soluble adenylyl cyclase) and Slo3 (K+ channel) KO mice. In contrast, sperm from infertile mice lacking the Ca2+ efflux pump PMACA4 were not rescued. These results indicate that a transient increase in intracellular Ca2+ can overcome genetic infertility in mice and suggest this approach may prove adaptable to rescue sperm function in certain cases of human male infertility.
Collapse
Affiliation(s)
- Felipe A Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Antonio Alvau
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | | | - Celia M Santi
- Department of Obstetrics and Gynecology, Basic Sciences Division, Washington University School of Medicine. St. Louis, MO, USA
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), 2000 Rosario, Argentina
| | - Jesse Mager
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Ana M Salicioni
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, IBT-UNAM, Cuernavaca, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst MA, USA
| |
Collapse
|
97
|
Cordero-Martínez J, Aguirre-Alvarado C, Guzmán-Soriano JG, Sánchez-Arroyo CE, Flores-Alonso JC, Rodríguez-Páez L. Effects of aqueous crude extract ofEcheveria gibbifloraon mouse sperm function. Syst Biol Reprod Med 2016; 62:343-52. [DOI: 10.1080/19396368.2016.1203044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
98
|
Li X, Wang L, Li Y, Zhao N, Zhen L, Fu J, Yang Q. Calcium regulates motility and protein phosphorylation by changing cAMP and ATP concentrations in boar sperm in vitro. Anim Reprod Sci 2016; 172:39-51. [PMID: 27423488 DOI: 10.1016/j.anireprosci.2016.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 12/15/2022]
Abstract
Considering the importance of calcium (Ca(2+)) in regulating sperm capacitation, hyperactivation and acrosome reaction, little is known about the molecular mechanism of action of this ion in this process. In the present study, assessment of the molecular mechanism from the perspective of energy metabolism occurred. Sperm motility variables were determined using computer-assisted sperm analysis (CASA) and the phosphorylation of PKA substrates, tyrosine residues and AMP-activated protein kinase (AMPK) were analyzed by Western blot. Moreover, intracellular sperm-specific glyceraldehyde 3-phosphatedehydrogenase (GAPDH) activity, 3'-5'-cyclic adenosine monophosphate (cAMP) and adenosine 5'-triphosphate (ATP) concentrations were assessed in boar sperm treated with Ca(2+). Results of the present study indicated that, under greater extracellular Ca(2+)concentrations (≥3.0mM), sperm motility and protein phosphorylation were inhibited. Interestingly, these changes were correlated with that of GAPDH activity, AMPK phosphorylation, cAMP and ATP concentrations. The negative effects of Ca(2+) on these intracellular processes were attenuated by addition of the calmodulin (CaM) inhibitor W7 and the inhibitor of calmodulin-dependent protein kinase (CaMK), KN-93. In the presence of greater extracellular Ca(2+), however, the phosphorylation pathway was suppressed by H-89. Taken together, these results suggested that Ca(2+) had a dual role in regulating boar sperm motility and protein phosphorylation due to the changes of cAMP and ATP concentrations, in response to cAMP-mediated signal transduction and the Ca(2+) signaling cascade. The present study provided some novel insights into the molecular mechanism underlying the effects of Ca(2+) on boar sperm as well as the involvement of energy metabolism in this mechanism.
