51
|
Neumann S, Biewend M, Rana S, Binder WH. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromol Rapid Commun 2019; 41:e1900359. [PMID: 31631449 DOI: 10.1002/marc.201900359] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Indexed: 01/08/2023]
Abstract
The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.
Collapse
Affiliation(s)
- Steve Neumann
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Michel Biewend
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Sravendra Rana
- School of Engineering University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Wolfgang H Binder
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
52
|
Kawtharani R, Cherry K, Elmasri M, Abarbri M. An Easy Access to 4‐Trifluoromethylated 7‐(4‐Substitued‐1
H
‐1,2,3‐Triazol‐1‐yl)Pyrimido[1,2‐
b
]Pyridazin‐2‐One Systems. ChemistrySelect 2019. [DOI: 10.1002/slct.201902375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ranin Kawtharani
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E). EA 6299. Avenue Monge Faculté des Sciences, Parc de Grandmont 37200 Tours France
- Laboratoire de Chimie Médicinale et de Produit Naturels (LCMPN)Université Libanaise, Faculté des Sciences I Hadat Lebanon
| | - Khalil Cherry
- Laboratoire Matériaux, Catalyse, Environnement et Méthodes Analytiques (MCEMA)Université Libanaise, Faculté des Sciences I, Hadat Lebanon
| | - Mirvat Elmasri
- Laboratoire de Chimie Médicinale et de Produit Naturels (LCMPN)Université Libanaise, Faculté des Sciences I Hadat Lebanon
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E). EA 6299. Avenue Monge Faculté des Sciences, Parc de Grandmont 37200 Tours France
| |
Collapse
|
53
|
Wang CG, Chong AML, Lu Y, Liu X, Goto A. Metal-Free Fast Azidation by Using Tetrabutylammonium Azide: Effective Synthesis of Alkyl Azides and Well-Defined Azido-End Polymethacrylates. Chemistry 2019; 25:13025-13029. [PMID: 31389637 DOI: 10.1002/chem.201903188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Indexed: 11/10/2022]
Abstract
An effective method to synthesize azido-end polymethacrylates from tetrabutylammonium azide (BNN3 ) in a nonpolar solvent (toluene) was developed. Several low-mass alkyl halides were reacted with BNN3 in toluene as model reactions and the rate constants of these reactions were determined, to confirm fast BNN3 azidation for tertiary and secondary halides. The end-group transformation of halide-end polymethacrylates was effective and nearly quantitative. Notably, the combination of organocatalyzed living (or reversible deactivation) radical polymerization and BNN3 azidation enabled the metal-free synthesis of azido-end polymethacrylates, including single-azido-end and multi-azido-end functional homopolymers and block copolymers. The rapid and quantitative reaction without the requirement for a large excess of BNN3 , metal-free and polar-solvent-free nature, and broad polymer scope are attractive features of this azidation.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Amerlyn Ming Liing Chong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Xu Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| |
Collapse
|
54
|
Ben El Ayouchia H, ElMouli H, Bahsis L, Anane H, Laamari R, Gómez-García CJ, Julve M, Stiriba SE. Hyperbranched polyethylenimine-supported copper(II) ions as a macroliganted homogenous catalyst for strict click reactions of azides and alkynes in water. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
55
|
Sole R, Bortoluzzi M, Spannenberg A, Tin S, Beghetto V, de Vries JG. Synthesis, characterization and catalytic activity of novel ruthenium complexes bearing NNN click based ligands. Dalton Trans 2019; 48:13580-13588. [PMID: 31464307 DOI: 10.1039/c9dt01822k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel air stable ruthenium(ii) complexes bearing tridentate ligands bis((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine (L1), 1-(1-benzyl-1H-1,2,3-triazol-4-yl)-N-(pyridin-2-ylmethyl)methanamine (L2) or 2-(4-phenyl-1H-1,2,3-triazol-1-yl)-N-(pyridin-2-ylmethyl)ethan-1-amine (L3) were synthesised. The nitrogen based ligands were easily prepared by virtue of click chemistry using cheap and commercially available reagents. The ruthenium complexes were obtained by heating the Ru(PPh3)3Cl2 precursor and the tridentate NNN ligand in toluene under reflux for 2 hours, achieving yields of 82-87%. These complexes were fully characterized by means of NMR, FT-IR and high resolution ESI spectroscopy. The crystal structure of one of the complexes was determined. These complexes showed excellent activity and selectivity in the hydrogenation of ketones and aldehydes. DFT calculations show that complex 3 may react through an outer-sphere catalytic cycle rather than via an inner-sphere mechanism.
