51
|
Beetroot juice versus chard gel: A pharmacokinetic and pharmacodynamic comparison of nitrate bioavailability. Nitric Oxide 2017; 64:61-67. [DOI: 10.1016/j.niox.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 01/26/2023]
|
52
|
Sekiyama Y, Okazaki K, Kikuchi J, Ikeda S. NMR-Based Metabolic Profiling of Field-Grown Leaves from Sugar Beet Plants Harbouring Different Levels of Resistance to Cercospora Leaf Spot Disease. Metabolites 2017; 7:E4. [PMID: 28134762 PMCID: PMC5372207 DOI: 10.3390/metabo7010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
Cercospora leaf spot (CLS) is one of the most serious leaf diseases for sugar beet (Beta vulgaris L.) worldwide. The breeding of sugar beet cultivars with both high CLS resistance and high yield is a major challenge for breeders. In this study, we report the nuclear magnetic resonance (NMR)-based metabolic profiling of field-grown leaves for a subset of sugar beet genotypes harbouring different levels of CLS resistance. Leaves were collected from 12 sugar beet genotypes at four time points: seedling, early growth, root enlargement, and disease development stages. ¹H-NMR spectra of foliar metabolites soluble in a deuterium-oxide (D₂O)-based buffer were acquired and subjected to multivariate analyses. A principal component analysis (PCA) of the NMR data from the sugar beet leaves shows clear differences among the growth stages. At the later time points, the sugar and glycine betaine contents were increased, whereas the choline content was decreased. The relationship between the foliar metabolite profiles and resistance level to CLS was examined by combining partial least squares projection to latent structure (PLS) or orthogonal PLS (OPLS) analysis and univariate analyses. It was difficult to build a robust model for predicting precisely the disease severity indices (DSIs) of each genotype; however, GABA and Gln differentiated susceptible genotypes (genotypes with weak resistance) from resistant genotypes (genotypes with resistance greater than a moderate level) before inoculation tests. The results suggested that breeders might exclude susceptible genotypes from breeding programs based on foliar metabolites profiled without inoculation tests, which require an enormous amount of time and effort.
Collapse
Affiliation(s)
- Yasuyo Sekiyama
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8642, Japan.
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Yokohama 235-0045, Japan.
| | - Kazuyuki Okazaki
- Hokkaido Agricultural Research Center, NARO 9-4 Shinsei-minami, Memuro 082-0081, Japan.
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Yokohama 235-0045, Japan.
- Graduate School of Medical Life Sciences, Yokohama City University, Yokohama 230-0045, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Seishi Ikeda
- Hokkaido Agricultural Research Center, NARO 9-4 Shinsei-minami, Memuro 082-0081, Japan.
| |
Collapse
|
53
|
Thompson C, Wylie LJ, Blackwell JR, Fulford J, Black MI, Kelly J, McDonagh STJ, Carter J, Bailey SJ, Vanhatalo A, Jones AM. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training. J Appl Physiol (1985) 2016; 122:642-652. [PMID: 27909231 DOI: 10.1152/japplphysiol.00909.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/13/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT.NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.