Collapse
Affiliation(s)
- Xinhong Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lirui Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhua Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Na Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linqing Zhen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieli Fu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiangzhen Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
99
|
Li X, Wang L, Li Y, Fu J, Zhen L, Yang Q, Li S, Zhang Y. Tyrosine phosphorylation of dihydrolipoamide dehydrogenase as a potential cadmium target and its inhibitory role in regulating mouse sperm motility. Toxicology 2016; 357-358:52-64. [PMID: 27289041 DOI: 10.1016/j.tox.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023]
Abstract
Cadmium (Cd) is reported to reduce sperm motility and functions. However, the molecular mechanisms of Cd-induced toxicity remain largely unknown, presenting a major knowledge gap in research on reproductive toxicology. In the present study, we identified a candidate protein, dihydrolipoamide dehydrogenase (DLD), which is a post-pyruvate metabolic enzyme, exhibiting tyrosine phosphorylation in mouse sperm exposed to Cd both in vivo and in vitro. Immunoprecipitation assay demonstrated DLD was phosphorylated in tyrosine residues without altered expression after Cd treatment, which further confirmed our identified result. However, the tyrosine phosphorylation of DLD did not participate in mouse sperm capacitation and Bovine Serum Albumin (BSA) effectively prevented the tyrosine phosphorylation of DLD. Moreover, Cd-induced tyrosine phosphorylation of DLD lowered its dehydrogenase activity and meanwhile, Nicotinamide Adenine Dinucleotide Hydrogen (NADH) content, Adenosine Triphosphate (ATP) production and sperm motility were all inhibited by Cd. Interestingly, when the tyrosine phosphorylation of DLD was blocked by BSA, the decrease of DLD activity, NADH and ATP content as well as sperm motility was also suppressed simultaneously. These results suggested that Cd-induced tyrosine phosphorylation of DLD inhibited its activity and thus suppressed the tricarboxylic acid (TCA) cycle, which resulted in the reduction of NADH and hence the ATP production generated through oxidative phosphorylation (OPHOXS). Taken together, our results revealed that Cd induced DLD tyrosine phosphorylation, in response to regulate TCA metabolic pathway, which reduced ATP levels and these negative effects led to decreased sperm motility. This study provided new understanding of the mechanisms contributing to the harmful effects of Cd on the motility and function of spermatozoa.
Collapse
Affiliation(s)
- Xinhong Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Lirui Wang
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yuhua Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jieli Fu
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Linqing Zhen
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Qiangzhen Yang
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Sisi Li
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yukun Zhang
- Shanghai Key Lab of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
100
|
Mendeluk GR, Rosales M. Thyroxin Is Useful to Improve Sperm Motility. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2016; 10:208-14. [PMID: 27441054 PMCID: PMC4948073 DOI: 10.22074/ijfs.2016.4911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022]
Abstract
Background The aim of this study was to evaluate the non-genomic action of thyroxin
on sperm kinetic and its probable use to improve sperm recovery after applying an en-
richment method like “swim-up” in comparison with the available one, pentoxifylline. Materials and Methods This is an experimental study. A total of 50 patients were re-
cruited, followed by infertility consultation. Conventional sperm assays were performed
according to World Health Organization criteria-2010 (WHO-2010). A Computer Aided
Semen Analysis System was employed to assess kinetic parameters and concentrations.
Number of the motile sperm recovered after preparation technique was calculated. Results Addition of T4 (0.002 µg/ml) to semen samples increased hypermotility at 20
minutes (control: 14.18 ± 5.1% vs. 17.66 ± 8.88%, P<0.03, data expressed as mean ±
SD) and remained unchanged after 40 minutes. Significant differences were found in
the motile sperm recovered after swim-up (control: 8.93×106 ± 9.52× 06vs. 17.20×106
± 21.16×106, P<0.03), achieving all of the tested samples a desirable threshold value
for artificial insemination outcome, while adding pentoxifylline increased the number
of recovered sperm after swim-up in 60% of the studied cases. No synergism between
two treatments could be determined. Conclusion We propose a new physiological tool to artificially improve insemination.
The discussion opens windows to investigate unknown pathways involved in sperm ca-
pacitation and gives innovative arguments to better understand infertility mechanisms.
Collapse
Affiliation(s)
- Gabriela Ruth Mendeluk
- Laboratory of Male Fertility, Hospital de Clínicas José de San Martín, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Mónica Rosales
- Laboratory of Endocrinology, Hospital de Clínicas José de San Martín, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|