51
|
Stammnitz MR, Coorens THH, Gori KC, Hayes D, Fu B, Wang J, Martin-Herranz DE, Alexandrov LB, Baez-Ortega A, Barthorpe S, Beck A, Giordano F, Knowles GW, Kwon YM, Hall G, Price S, Pye RJ, Tubio JMC, Siddle HVT, Sohal SS, Woods GM, McDermott U, Yang F, Garnett MJ, Ning Z, Murchison EP. The Origins and Vulnerabilities of Two Transmissible Cancers in Tasmanian Devils. Cancer Cell 2018; 33:607-619.e15. [PMID: 29634948 PMCID: PMC5896245 DOI: 10.1016/j.ccell.2018.03.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/23/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023]
Abstract
Transmissible cancers are clonal lineages that spread through populations via contagious cancer cells. Although rare in nature, two facial tumor clones affect Tasmanian devils. Here we perform comparative genetic and functional characterization of these lineages. The two cancers have similar patterns of mutation and show no evidence of exposure to exogenous mutagens or viruses. Genes encoding PDGF receptors have copy number gains and are present on extrachromosomal double minutes. Drug screening indicates causative roles for receptor tyrosine kinases and sensitivity to inhibitors of DNA repair. Y chromosome loss from a male clone infecting a female host suggests immunoediting. These results imply that Tasmanian devils may have inherent susceptibility to transmissible cancers and present a suite of therapeutic compounds for use in conservation.
Collapse
Affiliation(s)
- Maximilian R Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Tim H H Coorens
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Kevin C Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Dane Hayes
- Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, TAS 7250, Australia; School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, TAS 7248, Australia
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Daniel E Martin-Herranz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ludmil B Alexandrov
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Syd Barthorpe
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Alexandra Beck
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Francesca Giordano
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Graeme W Knowles
- Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, TAS 7250, Australia
| | - Young Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - George Hall
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Stacey Price
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Ruth J Pye
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jose M C Tubio
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Hannah V T Siddle
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sukhwinder Singh Sohal
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, TAS 7248, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Mathew J Garnett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Zemin Ning
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| |
Collapse
|
52
|
Hermann A, Wennmann DO, Gromnitza S, Edeling M, Van Marck V, Sudol M, Schaefer L, Duning K, Weide T, Pavenstädt H, Kremerskothen J. WW and C2 domain-containing proteins regulate hepatic cell differentiation and tumorigenesis through the hippo signaling pathway. Hepatology 2018; 67:1546-1559. [PMID: 29116649 DOI: 10.1002/hep.29647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/12/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022]
Abstract
UNLABELLED The Hippo pathway regulates cell differentiation, proliferation, and apoptosis. Upon activation, it inhibits the import of the transcriptional coactivator yes-associated protein (YAP) into the nucleus, thus suppressing transcription of pro-proliferative genes. Hence, dynamic and precise control of the Hippo pathway is crucial for organ size control and the prevention of tumor formation. Hippo signaling is controlled by a growing number of upstream regulators, including WW and C2 domain-containing (WWC) proteins, which trigger a serine/threonine kinase pathway. One component of this is the large tumor suppressor (LATS) kinase, which phosphorylates YAP, trapping it in the cytoplasm. WWC proteins have been shown to interact with LATS in vitro and stimulate its kinase activity, thus directly promoting cytoplasmic accumulation of phosphorylated YAP. However, the function of the WWC proteins in the regulation of cell proliferation, organ size control, and tumor prevention in vivo has not yet been determined. Here, we show that loss of hepatic WWC expression in mice leads to tissue overgrowth, inflammation, fibrosis, and formation of liver carcinoma. WWC-deficient mouse livers display reduced LATS activity, increased YAP-mediated gene transcription, and enhanced proliferation of hepatic progenitor cells. In addition, loss of WWC expression in the liver accelerates the turnover of angiomotin proteins, which act as negative regulators of YAP activity. CONCLUSION Our data define an essential in vivo function for WWC proteins as regulators of canonical and noncanonical Hippo signaling in hepatic cell growth and liver tumorigenesis. Thus, expression of WWC proteins may serve as novel prognostic factors in human liver carcinoma. (Hepatology 2018;67:1546-1559).
