51
|
Liao W, Jahandideh F, Fan H, Son M, Wu J. Egg Protein-Derived Bioactive Peptides: Preparation, Efficacy, and Absorption. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:1-58. [PMID: 29860972 DOI: 10.1016/bs.afnr.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hen's egg is an important protein source of human diet. On average one large egg contains ~6g protein, which contributes to ~11% of daily protein intake. As a high-quality protein, egg proteins are well recognized as excellent sources of bioactive peptides. The objectives of this chapter are to introduce generation, bioactivities, and absorption of egg protein-derived bioactive peptides. Research on egg protein-derived bioactive peptides has been progressed during the past decades. Enzymatic hydrolysis is the major technique to prepare bioactive peptides from egg protein. Quantitative structure-activity relationships-aided in silico prediction is increasingly applied as a promising tool for efficient prediction of novel bioactive peptides. A number of bioactive peptides from egg proteins have been characterized for antioxidant, immunomodulatory, antihypertensive, antidiabetic, anticancer, and antimicrobial activities. Egg protein-derived peptides that can improve bone health have been reported as well. However, molecular mechanisms of many peptides are not fully understood. The stability and absorption routes, bioavailability, safety, and production of bioactive peptides await further investigation.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Forough Jahandideh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Myoungjin Son
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
52
|
Son M, Chan CB, Wu J. Egg White Ovotransferrin-Derived ACE Inhibitory Peptide Ameliorates Angiotensin II-Stimulated Insulin Resistance in Skeletal Muscle Cells. Mol Nutr Food Res 2018; 62:1700602. [PMID: 29278298 PMCID: PMC5873282 DOI: 10.1002/mnfr.201700602] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/02/2017] [Indexed: 12/22/2022]
Abstract
SCOPE The renin-angiotensin system (RAS) is a major contributor to the development of insulin resistance and its related complications. Egg white ovotransferrin-derived tripeptides, IRW (Ile-Arg-Trp), IQW (Ile-Gln-Trp), or LKP (Leu-Lys-Pro) are previously identified as the inhibitors of angiotensin-converting enzyme (ACE), a key enzyme in the RAS. This study aims at determining whether these peptides are effective in improving insulin resistance, and their mechanisms of action, in a rat derived skeletal muscle cell line (L6 cells). METHODS AND RESULTS Insulin resistance is induced by treating L6 cells with 1 μm angiotensin II (Ang II) for 24 h. Effects of peptides on glucose uptake are determined using glucose uptake assay, glucose transporter 4 (GLUT4) translocation by immunofluorescence, reactive oxygen species (ROS) by dihydroethidium (DHE) staining, while insulin signaling pathway, Ang II receptor (AT1R or AT2R) levels, and NADPH oxidase activation are measured using Western Blot. Only IRW treatment significantly improves insulin resistance in L6 cells via stimulation of insulin signaling. IRW decreases Ang II-stimulated AT1R expression, ROS formation, and NADPH oxidase activation. CONCLUSIONS Of three ACE inhibitory peptides studied, only IRW improves insulin resistance in L6 cells, at least partially via reduced AT1R expression and its anti-oxidative activity.
Collapse
Affiliation(s)
- Myoungjin Son
- Department of AgriculturalFood & Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Jianping Wu
- Department of AgriculturalFood & Nutritional ScienceUniversity of AlbertaEdmontonAlbertaCanada
- Cardiovascular Research CentreUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
53
|
Yao S, Agyei D, Udenigwe CC. Structural Basis of Bioactivity of Food Peptides in Promoting Metabolic Health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:145-181. [PMID: 29555068 DOI: 10.1016/bs.afnr.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bioactive peptides have many structural features that enable them to become functional in controlling several biological processes in the body, especially those related to metabolic health. This chapter provides an overview of the multiple targets of food-derived peptides against metabolic health problems (e.g., hypertension, dyslipidemia, hyperglycemia, oxidative stress) and discusses the importance of structural chemistry in determining the bioactivities of peptides and protein hydrolysates.