Collapse
Affiliation(s)
- Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca'Foscari Venezia, Via Torino 155, 30170, Venezia Mestre, Italy.
| | | | | | | | | | | |
Collapse
|
56
|
McNelles SA, Pantaleo JL, Meichsner E, Adronov A. Strain-Promoted Azide-Alkyne Cycloaddition-Mediated Step-Growth Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stuart A. McNelles
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Julia L. Pantaleo
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| |
Collapse
|
57
|
Van Guyse JFR, Verjans J, Vandewalle S, De Bruycker K, Du Prez FE, Hoogenboom R. Full and Partial Amidation of Poly(methyl acrylate) as Basis for Functional Polyacrylamide (Co)Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joachim F. R. Van Guyse
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Jente Verjans
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Stef Vandewalle
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Kevin De Bruycker
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Filip E. Du Prez
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
58
|
Núñez-Villanueva D, Ciaccia M, Iadevaia G, Sanna E, Hunter CA. Sequence information transfer using covalent template-directed synthesis. Chem Sci 2019; 10:5258-5266. [PMID: 31191881 PMCID: PMC6540929 DOI: 10.1039/c9sc01460h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
Kinetically inert ester bonds were used to attach monomers to a template, dictating the sequence of the polymer product.
Template-directed synthesis is the biological method for the assembly of oligomers of defined sequence, providing the molecular basis for replication and the process of evolution. To apply analogous processes to synthetic oligomeric molecules, methods are required for the transfer of sequence information from a template to a daughter strand. We show that covalent template-directed synthesis is a promising approach for the molecular replication of sequence information in synthetic oligomers. Two monomer building blocks were synthesized: a phenol monomer and a benzoic acid monomer, each bearing an alkyne and an azide for oligomerization via copper catalyzed azide alkyne cycloaddition (CuAAC) reactions. Stepwise synthesis was used to prepare oligomers, where information was encoded as the sequence of phenol (P) and benzoic acid (A) units. Ester base-pairing was used to attach monomers to a mixed sequence template, and CuAAC was used to zip up the backbone. Hydrolysis of the ester base-pairs gave back the starting template and the sequence complementary copy. When the AAP trimer was used as the template, the complementary sequence PPA was obtained as the major product, with a small amount of scrambling resulting in PAP as a side-product. This covalent base-pairing strategy represents a general approach that can be implemented in different formats for the replication of sequence information in synthetic oligomers.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Maria Ciaccia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Elena Sanna
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
59
|
Khaldi Z, Besse C, Nzambe Ta Keki JK, Ouk TS, Gloaguen V, Zerrouki R. Synthesis, characterization, and antibacterial activities of a new lignocellulosic material carrying aryl triazole moiety. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zineb Khaldi
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
| | - Claire Besse
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
| | | | - Tan-Sothéa Ouk
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
| | - Vincent Gloaguen
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
| | - Rachida Zerrouki
- Laboratoire de Chimie des Substances Naturelles; Université de Limoges; Limoges France
- Centre de Recherche sur les Matériaux Lignocellulosiques; Université du Québec À Trois-Rivières; Trois-Rivières Canada
| |
Collapse
|
60
|
Biallas P, Mensak TM, Kunz KA, Kirsch SF. The Deazidoalkoxylation: Sequential Nucleophilic Substitutions with Diazidated Diethyl Malonate. J Org Chem 2019; 84:1654-1663. [DOI: 10.1021/acs.joc.8b02969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Phillip Biallas
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Tobias M. Mensak
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Kevin-Alexander Kunz
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Stefan F. Kirsch
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
61
|
Rivas MV, Petroselli G, Erra-Balsells R, Varela O, Kolender AA. Synthesis, characterization and chemical degradation of poly(ester-triazole)s derived from d-galactose. RSC Adv 2019; 9:9860-9869. [PMID: 35520726 PMCID: PMC9062189 DOI: 10.1039/c9ra00398c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/21/2019] [Indexed: 11/25/2022] Open
Abstract
α-Azide-ω-alkynyl ester monomers were designed and synthesized in order to obtain hydrolytically degradable polymers. The monomers were prepared from d-galactose, as a renewable resource. Environmentally benign azido–alkyne cycloaddition polymerizations were conducted to afford poly(ester-triazole)s, with complete atom economy. Although polymer formation prevailed under optimized polymerization conditions, variable proportions of cyclic oligomer byproducts were detected. The Cu-catalyzed click polymerization led regioselectively to 1,4-disubstituted triazole linkages, while the thermal, metal-free polymerization produced a random distribution of 1,4- and 1,5-disubstituted triazoles in the polymer backbone. The poly(ester-triazole)s exhibited high molecular weights (Mw in the range 35–85 kDa). They were soluble in organic solvents but highly insoluble in water, thus removal of the Cu(i) catalyst was simplified. The polymers were stable up to 300 °C, and had Tg values in the range 90–100 °C. The materials were hydrolysed under either basic or strong acid conditions, and the degradation products have been characterized. Carbohydrate-derived poly(ester-triazoles), soluble in organic solvents and degradable in aqueous media, have been synthesized by CuAAC or thermal polymerization.![]()
Collapse
Affiliation(s)
- M. Verónica Rivas
- Universidad de Buenos Aires
- Facultad Ciencias Exactas y Naturales
- Departamento de Química Orgánica
- Ciudad Universitaria
- Buenos Aires
| | - Gabriela Petroselli
- Universidad de Buenos Aires
- Facultad Ciencias Exactas y Naturales
- Departamento de Química Orgánica
- Ciudad Universitaria
- Buenos Aires
| | - Rosa Erra-Balsells
- Universidad de Buenos Aires
- Facultad Ciencias Exactas y Naturales
- Departamento de Química Orgánica
- Ciudad Universitaria
- Buenos Aires
| | - Oscar Varela
- Universidad de Buenos Aires
- Facultad Ciencias Exactas y Naturales
- Departamento de Química Orgánica
- Ciudad Universitaria
- Buenos Aires
| | - Adriana A. Kolender
- Universidad de Buenos Aires
- Facultad Ciencias Exactas y Naturales
- Departamento de Química Orgánica
- Ciudad Universitaria
- Buenos Aires
| |
Collapse
|
62
|
Biallas P, Heider J, Kirsch SF. Functional polyamides withgem-diazido units: synthesis and diversification. Polym Chem 2019. [DOI: 10.1039/c8py01087k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyamide structures bearing geminal diazide units were constructed with diazidated malonates and diamines.
