51
|
Brunsgaard EK, Jensen J, Grossman D. Melanoma in skin of color: Part II. Racial disparities, role of UV, and interventions for earlier detection. J Am Acad Dermatol 2023; 89:459-468. [PMID: 35533770 DOI: 10.1016/j.jaad.2022.04.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Despite a higher incidence of melanoma among White individuals, melanoma-specific survival is worse among individuals with skin of color. Racial disparities in survival are multifactorial. Decreased skin cancer education focused on people with skin of color, lower rates of screening, increased socioeconomic barriers, higher proportions of more aggressive subtypes, and underrepresentation in research and professional education contribute to delays in diagnosis and treatment. Although high, intermittent UV exposure during childhood has been established as a significant modifiable risk factor for melanoma in individuals with lighter skin phototypes, there are limited data on UV exposure and melanoma risk in people with darker skin phototypes. The second article of this continuing medical education series will examine factors contributing to racial disparities in melanoma-specific survival, discuss the role of UV radiation, and address the need for further research and targeted educational interventions for melanoma in individuals with skin of color.
Collapse
Affiliation(s)
- Elise K Brunsgaard
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Jakob Jensen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Communication, University of Utah, Salt Lake City, Utah
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah.
| |
Collapse
|
52
|
Kasago IS, Chatila WK, Lezcano CM, Febres-Aldana CA, Schultz N, Vanderbilt C, Dogan S, Bartlett EK, D'Angelo SP, Tap WD, Singer S, Ladanyi M, Shoushtari AN, Busam KJ, Hameed M. Undifferentiated and Dedifferentiated Metastatic Melanomas Masquerading as Soft Tissue Sarcomas: Mutational Signature Analysis and Immunotherapy Response. Mod Pathol 2023; 36:100165. [PMID: 36990277 PMCID: PMC10698871 DOI: 10.1016/j.modpat.2023.100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The distinction between undifferentiated melanoma (UM) or dedifferentiated melanoma (DM) from undifferentiated or unclassifiable sarcoma can be difficult and requires the careful correlation of clinical, pathologic, and genomic findings. In this study, we examined the utility of mutational signatures to identify patients with UM/DM with particular attention as to whether this distinction matters for treatment because the survival of patients with metastatic melanoma has dramatically improved with immunologic therapy, whereas durable responses are less frequent in sarcomas. We identified 19 cases of UM/DM that were initially reported as unclassified or undifferentiated malignant neoplasm or sarcoma and submitted for targeted next-generation sequencing analysis. These cases were confirmed as UM/DM by harboring melanoma driver mutations, UV signature, and high tumor mutation burden. One case of DM showed melanoma in situ. Meanwhile, 18 cases represented metastatic UM/DM. Eleven patients had a prior history of melanoma. Thirteen of 19 (68%) of the tumors were immunohistochemically completely negative for 4 melanocytic markers (S100, SOX10, HMB45, and MELAN-A). All cases harbored a dominant UV signature. Frequent driver mutations involved BRAF (26%), NRAS (32%), and NF1 (42%). In contrast, the control cohort of undifferentiated pleomorphic sarcomas (UPS) of deep soft tissue exhibited a dominant aging signature in 46.6% (7/15) without evidence of UV signature. The median tumor mutation burden for DM/UM vs UPS was 31.5 vs 7.0 mutations/Mb (P < .001). A favorable response to immune checkpoint inhibitor therapy was observed in 66.6% (12/18) of patients with UM/DM. Eight patients exhibited a complete response and were alive with no evidence of disease at the last follow-up (median 45.5 months). Our findings support the usefulness of the UV signature in discriminating DM/UM vs UPS. Furthermore, we present evidence suggesting that patients with DM/UM and UV signatures can benefit from immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Israel S Kasago
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cecilia M Lezcano
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edmund K Bartlett
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
