51
|
Kong L, Gao Z, Li X, Gao G. An amylopectin-enabled skin-mounted hydrogel wearable sensor. J Mater Chem B 2021; 9:1082-1088. [DOI: 10.1039/d0tb02460k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Self-adhesiveness is highly desirable for conformal and seamless wearable electronics.
Collapse
Affiliation(s)
- Lingshu Kong
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering, and Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| | - Zijian Gao
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering, and Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| | - Xinyao Li
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering, and Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering, and Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun
- P. R. China
| |
Collapse
|
52
|
|
53
|
Xiong Y, Zhang X, Ma X, Wang W, Yan F, Zhao X, Chu X, Xu W, Sun C. A review of the properties and applications of bioadhesive hydrogels. Polym Chem 2021. [DOI: 10.1039/d1py00282a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their outstanding properties, bioadhesive hydrogels have been extensively studied by researchers in recent years.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoran Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xintao Ma
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenqi Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Feiyan Yan
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaohan Zhao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Xiaoxiao Chu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenlong Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Changmei Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
54
|
Li S, Zhou X, Dong Y, Li J. Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels. Macromol Rapid Commun 2020; 41:e2000444. [PMID: 32996221 DOI: 10.1002/marc.202000444] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/06/2020] [Indexed: 12/14/2022]
Abstract
Flexible pressure and strain sensors have great potential for applications in wearable and implantable devices, soft robots, and artificial skin. The introduction of self-healing performance has made a positive contribution to the lifetime and stability of flexible sensors. At present, many self-healing flexible sensors with high sensitivity have been developed to detect the signal of organism activity. The sensitivity, reliability, and stability of self-healing flexible sensors depend on the conductive network and mechanical properties of flexible materials. This review focuses on the latest research progress of self-healing flexible sensors. First, various repair mechanisms of self-healing flexible materials are reviewed because these mechanisms contribute to the development of self-healing flexible materials. Then, self-healing elastomer flexible sensor and self-healing hydrogel flexible sensor are introduced and discussed respectively. The research status and problems to be solved of these two types of flexible sensors are discussed in detail. Finally, this rapidly developing and promising field of self-healing flexible sensors and devices is prospected.
Collapse
Affiliation(s)
- Shaonan Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xing Zhou
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanmao Dong
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jihang Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
55
|
Seidi F, Jin Y, Han J, Saeb MR, Akbari A, Hosseini SH, Shabanian M, Xiao H. Self‐healing Polyol/Borax Hydrogels: Fabrications, Properties and Applications. CHEM REC 2020. [DOI: 10.1002/tcr.202000060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Farzad Seidi
- Provincial Key Lab of Pulp & Paper Sci and Tech Joint International Research Lab of Lignocellulosic Functional Materials Nanjing Forestry University Nanjing 210037 China
| | - Yongcan Jin
- Provincial Key Lab of Pulp & Paper Sci and Tech Joint International Research Lab of Lignocellulosic Functional Materials Nanjing Forestry University Nanjing 210037 China
| | - Jingquan Han
- Provincial Key Lab of Pulp & Paper Sci and Tech Joint International Research Lab of Lignocellulosic Functional Materials Nanjing Forestry University Nanjing 210037 China
- College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China
| | - Mohammad Reza Saeb
- Department of Resin and Additives Institute for Color Science and Technology P.O. Box: 16765–654 Tehran Iran
| | - Ali Akbari
- Solid Tumor Research Center Research Institute for Cellular and Molecular Medicine Urmia University of Medical Sciences Urmia Iran
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering University of Science and Technology of Mazandaran Behshahr Iran
| | - Meisam Shabanian
- Faculty of Chemistry and Petrochemical Engineering Standard Research Institute (SRI) P.O. Box 31745–139 Karaj Iran
| | - Huining Xiao
- Department of Chemical Engineering University of New Brunswick Fredericton, NB E3B 5 A3 Canada
| |
Collapse
|
56
|