Collapse
Affiliation(s)
| | - Janina Heider
- Bergische Universität Wuppertal
- 42119 Wuppertal
- Germany
| | | |
Collapse
|
63
|
Biewend M, Neumann S, Michael P, Binder WH. Synthesis of polymer-linked copper(i) bis(N-heterocyclic carbene) complexes of linear and chain extended architecture. Polym Chem 2019. [DOI: 10.1039/c8py01751d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel PS-based mechanophores of linear and chain-extended architecture are synthesized obtaining bis(NHC) complexes with more than one Cu(i) center per chain and molecular weights of up to 50 000 g mol−1.
Collapse
Affiliation(s)
- Michel Biewend
- Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Institute of Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
| | - Steve Neumann
- Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Institute of Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
| | - Philipp Michael
- Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Institute of Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
| | - Wolfgang H. Binder
- Macromolecular Chemistry
- Division of Technical and Macromolecular Chemistry
- Institute of Chemistry
- Faculty of Natural Science II (Chemistry
- Physics and Mathematics)
| |
Collapse
|
64
|
Núñez-Villanueva D, Ciaccia M, Hunter CA. Cap control: cyclic versus linear oligomerisation in covalent template-directed synthesis. RSC Adv 2019; 9:29566-29569. [PMID: 35531529 PMCID: PMC9071899 DOI: 10.1039/c9ra07233k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Covalent template-directed synthesis was used to oligomerise monomer building blocks in a controlled manner to give exclusively the linear trimer. Competing reaction pathways were blocked by addition of a large excess of a monomeric capping agent. At a concentration of 1 mM, the cap selectively prevented further reaction of the product chain ends to give polymeric and macrocyclic products, but did not interfere with the templating process. The right concentration of capping agent is required to control the product distribution in covalent template-directed synthesis of linear oligomers using CuAAC.![]()
Collapse
Affiliation(s)
| | - Maria Ciaccia
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | | |
Collapse
|
65
|
Arslan M, Tasdelen MA. Click Chemistry in Macromolecular Design: Complex Architectures from Functional Polymers. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-0030-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Binder WH. The Past 40 Years of Macromolecular Sciences: Reflections on Challenges in Synthetic Polymer and Material Science. Macromol Rapid Commun 2018; 40:e1800610. [DOI: 10.1002/marc.201800610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Wolfgang H. Binder
- Institute of Chemistry; Faculty of Natural Sciences II; Martin-Luther University Halle-Wittenberg; von Danckelmann-Platz 4 D-06120 Halle (Saale) Germany
| |
Collapse
|
67
|
Zhang P, Yamamoto T, Suginome M. Helical Poly(quinoxaline‐2,3‐diyl)s Bearing 1,2,3‐Triazole Pendants: Synthesis by CuAAC and Use as Reusable Abnormal NHC Ligands in Gold Catalysis. ChemCatChem 2018. [DOI: 10.1002/cctc.201801361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pinglu Zhang
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of EngineeringKyoto University Katsura 615-8510 Japan
| | - Takeshi Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of EngineeringKyoto University Katsura 615-8510 Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of EngineeringKyoto University Katsura 615-8510 Japan
| |
Collapse
|
68
|
El-Zaatari BM, Cole SM, Bischoff DJ, Kloxin CJ. Copper Ligand and Anion Effects: Controlling the Kinetics of the Photoinitiated Copper(I) Catalyzed Azide-Alkyne Cycloaddition Polymerization. Polym Chem 2018; 9:4772-4780. [PMID: 31031838 PMCID: PMC6483394 DOI: 10.1039/c8py01004h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics of photoinduced copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) polymerizations were assessed as a function of copper(II) amine-based ligands. Copper(II) bromide ligated with 1,1,4,7,10,10-hexamethylenetetramine (HMTETA) exhibited the fastest kinetics in both Norrish type(I) and type(II) photoinitiating systems. A characteristic induction period is observed with these polymerizations and is manipulated by adding an external tertiary amine in Norrish Type(II) photoinitating systems or by changing the anion of the copper(II) salt. Halides, specifically bromide and chloride, exhibit the fastest kinetics with the smallest induction period in comparison with organic anions, such as bistriflimide and triflate. The temporal control of the photo-CuAAC polymerization is affected by pre-ligation of the copper catalyst, by the presence of certain anions such as acetate, and by specific ligands such as tetramethylethylenediamine (TMEDA).