Collapse
Affiliation(s)
| | - Lee J Wylie
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Jamie R Blackwell
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- National Institute for Health Research Exeter Clinical Research Facility, University of Exeter, Exeter, United Kingdom; and
| | - Matthew I Black
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - James Kelly
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | | | - James Carter
- Gatorade Sports Science Institute, PepsiCo Research & Development, Barrington, Illinois
| | - Stephen J Bailey
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom;
| |
Collapse
|
54
|
Das S, Filippone SM, Williams DS, Das A, Kukreja RC. Beet root juice protects against doxorubicin toxicity in cardiomyocytes while enhancing apoptosis in breast cancer cells. Mol Cell Biochem 2016; 421:89-101. [DOI: 10.1007/s11010-016-2789-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
|
55
|
Zhang Y, Nan J, Yu B. OMICS Technologies and Applications in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2016; 7:900. [PMID: 27446130 PMCID: PMC4916227 DOI: 10.3389/fpls.2016.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/08/2023]
Abstract
Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Jingdong Nan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
- *Correspondence: Bing Yu
| |
Collapse
|
56
|
Vallverdú-Queralt A, Lamuela-Raventós RM. Foodomics: A new tool to differentiate between organic and conventional foods. Electrophoresis 2015; 37:1784-94. [DOI: 10.1002/elps.201500348] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Anna Vallverdú-Queralt
- INRA; UMR1083 Sciences pour l′œnologie; France
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN.) Instituto de Salud Carlos III; Madrid Spain
| | - Rosa Maria Lamuela-Raventós
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN.) Instituto de Salud Carlos III; Madrid Spain
- Nutrition and Food Science Department, XaRTA, INSA. School of Pharmacy; University of Barcelona; Barcelona Spain
| |
Collapse
|
57
|
Kaimainen M, Laaksonen O, Järvenpää E, Sandell M, Huopalahti R. Consumer acceptance and stability of spray dried betanin in model juices. Food Chem 2015; 187:398-406. [DOI: 10.1016/j.foodchem.2015.04.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 01/15/2023]
|
58
|
|
59
|
Wruss J, Waldenberger G, Huemer S, Uygun P, Lanzerstorfer P, Müller U, Höglinger O, Weghuber J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.03.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
60
|
Shepherd AI, Gilchrist M, Winyard PG, Jones AM, Hallmann E, Kazimierczak R, Rembialkowska E, Benjamin N, Shore AC, Wilkerson DP. Effects of dietary nitrate supplementation on the oxygen cost of exercise and walking performance in individuals with type 2 diabetes: a randomized, double-blind, placebo-controlled crossover trial. Free Radic Biol Med 2015; 86:200-8. [PMID: 25998421 DOI: 10.1016/j.freeradbiomed.2015.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/20/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
Abstract
Dietary nitrate supplementation has been shown to reduce the oxygen (O2) cost of exercise and enhance exercise tolerance in healthy individuals. This study assessed whether similar effects could be observed in individuals with type 2 diabetes (T2DM). In a randomized, double-blind, placebo-controlled crossover study, 48 participants with T2DM supplemented their diet for 4 days with either nitrate-rich beetroot juice (70ml/day, 6.43mmol nitrate/day) or nitrate-depleted beetroot juice as placebo (70ml/day, 0.07mmol nitrate/day). After each intervention period, resting plasma nitrate and nitrite concentrations were measured subsequent to participants completing moderate-paced walking. Pulmonary gas exchange was measured to assess the O2 cost of walking. After a rest period, participants performed the 6-min walk test (6MWT). Relative to placebo, beetroot juice resulted in a significant increase in plasma nitrate (placebo, 57±66 vs beetroot, 319±110µM; P < 0.001) and plasma nitrite concentration (placebo, 680±256 vs beetroot, 1065±607nM; P < 0.001). There were no differences between placebo juice and beetroot juice for the O2 cost of walking (946±221 vs 939±223ml/min, respectively; P = 0.59) and distance covered in the 6MWT (550±83 vs 554±90m, respectively; P = 0.17). Nitrate supplementation did not affect the O2 cost of moderate-paced walking or improve performance in the 6MWT. These findings indicate that dietary nitrate supplementation does not modulate the response to exercise in individuals with T2DM.
Collapse
Affiliation(s)
- Anthony I Shepherd
- College of Life and Environmental Sciences, Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, Devon, UK; University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, UK
| | - Mark Gilchrist
- University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, UK
| | - Paul G Winyard
- University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, UK
| | - Andrew M Jones
- College of Life and Environmental Sciences, Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, Devon, UK
| | | | | | | | - Nigel Benjamin
- University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, UK
| | - Angela C Shore
- University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, UK
| | - Daryl P Wilkerson
- College of Life and Environmental Sciences, Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, Devon, UK.
