Langham MC, Wehrli FW. Simultaneous mapping of temporally-resolved blood flow velocity and oxygenation in femoral artery and vein during reactive hyperemia.
J Cardiovasc Magn Reson 2011;
13:66. [PMID:
22035402 PMCID:
PMC3223132 DOI:
10.1186/1532-429x-13-66]
[Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/28/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND
Post-occlusive hyperemia is often used as a paradigm to evaluate vascular reactivity, for example by measuring post-ischemic flow-mediated dilation, arterial blood flow or temporally resolved venous blood oxygenation (HbO2). Here we demonstrate the feasibility of a simultaneous measurement of blood flow and HbO2 in the femoral circulation as part of a single procedure.
METHODS
A multi-echo GRE pulse sequence was designed and implemented to collect velocity-encoded projections in addition to full-image echoes for field mapping as a means to quantify intravascular magnetic susceptibility. The method's feasibility was evaluated at 3T in a small pilot study involving two groups of healthy subjects (mean ages 26 ± 1.6 and 59 ± 7.3 years, N = 7 and 5, respectively) in terms of six parameters characterizing the time-course of reactive hyperemia and their sensitivity to differentiate age effects. The reproducibility was assessed on two of the seven young healthy subjects with three repeated measurements.
RESULTS
The physiological parameters agree with those obtained with current methods that quantify either velocity or HbO2 alone. Of the six measures of vascular reactivity, one from each group was significantly different in the two subject groups (p < 0.05) even though the study was not powered to detect differences. The mean coefficient of variation (CV) from two subjects undergoing repeat scans were approximately 8% for the oximetric and the arterial velocimetric parameters in the femoral vein and artery, respectively, considerably below intersubject CVs (20 and 35%, for the young and older subject groups, respectively).
CONCLUSION
The proposed method is able quantify multiple parameters that may lead to more detailed assessment of peripheral vascular reactivity in a single cuff paradigm rather than in separate procedures as required previously, thereby improving measurement efficiency and patient comfort.
Collapse