Collapse
Affiliation(s)
- Bassil M. El-Zaatari
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Shea M. Cole
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Derek J. Bischoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Christopher J. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| |
Collapse
|
69
|
Acik G, Altinkok C, Tasdelen MA. Synthesis and characterization of polypropylene-graft
-poly(l
-lactide) copolymers by CuAAC click chemistry. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29241] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gokhan Acik
- Department of Polymer Engineering, Faculty of Engineering; Yalova University; TR-77100 Yalova Turkey
- Department of Chemistry, Faculty of Sciences and Letters; Piri Reis University; Tuzla, 34940 Istanbul Turkey
| | - Cagatay Altinkok
- Department of Chemistry, Faculty of Science; Trakya University; Merkez, 22030 Edirne Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Engineering, Faculty of Engineering; Yalova University; TR-77100 Yalova Turkey
| |
Collapse
|
70
|
Marcasuzaa P, Pearson S, Bosson K, Pessoni L, Dupin JC, Billon L. Reactive nano-patterns in triple structured bio-inspired honeycomb films as a clickable platform. Chem Commun (Camb) 2018; 54:13068-13071. [DOI: 10.1039/c8cc05333b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Towards unprecedented triple structured bio-inspired honeycomb film by selfassembly of a functional block copolymer during breath figure templating as a nano-patterned clickable platform.
Collapse
Affiliation(s)
- Pierre Marcasuzaa
- Université de Pau & Pays Adour, CNRS, IPREM UMR 5254
- Pau F-64053
- France
- Bio-inspired Materials Group
- Functionality & Self-assembly, Université de Pau & Pays Adour
| | - Samuel Pearson
- Université de Pau & Pays Adour, CNRS, IPREM UMR 5254
- Pau F-64053
- France
- Bio-inspired Materials Group
- Functionality & Self-assembly, Université de Pau & Pays Adour
| | - Karell Bosson
- Université de Pau & Pays Adour, CNRS, IPREM UMR 5254
- Pau F-64053
- France
- Bio-inspired Materials Group
- Functionality & Self-assembly, Université de Pau & Pays Adour
| | - Laurence Pessoni
- Université de Pau & Pays Adour, CNRS, IPREM UMR 5254
- Pau F-64053
- France
- Bio-inspired Materials Group
- Functionality & Self-assembly, Université de Pau & Pays Adour
| | | | - Laurent Billon
- Université de Pau & Pays Adour, CNRS, IPREM UMR 5254
- Pau F-64053
- France
- Bio-inspired Materials Group
- Functionality & Self-assembly, Université de Pau & Pays Adour
| |
Collapse
|
71
|
Gan W, Cao X, Gao H. Recent Progress on Grafting-onto Synthesis of Molecular Brushes by Reversible Deactivation Radical Polymerization and CuAAC Coupling Reaction. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1285.ch014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Weiping Gan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xiaosong Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
72
|
Lang C, Barner L, Blinco JP, Barner-Kowollik C, Fairfull-Smith KE. Direct access to biocompatible nitroxide containing polymers. Polym Chem 2018. [DOI: 10.1039/c8py00089a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ring-opening copolymerization of a nitroxide containing cyclic carbonate and d/l-lactide was used to directly access well-defined biocompatible polymers.
Collapse
Affiliation(s)
- Christiane Lang
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Leonie Barner
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| |
Collapse
|
73
|
Abstract
Click chemistry has emerged as a significant tool for materials science, organic chemistry, and bioscience. Based on the initial concept of Barry Sharpless in 2001, the copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction has triggered a plethora of chemical concepts for linking molecules and building blocks under ambient conditions, forming the basis for applications in autonomous cross-linking materials. Self-healing systems on the other hand are often based on mild cross-linking chemistries that are able to react either autonomously or upon an external trigger. In the ideal case, self-healing takes place efficiently at low temperatures, independent of the substrate(s) used, by forming strong and stable networks, binding to the newly generated (cracked) interfaces to restore the original material properties. The use of the CuAAC in self-healing systems, most of all the careful design of copper-based catalysts linked to additives as well as the chemical diversity of substrates, has led to an enormous potential of applications of this singular reaction. The implementation of click-based strategies in self-healing systems therefore is highly attractive, as here chemical (and physical) concepts of molecular reactivity, molecular design, and even metal catalysis are connected to aspects of materials science. In this Account, we will show how CuAAC reactions of multivalent components can be used as a tool for self-healing materials, achieving cross-linking at low temperatures (exploiting concepts of autocatalysis or internal chelation within the bulk CuAAC and systematic optimization of the efficiency of the used Cu(I) catalysts). Encapsulation strategies to separate the click components by micro- and nanoencapsulation are required in this context. Consequently, the examples reported here describe chemical concepts to realize more efficient and faster click reactions in self-healing polymeric materials. Thus, enhanced chain diffusion in (hyper)branched polymers, autocatalysis, or internal chelation concepts enable efficient click cross-linking already at 5 °C with a simultaneously reduced amount of Cu(I) catalyst and increased reaction rates, culminating in the first reported self-healing system based on click cycloaddition reactions. Via tailor-made nanocarbon/Cu(I) catalysts we can further improve the click cross-linking reaction in view of efficiency and kinetics, leading to the generation of self-healing graphene-based epoxy nanocomposites. Additionally, we have designed special CuAAC click methods for chemical reporting and visualization systems based on the detection of ruptured capsules via a fluorogenic click reaction, which can be combined with CuAAC cross-linking reactions to obtain simultaneous stress detection and self-healing within polymeric materials. In a similar concept, we have prepared polymeric Cu(I)-biscarbene complexes to detect (mechanical) stress within self-healing polymeric materials via a triggered fluorogenic reaction, thus using a destructive force for a constructive chemical response.