Herbert R, Lim HR, Yeo WH. Printed, Soft, Nanostructured Strain Sensors for Monitoring of Structural Health and Human Physiology. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25020-25030. [PMID: 32393022 DOI: 10.1021/acsami.0c04857] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Soft strain sensors that are mechanically flexible or stretchable are of significant interest in the fields of structural health monitoring, human physiology, and human-machine interfaces. However, existing deformable strain sensors still suffer from complex fabrication processes, poor reusability, limited adhesion strength, or structural rigidity. In this work, we introduce a versatile, high-throughput fabrication method of nanostructured, soft material-enabled, miniaturized strain sensors for both structural health monitoring and human physiology detection. Aerosol jet printing of polyimide and silver nanowires enables multifunctional strain sensors with tunable resistance and gauge factor. Experimental study of soft material compositions and multilayered structures of the strain sensor demonstrates the capabilities of strong adhesion and conformal lamination on different surfaces without the use of conventional fixtures and/or tapes. A two-axis, printed strain gauge enables the detection of force-induced strain changes on a curved stem valve for structural health management while offering reusability over 10 times without losing the sensing performance. Direct comparison with a commercial film sensor captures the advantages of the printed soft sensor in enhanced gauge factor and sensitivity. Another type of a stretchable strain sensor in skin-wearable applications demonstrates a highly sensitive monitoring of a subject's motion, pulse, and breathing, validated by comparing it with a clinical-grade system. Overall, the presented comprehensive study of materials, mechanics, printing-based fabrication, and interfacial adhesion shows a great potential of the printed soft strain sensor for applications in continuous structural health monitoring, human health detection, machine-interfacing systems, and environmental condition monitoring.
Collapse
Affiliation(s)
- Robert Herbert
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Biosciences, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
57
|
Liu Y, Qiu Y, Ni S, Zhang X, Sun H, Song W, Li X. Mussel-Inspired Biocoating for Improving the Adhesion of Dental Pulp Stem Cells in Dental Pulp Regeneration. Macromol Rapid Commun 2020; 41:e2000102. [PMID: 32483838 DOI: 10.1002/marc.202000102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Indexed: 12/21/2022]
Abstract
Dental pulp engineering possesses a promising perspective to replacing lost pulp in the root canal and restoring its functions. Stable adhesion of dental pulp stem cells (DPSCs) on the root canal dentin wall is a key element required for reconstruction of a functional odontoblast layer in dental pulp regeneration. To address this challenge, dopamine-modified hyaluronic acid (DA-HA) is coated on dentin to obtain a stable adhesion of DPSCs. The dopamine segment provides adhesion ability to the coating, and the hyaluronic acid increases the biocompatibility. The results show that DPSCs can adhere on the DA-HA coated dentin slice better than those without coating. Simultaneously, DPSCs proliferation can be further promoted on the prepared coating. Therefore, the DA-HA coating may provide a possible way to immobilize odontoblast cell onto dentin surface for pulp regeneration.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130023, P. R. China.,Department of Endodontics, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.,Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, P. R. China.,ENT Department, Baoding No. 1 Central Hospital, Baoding, 071000, P. R. China
| | - Ying Qiu
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Shilei Ni
- Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xuewei Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Hongchen Sun
- Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Wenlong Song
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Xiangwei Li
- Department of Endodontics, School of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
58
|
Hou Y, Song Y, Sun X, Jiang Y, He M, Li Y, Chen X, Zhang L. Multifunctional composite hydrogel bolus with combined self-healing, antibacterial and adhesive functions for radiotherapy. J Mater Chem B 2020; 8:2627-2635. [PMID: 32129372 DOI: 10.1039/c9tb02967b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TPU/PAAm hydrogel with excellent mechanical, adhesive, self-healing and antibacterial properties has been successfully prepared as a desirable bolus for radiotherapy.
Collapse
Affiliation(s)
- Yi Hou
- Analytical & Testing Center
- Sichuan University
- Chengdu 610065
- China
| | - Ying Song
- Department of Radiotherapy
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xiaodong Sun
- West China School of Preclinical and Forensic Medicine
- Sichuan University
- Chengdu 610041
- China
| | - Yulin Jiang
- Analytical & Testing Center
- Sichuan University
- Chengdu 610065
- China
| | - Meiling He
- Analytical & Testing Center
- Sichuan University
- Chengdu 610065
- China
| | - Yubao Li
- Analytical & Testing Center
- Sichuan University
- Chengdu 610065
- China
| | - Xianchun Chen
- School of Materials Science & Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Li Zhang
- Analytical & Testing Center
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|