Silva MD, Omae T, Helmer KG, Li F, Fisher M, Sotak CH. Separating changes in the intra- and extracellular water apparent diffusion coefficient following focal cerebral ischemia in the rat brain.
Magn Reson Med 2002;
48:826-37. [PMID:
12417997 DOI:
10.1002/mrm.10296]
[Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective intracellular (IC) and extracellular (EC) brain water apparent diffusion coefficient (ADC) values were measured in normal and ischemic rat brain. Selective T(1)-relaxation enhancement of the EC water, using intracerebroventricular (ICV) infusion of an NMR contrast reagent (CR), was used to separate the IC and EC signal contributions. In the CR-infused, normal brain (n = 4), T(1) = 235 +/- 10 ms and T(2) = 46 +/- 2 ms for IC water (85%) and T(1) = 48 +/- 8 ms and T(2) = 6 +/- 2 ms for EC water (15%). Volume-localized ADC(z) (z-gradient axis) values were 0.90 +/- 0.02 (EC+IC), 0.81 +/- 0.05 (IC), 0.51 +/- 0.02 (EC+IC), and 0.53 +/- 0.07 (IC), for normal, CR-infused, ischemic, and ischemic/CR-infused groups, respectively (ADC values are x10(-3) mm(2)/s; n = 5 for each group). Imaging ADC(z) values were 0.81 +/- 0.03 (EC+IC), 0.75 +/- 0.05 (IC), 0.51 +/- 0.04 (EC+IC), and 0.52 +/- 0.05 (IC), respectively, for the same groups. Imaging ADC(av) (average diffusivity) values for the same groups were 0.70 +/- 0.05 (EC+IC), 0.69 +/- 0.06 (IC), 0.45 +/- 0.06 (EC+IC), and 0.44 +/- 0.06 (IC), respectively. These results suggest that the IC water ADC determines the overall water ADC value in normal and ischemic rat brain.
Collapse