Collapse
Affiliation(s)
- Diana Döhler
- Chair of Macromolecular Chemistry,
Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - Philipp Michael
- Chair of Macromolecular Chemistry,
Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - Wolfgang H. Binder
- Chair of Macromolecular Chemistry,
Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
74
|
Martens S, Holloway JO, Du Prez FE. Click and Click-Inspired Chemistry for the Design of Sequence-Controlled Polymers. Macromol Rapid Commun 2017; 38. [PMID: 28990247 DOI: 10.1002/marc.201700469] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/18/2017] [Indexed: 01/09/2023]
Abstract
During the previous decade, many popular chemical reactions used in the area of "click" chemistry and similarly efficient "click-inspired" reactions have been applied for the design of sequence-defined and, more generally, sequence-controlled structures. This combination of topics has already made quite a significant impact on scientific research to date and has enabled the synthesis of highly functionalized and complex oligomeric and polymeric structures, which offer the prospect of many exciting further developments and applications in the near future. This minireview highlights the fruitful combination of these two topics for the preparation of sequence-controlled oligomeric and macromolecular structures and showcases the vast number of publications in this field within a relatively short span of time. It is divided into three sections according to the click-(inspired) reaction that has been applied: copper-catalyzed azide-alkyne cycloaddition, thiol-X, and related thiolactone-based reactions, and finally Diels-Alder-chemistry-based routes are outlined, respectively.
Collapse
Affiliation(s)
- Steven Martens
- Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| | - Joshua O Holloway
- Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| |
Collapse
|
75
|
Howe DH, McDaniel RM, Magenau AJD. From Click Chemistry to Cross-Coupling: Designer Polymers from One Efficient Reaction. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- David H. Howe
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Riki M. McDaniel
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Andrew J. D. Magenau
- Department of Materials Science
and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
76
|
Michael P, Sheidaee Mehr SK, Binder WH. Synthesis and characterization of polymer linked copper(I) bis(N
-heterocyclic carbene) mechanocatalysts. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28775] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Philipp Michael
- Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry; Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4; Halle D-06120 Germany
| | - Shima Khazraee Sheidaee Mehr
- Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry; Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4; Halle D-06120 Germany
- Department of Chemistry, Lacktechnologie; Hochschule Niederrhein, Adlerstraße 1; Krefeld D-47798 Germany
| | - Wolfgang H. Binder
- Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry; Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4; Halle D-06120 Germany
| |
Collapse
|
77
|
Li H, Chi W, Liu Y, Yuan W, Li Y, Li Y, Tang BZ. Ferrocene-Based Hyperbranched Polytriazoles: Synthesis by Click Polymerization and Application as Precursors to Nanostructured Magnetoceramics. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/24/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Weiwen Chi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yajing Liu
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Wei Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yaowen Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yongfang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Ben Zhong Tang
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
78
|
Uner A, Doganci E, Tasdelen MA, Yilmaz F, Gürek AG. Synthesis, characterization and surface properties of star-shaped polymeric surfactants with polyhedral oligomeric silsesquioxane core. POLYM INT 2017. [DOI: 10.1002/pi.5420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmet Uner
- Department of Chemistry; Gebze Technical University, Gebze; Kocaeli Turkey
| | - Erdinc Doganci
- Department of Chemistry and Chemical Processing Technology; Kocaeli University; Kocaeli Turkey
| | | | | | - Ayşe Gül Gürek
- Department of Chemistry; Gebze Technical University, Gebze; Kocaeli Turkey
| |
Collapse
|
79
|
Gracia E, García M, Borreguero A, De Lucas A, Gracia I, Rodríguez J. Functionalization and optimization of PLA with coumarin via click chemistry in supercritical CO 2. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
80
|
Blasco E, Sims MB, Goldmann AS, Sumerlin BS, Barner-Kowollik C. 50th Anniversary Perspective: Polymer Functionalization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00465] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Eva Blasco
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael B. Sims
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anja S. Goldmann
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher Barner-Kowollik
- School of Chemistry,
Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George St., Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie
und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr.