Collapse
Affiliation(s)
- Anke Hermann
- Division of Internal Medicine, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Dirk Oliver Wennmann
- Division of Internal Medicine, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Sascha Gromnitza
- Division of Internal Medicine, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Maria Edeling
- Division of Internal Medicine, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Veerle Van Marck
- Institute for Pathology, University Hospital Muenster, Münster, Germany
| | - Marius Sudol
- Mechanobiology Institute and Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Liliana Schaefer
- Institute for Pharmacology, Goethe University Frankfurt, Frankfurt, Germany
| | - Kerstin Duning
- Division of Internal Medicine, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Thomas Weide
- Division of Internal Medicine, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Hermann Pavenstädt
- Division of Internal Medicine, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Joachim Kremerskothen
- Division of Internal Medicine, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| |
Collapse
|
53
|
Abstract
Bladder cancer has been identified as one of the most malignant cancers with high incidence and mortality. The underlying mechanisms by which regulate the tumorigenesis of bladder cancer deserve further investigation. Here, we found that miR-192-5p was downregulated in human bladder cancer cell lines and tissues. Overexpression of miR-192-5p significantly inhibited the growth of bladder cancer cells, while depletion of miR-192-5p exerted opposite effect. Bioinformatics analysis and molecular mechanism study identified that miR-192-5p targeted the transcription factor Yin Yang 1 (YY1) and decreased the expression level of YY1. Highly expressed YY1 attenuated the potential tumor suppressive function of miR-192-5p. The expression of miR-192-5p was negatively correlated with that of YY1 in bladder cancer tissues. These results indicated that miR-192-5p might serve as a promising target in bladder cancer diagnosis and therapy.
Collapse
|
54
|
Chen B, Liu G. WWC3 inhibits intimal proliferation following vascular injury via the Hippo signaling pathway. Mol Med Rep 2018; 17:5175-5183. [PMID: 29393412 PMCID: PMC5865984 DOI: 10.3892/mmr.2018.8484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 11/28/2017] [Indexed: 01/03/2023] Open
Abstract
The Hippo signaling pathway is involved in the formation and development of the cardiovascular system. In the present study, the effects of WWC family member 3 (WWC3) on vascular smooth muscle cells (VSMCs) following injury were investigated, in addition to the associated mechanisms underlying this process. Platelet-derived growth factor BB (PDGF-BB) was used as a cell injury factor, and rats with balloon injuries were used as a model of carotid intimal injury. Furthermore, the expression levels of WWC3 in VSMCs and arteries post-injury were investigated, in addition to the effect of WWC3 on the proliferation and migration of VSMCs. The results demonstrated that following injury, WWC3 expression was suppressed in VSMCs and the rat carotid artery, and the activity of the Hippo signaling pathway was significantly downregulated. In addition, the expression of YY1-associated protein-1 (YAP) and a number of its downstream target genes, including connective tissue growth factor (CTGF), were enhanced, thus enhancing the proliferation and migration of VSMCs. Knockdown of WWC3 suppressed the levels of large tumor suppressor kinase 1 (LATS1) expression and YAP phosphorylation, and the expression of YAP, CTGF and cyclin E was subsequently enhanced, thus promoting cell proliferation and migration. Similar results were obtained following overexpression of WWC3. Treatment with PDGF-BB was revealed to suppress the proliferation and migration of VSMCs transfected with the WWC3 plasmid, compared with VSMCs transfected with an empty vector. The present study demonstrated that WWC3 may interact with LATS1 in order to upregulate the Hippo signaling pathway via co-immunoprecipitation and enhancement of the phosphorylation of LATS1, in addition to the corresponding suppression of the nuclear import of YAP. However, VSMCs transfected with WWC3 plasmid with a deletion of the WW domain fail to exhibit this effect. These results suggested that WWC3 expression is downregulated in VSMCs during neointimal hyperplasia following injury (PDGF-BB stimulation or balloon injury). WWC3 upregulates the activity of the Hippo signaling pathway, and weakens the proliferation and migration of VSMCs. Furthermore, the results of the present study suggested that WWC3 may interact with LATS1 to promote the phosphorylation of YAP and reduce its nuclear translocation, upregulate the activity of the Hippo pathway, and suppress the proliferation and migration of VSMCs following injury.
Collapse
Affiliation(s)
- Beijia Chen
- Department of Cardiology, The First Affiliated Hospital of The China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guinan Liu
- Department of Cardiology, The First Affiliated Hospital of The China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
55
|
Dishevelled1-3 contribute to multidrug resistance in colorectal cancer via activating Wnt/β-catenin signaling. Oncotarget 2017; 8:115803-115816. [PMID: 29383202 PMCID: PMC5777814 DOI: 10.18632/oncotarget.23253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance is a great obstacle in successful chemotherapy of colorectal cancer. However, the molecular mechanism underlying multidrug resistance is not fully understood. Dishevelled, a pivot in Wnt signaling, has been linked to cancer progression, while its role in chemoresistance remains unclear. Here, we found that Dishevelled1-3 was over-expressed in multidrug-resistant colorectal cancer cells (HCT-8/VCR) compared to their parental cells. Silencing Dishevelled1-3 resensitized HCT-8/VCR cells to multiple drugs including vincristine, 5-fluorouracil and oxaliplatin. Moreover, Dishevelled1-3 increased the protein levels of multidrug resistance protein 1 (P-gp/MDR1), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP), Survivin and Bcl-2 which are correlated with multidrug resistance. shβ-catenin abolished Dishevelled-mediated these protein expressions. Unexpectedly, none of Dishevelled1-3 controlled β-catenin accumulation and nuclear translocation. Furthermore, the nuclear translocations of Dishevelled1-3 were promoted in HCT-8/VCR cells compared to HCT-8. Dishevelled1-3 bound to β-catenin in nucleus, and promoted nuclear complex formation and transcription activity of β-catenin/TCF. Taken together, Dishevelled1-3 contributed to multidrug resistance in colorectal cancer via activating Wnt/β-catenin signaling and inducing the expressions of P-gp, MRP2, BCRP, Survivin and Bcl-2, independently of β-catenin accumulation and nuclear translocation. Silencing Dishevelled1-3 resensitized multidrug-resistant colorectal cancer cells, providing a novel therapeutic target for successful chemotherapy of colorectal cancer.