Collapse
Affiliation(s)
- Shixiang Yao
- Southwest University, Chongqing, PR China; University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|
54
|
Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
55
|
Wu J, Liao W, Udenigwe CC. Revisiting the mechanisms of ACE inhibitory peptides from food proteins. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
56
|
García-Tejedor A, Manzanares P, Castelló-Ruiz M, Moscardó A, Marcos JF, Salom JB. Vasoactive properties of antihypertensive lactoferrin-derived peptides in resistance vessels: Effects in small mesenteric arteries from SHR rats. Life Sci 2017; 186:118-124. [DOI: 10.1016/j.lfs.2017.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
|
57
|
Liu YF, Oey I, Bremer P, Carne A, Silcock P. Bioactive peptides derived from egg proteins: A review. Crit Rev Food Sci Nutr 2017; 58:2508-2530. [PMID: 28609123 DOI: 10.1080/10408398.2017.1329704] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Egg proteins have various functional and biological activities which make them potential precursor proteins for bioactive peptide production. Simulated in vitro gastrointestinal digestion and enzymatic hydrolysis using non-gastrointestinal proteases have been used as tools to produce these peptides. Bioactive peptides derived from egg proteins are reported to display various biological activities, including angiotensin I-converting enzyme (ACE) inhibitory (antihypertensive), antioxidant, antimicrobial, anti-inflammatory, antidiabetic and iron-/calcium-binding activities. More importantly, simulated in vitro gastrointestinal digestion has indicated that consumption of egg proteins has physiological benefits due to the release of such multifunctional peptides. This review encompasses studies reported to date on the bioactive peptide production from egg proteins.
Collapse
Affiliation(s)
- Ya-Fei Liu
- a Department of Food Science , University of Otago , Dunedin , New Zealand.,b Department of Biochemistry , University of Otago , Dunedin , New Zealand
| | - Indrawati Oey
- a Department of Food Science , University of Otago , Dunedin , New Zealand
| | - Phil Bremer
- a Department of Food Science , University of Otago , Dunedin , New Zealand
| | - Alan Carne
- b Department of Biochemistry , University of Otago , Dunedin , New Zealand
| | - Pat Silcock
- a Department of Food Science , University of Otago , Dunedin , New Zealand
| |
Collapse
|
58
|
Lin S, Pan H, Wu H, Ren D, Lu J. Role of the ACE2‑Ang‑(1‑7)‑Mas axis in blood pressure regulation and its potential as an antihypertensive in functional foods (Review). Mol Med Rep 2017; 16:4403-4412. [PMID: 28791402 DOI: 10.3892/mmr.2017.7168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
The renin‑angiotensin system (RAS) serves a critical role in blood pressure regulation and prevention of cardiovascular diseases. Efforts to develop functional foods that enhance the RAS have focused on inhibition of angiotensin‑converting enzyme (ACE) activity in the ACE‑angiotensin II (Ang II)‑Ang II type 1 receptor axis. ACE2 and the Mas receptor are important components of this axis. ACE2 catalyzes Ang II into Ang‑(1‑7), which then binds to the G‑protein‑coupled receptor Mas. In addition, it induces nitric oxide release from endothelial cells and exerts antiproliferative, vasodilatory and antihypertensive effects. The present review examined recent findings regarding the physiological and biological roles of the ACE2‑Ang‑(1‑7)‑Mas axis in the cardiovascular system, discussed potential food‑derived ACE2‑activating agents, and highlighted initiatives, based on this axis, that aim to develop functional foods for the treatment of hypertension.
Collapse
Affiliation(s)
- Shiqi Lin
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Huanglei Pan
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hongli Wu
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jun Lu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing 100015, P.R. China
| |
Collapse
|
59
|
Chen S, Jiang H, Peng H, Wu X, Fang J. The Utility of Ovotransferrin and Ovotransferrin-Derived Peptides as Possible Candidates in the Clinical Treatment of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6504518. [PMID: 28386310 PMCID: PMC5366766 DOI: 10.1155/2017/6504518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022]
Abstract
Several of the most prevalent etiological factors which contribute towards global death rates are associated with cardiovascular diseases (CVDs), which include a range of conditions such as angina, rheumatic heart disease, and venous thrombosis. Extensive research has been conducted into the role played by oxidative stress and inflammation in the functional transformations associated with the progression of CVDs, while the research findings from these investigations have been both fruitful and informative. In view of the adverse secondary effects that result from the clinical administration of many synthetic medications, research which explored the treatment of severe and long-lasting conditions, including CVDs, has primarily centered on the potential benefits displayed by natural agents, one of which is food protein-based bioactive peptides. Most importantly, previous research has revealed the possible benefits associated with these products' anti-inflammatory and antioxidant characteristics. In light of these considerations, this paper aims to review the degree to which ovotransferrin (otrf, also referred to as conalbumin) and otrf-derived peptides, including IRW, IQW, and KVREGT, are, by virtue of their anti-inflammatory and antioxidant characteristics, viable treatment agents for endothelial dysfunction and the prevention of CVD.