18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
81
|
Chmielarz P, Fantin M, Park S, Isse AA, Gennaro A, Magenau AJ, Sobkowiak A, Matyjaszewski K. Electrochemically mediated atom transfer radical polymerization (eATRP). Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.02.005] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
82
|
Lin L, Huang J, Ma Z, Liang H, Lu J. Preparation and orthogonal postmodification of dual-clickable polymer precursors bearing both aldehyde and alkyne groups. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Lvhuan Lin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Resin-Based Composites, School of Chemistry, Sun Yat-sen University; Guangzhou 510275 China
| | - Jianbing Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Resin-Based Composites, School of Chemistry, Sun Yat-sen University; Guangzhou 510275 China
| | - Zhi'an Ma
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Resin-Based Composites, School of Chemistry, Sun Yat-sen University; Guangzhou 510275 China
| | - Hui Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Resin-Based Composites, School of Chemistry, Sun Yat-sen University; Guangzhou 510275 China
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Resin-Based Composites, School of Chemistry, Sun Yat-sen University; Guangzhou 510275 China
| |
Collapse
|
83
|
Wang H, Zhou F, Ren G, Zheng Q, Chen H, Gao B, Klivansky L, Liu Y, Wu B, Xu Q, Lu J, Sharpless KB, Wu P. SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride-Amine Adducts. Angew Chem Int Ed Engl 2017; 56:11203-11208. [PMID: 28792119 DOI: 10.1002/anie.201701160] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/31/2017] [Indexed: 11/10/2022]
Abstract
The SuFEx-based polycondensation between bisalkylsulfonyl fluorides (AA monomers) and bisphenol bis(t-butyldimethylsilyl) ethers (BB monomers) using [Ph3 P=N-PPh3 ]+ [HF2 ]- as the catalyst is described. The AA monomers were prepared via the highly reliable Michael addition of ethenesulfonyl fluoride and amines/anilines while the BB monomers were obtained from silylation of bisphenols by t-butyldimethylsilyl chloride. With these reactions, a remarkable diversity of monomeric building blocks was achieved by exploiting readily available amines, anilines, and bisphenols as starting materials. The SuFEx-based polysulfonate formation reaction exhibited excellent efficiency and functional group tolerance, producing polysulfonates with a variety of side chain functionalities in >99 % conversion within 10 min to 1 h. When bearing an orthogonal group on the side chain, the polysulfonates can be further functionalized via click-chemistry-based post-polymerization modification.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Feng Zhou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Gerui Ren
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Department of Applied Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hongli Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Bing Gao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Liana Klivansky
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou, Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
84
|
Wang H, Zhou F, Ren G, Zheng Q, Chen H, Gao B, Klivansky L, Liu Y, Wu B, Xu Q, Lu J, Sharpless KB, Wu P. SuFEx‐Based Polysulfonate Formation from Ethenesulfonyl Fluoride–Amine Adducts. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701160] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hua Wang
- Department of Chemical Physiology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Feng Zhou
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou 215123 P.R. China
| | - Gerui Ren
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- Department of Applied Chemistry School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou 310018 P.R. China
| | - Qinheng Zheng
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Hongli Chen
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Bing Gao
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Liana Klivansky
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Yi Liu
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou 215123 P.R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou 215123 P.R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Suzhou 215123 P.R. China
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Peng Wu
- Department of Chemical Physiology The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
85
|
Dai XH, Yang WH, Yan WL, Hu JM, Dai YR, Pan JM, Yan YS. Porphyrin-cored dendrimers consisting of novel siloxane-poly (amido amine) dendron-like arms: Synthesis, characterization, and photophysical properties. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
86
|
Ziegler MS, Lakshmi KV, Tilley TD. Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide–Alkyne Cycloaddition. J Am Chem Soc 2017; 139:5378-5386. [DOI: 10.1021/jacs.6b13261] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Micah S. Ziegler
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - K. V. Lakshmi
- Department
of Chemistry and Chemical Biology and The Baruch ’60 Center
for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - T. Don Tilley
- Department
of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
87
|
Houck HA, De Bruycker K, Billiet S, Dhanis B, Goossens H, Catak S, Van Speybroeck V, Winne JM, Du Prez FE. Design of a thermally controlled sequence of triazolinedione-based click and transclick reactions. Chem Sci 2017; 8:3098-3108. [PMID: 28507685 PMCID: PMC5412480 DOI: 10.1039/c7sc00119c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/15/2017] [Indexed: 12/19/2022] Open
Abstract
The reaction of triazolinediones (TADs) and indoles is of particular interest for polymer chemistry applications, as it is a very fast and irreversible additive-free process at room temperature, but can be turned into a dynamic covalent bond forming process at elevated temperatures, giving a reliable bond exchange or 'transclick' reaction. In this paper, we report an in-depth study aimed at controlling the TAD-indole reversible click reactions through rational design of modified indole reaction partners. This has resulted in the identification of a novel class of easily accessible indole derivatives that give dynamic TAD-adduct formation at significantly lower temperatures. We further demonstrate that these new substrates can be used to design a directed cascade of click reactions of a functionalized TAD moiety from an initial indole reaction partner to a second indole, and finally to an irreversible reaction partner. This controlled sequence of click and transclick reactions of a single TAD reagent between three different substrates has been demonstrated both on small molecule and macromolecular level, and the factors that control the reversibility profiles have been rationalized and guided by mechanistic considerations supported by theoretical calculations.