Collapse
|
56
|
Wang Y, Jiang M, Yao Y, Cai Z. WWC3 Inhibits Glioma Cell Proliferation Through Suppressing the Wnt/β-Catenin Signaling Pathway. DNA Cell Biol 2017; 37:31-37. [PMID: 29115863 DOI: 10.1089/dna.2017.3931] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The scaffolding protein WW and C2 domain-containing protein 3 (WWC3) belonging to the WWC protein family plays important roles in regulating cell proliferation, cell migration, and synaptic signaling. The critical role of WWC3 in tumorigenesis has emerged recently; however, the expression and function of WWC3 in glioma remain largely unknown. Here, we found that WWC3 was significantly downregulated in glioma tissues and cell lines. Overexpression of WWC3 inhibited the glioma cell proliferation, migration, and invasion. Depletion of WWC3 promoted the proliferation of glioma cells. Mechanistically, we found that overexpression of WWC3 suppressed the activity of β-catenin, the signaling that tightly associates with cell proliferation and growth. Depletion of WWC3 enhanced the activity of β-catenin/Wnt signaling. Further investigation demonstrated that WWC3 interacted with T cell factor 4 (TCF4), an identified associated binding partner of β-catenin. The interaction between WWC3 and TCF4 might inhibit the transcriptional activation of β-catenin. Our results provide novel insights into the aberrant expression and molecular mechanism of WWC3 in glioma, which indicated WWC3 as a potential target for clinical intervention in glioma.
Collapse
Affiliation(s)
- Yanni Wang
- 1 Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University , Yi Chang City, China
| | - Man Jiang
- 2 Department of Emergency, The First College of Clinical Medical Science, China Three Gorges University , Yi Chang City, China
| | - Yongshan Yao
- 3 Department of Emergency and Traumatic Surgery, The First College of Clinical Medical Science, China Three Gorges University , Yi Chang City, China
| | - Zhengwei Cai
- 1 Department of Pediatrics, The First College of Clinical Medical Science, China Three Gorges University , Yi Chang City, China
| |
Collapse
|
57
|
Andl T, Zhang Y. Reaping Wnt after calming Hippo: Wnt and Hippo signaling cross paths in lung cancer. J Thorac Dis 2017; 9:4174-4179. [PMID: 29268463 DOI: 10.21037/jtd.2017.10.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
58
|
Wang Y, Zhou J, Xu YJ, Hu HB. Long non-coding RNA LINC00968 acts as oncogene in NSCLC by activating the Wnt signaling pathway. J Cell Physiol 2017; 233:3397-3406. [PMID: 28926089 DOI: 10.1002/jcp.26186] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) have played critical roles in a variety of cancers, including non-small cell lung cancer (N SCLC). In our study, we focused on the biological function and clinical significance of lncRNA LINC00968 in NSCLC. It was indicated that LINC00968 was significantly increased in LUAD tissues, LUSC tissues and NSCLC cells compared to their corresponding controls. Inhibition of LINC00968 was able to repress NSCLC growth, migration, and invasion in vitro while upregulation of LINC00968 reversed this process. Additionally, downregulation of LINC00968 induced apoptosis capacity of A549 cell. Apoptosis-related proteins BCL-2 were decreased and BAX was increased by knockdown of LINC00968, respectively. Meanwhile we observed that Wnt signaling pathway was involved in the LINC00968-induced NSCLC progression. Finally, in vivo tumor xenografts were established using A549 cells to detect the function of LINC00968 in NSCLC tumorigenesis. Silencing LINC00968 greatly inhibited NSCLC tumor progression, which was consistent with the in vitro tests. In conclusion, we have uncovered that LINC00968 could be regarded as a novel prognostic biomarker and therapeutic target in NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Yíng Wang
- Respiratory Medicine Department, The First People's Hospital of Tianmen, Tianmen, Hubei, China
| | - Jun Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Jun Xu
- Department of Respiratory, Hospital of Huaiyin District, Huai'an, China
| | - Hai-Bo Hu
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
59
|
Ou C, Li X, Li G, Ma J. WWC3: the bridge linking Hippo and Wnt pathways in lung cancer. J Thorac Dis 2017; 9:2315-2316. [PMID: 28932534 PMCID: PMC5594154 DOI: 10.21037/jtd.2017.08.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Chunlin Ou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Guiyuan Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|