| |
Collapse
|
61
|
Lee JS, Stebbins CL, Jung E, Nho H, Kim JK, Chang MJ, Choi HM. Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise. Am J Physiol Regul Integr Comp Physiol 2015; 309:R459-66. [PMID: 26084693 DOI: 10.1152/ajpregu.00099.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/13/2015] [Indexed: 01/08/2023]
Abstract
While acute treatment with beetroot juice (BRJ) containing nitrate (NO3 (-)) can lower systolic blood pressure (SBP), afterload, and myocardial O2 demand during submaximal exercise, effects of chronic supplementation with BRJ (containing a relatively low dose of NO3 (-), 400 mg) on cardiac output (CO), SBP, total peripheral resistance (TPR), and the work of the heart in response to dynamic exercise are not known. Thus, in 14 healthy males (22 ± 1 yr), we compared effects of 15 days of both BRJ and nitrate-depleted beetroot juice (NDBRJ) supplementation on plasma concentrations of NOx (NO3 (-)/NO2 (-)), SBP, diastolic blood pressure (DBP), mean arterial pressure (MAP), CO, TPR, and rate pressure product (RPP) at rest and during progressive cycling exercise. Endothelial function was also assessed via flow-mediated dilation (FMD). BRJ supplementation increased plasma NOx from 83.8 ± 13.8 to 167.6 ± 13.2 μM. Compared with NDBRJ, BRJ reduced SBP, DBP, MAP, and TPR at rest and during exercise (P < 0.05). In addition, RPP was decreased during exercise, while CO was increased, but only at rest and the 30% workload (P < 0.05). BRJ enhanced FMD-induced increases in brachial artery diameter (pre: 12.3 ± 1.6%; post: 17.8 ± 1.9%). We conclude that 1) chronic supplementation with BRJ lowers blood pressure and vascular resistance at rest and during exercise and attenuates RPP during exercise and 2) these effects may be due, in part, to enhanced endothelium-induced vasodilation in contracting skeletal muscle. Findings suggest that BRJ can act as a dietary nutraceutical capable of enhancing O2 delivery and reducing work of the heart, such that exercise can be performed at a given workload for a longer period of time before the onset of fatigue.
Collapse
Affiliation(s)
- Jae-Seok Lee
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Charles L Stebbins
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California at Davis, Davis, California
| | - Eunji Jung
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Hosung Nho
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Jong-Kyung Kim
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Myoung-Jei Chang
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| | - Hyun-Min Choi
- Graduate School of Physical Education, Kyung Hee University, Seoul, South Korea; and
| |
Collapse
|
62
|
Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediators Inflamm 2014; 2014:983952. [PMID: 25400335 PMCID: PMC4221885 DOI: 10.1155/2014/983952] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/11/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022] Open
Abstract
The present investigation was designed to investigate the protective effect of (Beta vulgaris L.) beat root ethanolic extract (BVEE) on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific kidney function parameters (urea, uric acid, total protein, creatinine, and histopathology of kidney tissue) were evaluated to access gentamicin-induced nephrotoxicity. The oxidative/nitrosative stress (Lipid peroxidation, MDA, NP-SH, Catalase, and nitric oxide levels) was assessed. The inflammatory response (TNF-α, IL-6, MPO, NF-κB (p65), and NF-κB (p65) DNA binding) and apoptotic marker (Caspase-3, Bax, and Bcl-2) were also evaluated. BVEE (250 and 500 mg/kg) treatment along with gentamicin restored/increased the renal endogenous antioxidant status. Gentamicin-induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65), NF-κB-DNA binding activity, myeloperoxidase (MPO) activity, and nitric oxide level were significantly down regulated upon BVEE treatment. In addition, BVEE treatment significantly reduced the amount of cleaved caspase 3 and Bax, protein expression and increased the Bcl-2 protein expression. BVEE treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. These findings suggest that BVEE treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, inflammation, and apoptosis in the kidney.
Collapse
|
63
|
Kahl J, Rembiałkowska E. Research on organic food quality needs a system approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2577. [PMID: 25187520 DOI: 10.1002/jsfa.6836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|