Collapse
Affiliation(s)
- Hannes A Houck
- Department of Organic and Macromolecular Chemistry , Polymer Chemistry Research Group and Laboratory for Organic Synthesis , Ghent University , Krijgslaan 281 S4-bis , 9000 Ghent , Belgium . ;
- Preparative Macromolecular Chemistry , Institut für Technische Chemie und Polymerchemie , Karlsruhe Institute of Technology (KIT) , Engesserstraße 18 , 76131 Karlsruhe , Germany
| | - Kevin De Bruycker
- Department of Organic and Macromolecular Chemistry , Polymer Chemistry Research Group and Laboratory for Organic Synthesis , Ghent University , Krijgslaan 281 S4-bis , 9000 Ghent , Belgium . ;
| | - Stijn Billiet
- Department of Organic and Macromolecular Chemistry , Polymer Chemistry Research Group and Laboratory for Organic Synthesis , Ghent University , Krijgslaan 281 S4-bis , 9000 Ghent , Belgium . ;
| | - Bastiaan Dhanis
- Department of Organic and Macromolecular Chemistry , Polymer Chemistry Research Group and Laboratory for Organic Synthesis , Ghent University , Krijgslaan 281 S4-bis , 9000 Ghent , Belgium . ;
| | - Hannelore Goossens
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Zwijnaarde , Belgium
| | - Saron Catak
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Zwijnaarde , Belgium
- Department of Chemistry , Bogazici University , 34342 Bebek , Turkey
| | - Veronique Van Speybroeck
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Zwijnaarde , Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry , Polymer Chemistry Research Group and Laboratory for Organic Synthesis , Ghent University , Krijgslaan 281 S4-bis , 9000 Ghent , Belgium . ;
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry , Polymer Chemistry Research Group and Laboratory for Organic Synthesis , Ghent University , Krijgslaan 281 S4-bis , 9000 Ghent , Belgium . ;
| |
Collapse
|
88
|
Le Fer G, Le Cœur C, Guigner JM, Amiel C, Volet G. Biocompatible Soft Nanoparticles with Multiple Morphologies Obtained from Nanoprecipitation of Amphiphilic Graft Copolymers in a Backbone-Selective Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2849-2860. [PMID: 28248524 DOI: 10.1021/acs.langmuir.7b00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stealth nanocarriers are a promising technology for the treatment of diseases. However, the preparation and characterization of well-defined soft nanoparticulate systems remain challenging. Here we describe a platform of amphiphilic graft copolymers leading to nanoparticles with multiple morphologies and the role of the hydrophilic backbone in their interaction with a model protein. The amphiphilic graft copolymers platform was composed of hydrophilic backbone poly(2-methyl-2-oxazoline-co-2-pentyl-2-oxazoline) (P(MeOx-co-PentOx)), prepared via cationic ring-opening polymerization. Hydrophobic poly(d,l-lactide) (PLA) chains were grafted on the backbone via Huisgen 1,3-dipolar cycloaddition. The "click" copper-catalyzed cycloaddition reactions of azides with alkynes (CuAAC) were successfully carried out, and a series of amphiphilic copolymers were prepared containing a backbone with a number-average molecular weight of 14.2 × 103 g mol-1 and different hydrophobic PLA grafts with various molecular weights (2.8 × 103-12.4 × 103 g mol-1). These original architectures of copolymers, when nanoprecipitated in water, the backbone-selective solvent, allowed us to obtain various structures of nanoparticles with a hydrodynamic diameter in the range of 65-99 nm. More interestingly, a plurality of morphologies going from unilamellar, multilamellar, and large compound vesicles to core-shell nanoparticles and depending on the PLA molecular weights were evidenced by combining cryo-transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS) studies. A first evaluation of their stealthiness by studying the stability and the interaction of these nano-objects with a model protein revealed the role played by the P(MeOx-co-PentOx) in these interactions, demonstrating the utility of this amphiphilic graft copolymers platform with well-defined architectures for the design of nanocarriers in drug delivery applications.