Collapse
Affiliation(s)
- Shuang Chen
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hanhui Peng
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaosong Wu
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology and College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Province University Key Laboratory for Agricultural Biochemistry and Biotransformation, Hunan Agricultural University, Changsha 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
60
|
Yu Z, Zhao W, Ding L, Wang Y, Chen F, Liu J. Short- and long-term antihypertensive effect of egg protein-derived peptide QIGLF. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:551-555. [PMID: 27097525 DOI: 10.1002/jsfa.7762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/13/2015] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The present study aimed to investigate the in vivo antihypertensive effect on spontaneously hypertensive rats (SHRs) induced by egg protein-derived peptide QIGLF, which has been previously characterized in vitro as a potent angiotensin-converting enzyme inhibitor. RESULTS In vivo antihypertensive effect of QIGLF orally administered was evaluated by the tail-cuff method. The systolic blood pressure and the diastolic blood pressure of rats were measured 0, 5, 10, 15 and 20 h after administration every day. Subsequently, the effect of QIGLF on angiotensin-converting enzyme mRNA expression in the kidney of SHRs was evaluated by a polymerase chain reaction. Systolic blood pressure was found to be reduced markedly in the SHRs after a single oral administration. CONCLUSION The results show that the effect of QIGLF (50 mg kg-1 body weight) was similar to that of captopril (10 mg kg-1 body weight) with respect to lowering systolic blood pressure in SHRs. Therefore, egg white protein-derived peptide QIGLF may be useful in the prevention or treatment of hypertension. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, P.R. China
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, P.R. China
| | - Long Ding
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, P.R. China
| | - Yaqi Wang
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jingbo Liu
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, P.R. China
| |
Collapse
|
61
|
Liao W, Chakrabarti S, Davidge ST, Wu J. Modulatory Effects of Egg White Ovotransferrin-Derived Tripeptide IRW (Ile-Arg-Trp) on Vascular Smooth Muscle Cells against Angiotensin II Stimulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7342-7347. [PMID: 27649793 DOI: 10.1021/acs.jafc.6b03513] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The renin angiotensin system (RAS) is a key mediator of blood pressure regulation. Angiotensin II (Ang II), the active component of RAS, is a potent vasoconstrictor that also causes abnormal proliferation, oxidative stress, and inflammation in vascular smooth muscle cells (VSMCs) that contribute to atherosclerotic changes. Egg white ovotransferrin-derived tripeptide IRW (Ile-Arg-Trp) was previously shown to exert antihypertensive effect by reducing Ang II synthesis as well as endothelial cell inflammation and endothelial dysfunction. However, the effects of IRW on VSMCs are still unclear. In the present study, we evaluated the antiproliferative, antioxidant, and anti-inflammatory effects of IRW on VSMCs in the presence of Ang II stimulation. It was found that IRW treatment could attenuate Ang II-stimulated proliferation, superoxide production, and inflammation in VSMCs. These beneficial effects appeared to involve modulation of the NF-κB pathway. These findings could further our understanding on the antihypertensive mechanism of IRW beyond vascular endothelium.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food & Nutritional Science, ‡Department of Obstetrics & Gynecology, §Department of Physiology, ∥Cardiovascular Research Centre, and ⊥Women and Children's Health Research Institute, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Subhadeep Chakrabarti
- Department of Agricultural, Food & Nutritional Science, ‡Department of Obstetrics & Gynecology, §Department of Physiology, ∥Cardiovascular Research Centre, and ⊥Women and Children's Health Research Institute, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Sandra T Davidge
- Department of Agricultural, Food & Nutritional Science, ‡Department of Obstetrics & Gynecology, §Department of Physiology, ∥Cardiovascular Research Centre, and ⊥Women and Children's Health Research Institute, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, ‡Department of Obstetrics & Gynecology, §Department of Physiology, ∥Cardiovascular Research Centre, and ⊥Women and Children's Health Research Institute, University of Alberta , Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
62
|
The potential of antioxidative and anti-inflammatory peptides in reducing the risk of cardiovascular diseases. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
63
|
Chakrabarti S, Wu J. Bioactive peptides on endothelial function. FOOD SCIENCE AND HUMAN WELLNESS 2016. [DOI: 10.1016/j.fshw.2015.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
64
|
Dave LA, Hayes M, Montoya CA, Rutherfurd SM, Moughan PJ. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides. Peptides 2016; 76:30-44. [PMID: 26617077 DOI: 10.1016/j.peptides.2015.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023]
Abstract
It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived.
Collapse
Affiliation(s)
- Lakshmi A Dave
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand; Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Maria Hayes
- Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Carlos A Montoya
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| | - Shane M Rutherfurd
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.
| | - Paul J Moughan
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|