Collapse
Affiliation(s)
- Gaëlle Le Fer
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
| | - Clémence Le Cœur
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
- Laboratoire Léon Brillouin, UMR 12 CEA-CNRS, CEA Saclay , 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Universités , UPMC Paris 6, IRD, CNRS UMR7590, MNHN, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Catherine Amiel
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
| | - Gisèle Volet
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
- Université d'Evry Val d'Essonne , Rue du Père Jarlan, 91025 Evry Cedex, France
| |
Collapse
|
89
|
Tesch M, Kudruk S, Letzel M, Studer A. Orthogonal Click Postfunctionalization of Alternating Copolymers Prepared by Nitroxide-Mediated Polymerization. Chemistry 2017; 23:5915-5919. [DOI: 10.1002/chem.201605639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Matthias Tesch
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Sergej Kudruk
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Matthias Letzel
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organic Chemistry Institute; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
90
|
|
91
|
Xue W, Wang J, Wen M, Chen G, Zhang W. Integration of CuAAC Polymerization and Controlled Radical Polymerization into Electron Transfer Mediated “Click-Radical” Concurrent Polymerization. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/23/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Wentao Xue
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Soochow University; Suzhou 215123 P. R. China
| | - Jie Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Soochow University; Suzhou 215123 P. R. China
| | - Ming Wen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Soochow University; Suzhou 215123 P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Soochow University; Suzhou 215123 P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
92
|
Yuan W, Chi W, Liu R, Li H, Li Y, Tang BZ. Synthesis of Poly(phenyltriazolylcarboxylate)s with Aggregation-Induced Emission Characteristics by Metal-Free 1,3-Dipolar Polycycloaddition of Phenylpropiolate and Azides. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/15/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Wei Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Weiwen Chi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Ruimin Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yongfang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Laboratory of Advanced Optoelectronic Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Ben Zhong Tang
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
93
|
Castro-Godoy WD, Heredia AA, Schmidt LC, Argüello JE. A straightforward and sustainable synthesis of 1,4-disubstituted 1,2,3-triazoles via visible-light-promoted copper-catalyzed azide–alkyne cycloaddition (CuAAC). RSC Adv 2017. [DOI: 10.1039/c7ra06390c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple and environmentally friendly synthesis of triazoles through the effective reduction of copper(ii) assisted by organic dyes and promoted by visible light was developed.
Collapse
Affiliation(s)
- Willber D. Castro-Godoy
- INFIQC
- Universidad Nacional de Córdoba
- CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
| | - Adrián A. Heredia
- INFIQC
- Universidad Nacional de Córdoba
- CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
| | - Luciana C. Schmidt
- INFIQC
- Universidad Nacional de Córdoba
- CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
| | - Juan E. Argüello
- INFIQC
- Universidad Nacional de Córdoba
- CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
| |
Collapse
|
94
|
Fu F, Martinez A, Wang C, Ciganda R, Yate L, Escobar A, Moya S, Fouquet E, Ruiz J, Astruc D. Exposure to air boosts CuAAC reactions catalyzed by PEG-stabilized Cu nanoparticles. Chem Commun (Camb) 2017; 53:5384-5387. [DOI: 10.1039/c7cc02504a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The catalytic activity of Cu(0) NPs is boosted upon aerobic oxidation, forming Cu2O NPs, and further improved on an SBA-15 support.
Collapse
Affiliation(s)
- Fangyu Fu
- ISM
- UMR CNRS No. 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Angel Martinez
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- Gipuzkoa
- Spain
| | - Changlong Wang
- ISM
- UMR CNRS No. 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | | | - Luis Yate
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- Gipuzkoa
- Spain
| | - Ane Escobar
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- Gipuzkoa
- Spain
| | - Sergio Moya
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- Gipuzkoa
- Spain
| | - Eric Fouquet
- ISM
- UMR CNRS No. 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Jaime Ruiz
- ISM
- UMR CNRS No. 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Didier Astruc
- ISM
- UMR CNRS No. 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| |
Collapse
|
95
|
Reinold P, Bruchlos K, Ludwigs S. Simultaneous doping and crosslinking of polythiophene films. Polym Chem 2017. [DOI: 10.1039/c7py01688c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We present a click chemistry approach for the synthesis of conjugated redox polymers based on highly regioregular polythiophenes with tunable amounts of pendant redox-active triphenylamine (TPA) groups. Solution-deposited films can be simultaneously doped and crosslinked by electrochemical or chemical oxidation.
Collapse
Affiliation(s)
- P. Reinold
- Institute of Polymer Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - K. Bruchlos
- Institute of Polymer Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - S. Ludwigs
- Institute of Polymer Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| |
Collapse
|
96
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
97
|
Billing M, Elter JK, Schacher FH. Sulfo-and carboxybetaine-containing polyampholytes based on poly(2-vinyl pyridine)s: Synthesis and solution behavior. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
98
|
Training the old dog new tricks: the applications of the Biginelli reaction in polymer chemistry. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0219-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
99
|
Cao L, Wang Y. Alkyne cellulose for Huisgen [3 + 2] cycloaddition with azido-terminated targets. J Appl Polym Sci 2016. [DOI: 10.1002/app.44410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liangcheng Cao
- Chongqing Institute of Green and Intelligent Technologies, Chinese Academy of Sciences; Fangzheng Avenue 266 Beibei District Chongqing 400714 China
| | - Yuechuan Wang
- State Key Laboratory of Polymer Materials, College of Polymer Science and Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
100
|
A versatile pathway to end-functionalized cellulose ethers for click chemistry applications. Carbohydr Polym 2016; 151:88-95. [DOI: 10.1016/j.carbpol.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022]
|