53
|
Requena C, Traves V, Ferrandis E, Antón Almero M, García-Casado Z, Manrique-Silva E, Santos Briz Á, Escalonilla P, Nagore E. [Translated article] Melanoma Arising in Plaque-Type Blue Nevus and Dermal Melanocytosis: Diagnostic and Prognostic Value of BAP1. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T636-T641. [PMID: 37302484 DOI: 10.1016/j.ad.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/02/2023] [Indexed: 06/13/2023] Open
Abstract
Melanoma arising in blue nevus, also known as melanoma ex blue nevus, is a specific form of melanoma whose genetic profile is different to that of other cutaneous melanomas and surprisingly similar to that of uveal melanoma. Although melanoma ex blue nevus can appear de novo, it usually arises in a pre-existing blue nevus or dermal melanocytosis. Not all nodular lesions arising in association with blue nevus or dermal melanocytosis are melanomas, however, and because clinical and histologic findings may be insufficient for a definitive diagnosis, additional studies such as comparative genomic hybridization are important. Detection of chromosomal aberrations supports a diagnosis of malignancy. Studies of the BAP1 gene are particularly useful in this setting because loss of expression is indicative of melanoma. We present 3 cases on the spectrum of blue nevus to melanoma ex blue nevus that were studied using molecular biology techniques.
Collapse
Affiliation(s)
- C Requena
- Servicio de Dermatología, Instituto Valenciano de Oncología, Valencia, Spain.
| | - V Traves
- Servicio de Anatomía Patológica, Instituto Valenciano de Oncología, Valencia, Spain
| | - E Ferrandis
- Servicio de Otorrinolaringología, Instituto Valenciano de Oncología, Valencia, Spain
| | - M Antón Almero
- Servicio de Otorrinolaringología, Instituto Valenciano de Oncología, Valencia, Spain
| | - Z García-Casado
- Servicio de Biología Molecular, Instituto Valenciano de Oncología, Valencia, Spain
| | - E Manrique-Silva
- Servicio de Dermatología, Instituto Valenciano de Oncología, Valencia, Spain
| | - Á Santos Briz
- Servicio de Anatomía Patológica, Hospital Universitario Salamanca, Salamanca, Spain
| | - P Escalonilla
- Servicio de Dermatología, Hospital Nuestra Señora de Sonsoles, Ávila, Spain
| | - E Nagore
- Servicio de Dermatología, Instituto Valenciano de Oncología, Valencia, Spain
| |
Collapse
|
54
|
Han A, Mukha D, Chua V, Purwin TJ, Tiago M, Modasia B, Baqai U, Aumiller JL, Bechtel N, Hunter E, Danielson M, Terai M, Wedegaertner PB, Sato T, Landreville S, Davies MA, Kurtenbach S, Harbour JW, Schug ZT, Aplin AE. Co-Targeting FASN and mTOR Suppresses Uveal Melanoma Growth. Cancers (Basel) 2023; 15:3451. [PMID: 37444561 PMCID: PMC10341317 DOI: 10.3390/cancers15133451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM.
Collapse
Affiliation(s)
- Anna Han
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Dzmitry Mukha
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Vivian Chua
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Manoela Tiago
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Bhavik Modasia
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Usman Baqai
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Jenna L. Aumiller
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Nelisa Bechtel
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Emily Hunter
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Meggie Danielson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Philip B. Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervical-Facial Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - J. William Harbour
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Department of Ophthalmology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary T. Schug
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
55
|
Haroon S, Vithanage I, Rashid K, Aslam M, Elmahdy H, Zia S, Malik UA, Irfan M, Hashmi AA. Clinicopathological Profile of a Cohort of Patients With Malignant Melanoma in the United Kingdom. Cureus 2023; 15:e39874. [PMID: 37404434 PMCID: PMC10315104 DOI: 10.7759/cureus.39874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Malignant melanoma (MM) is potentially a fatal type of skin cancer and a major health concern for the Caucasian population. It is a heterogeneous disease with a wide spectrum of manifestations. Therefore, in this study, we evaluated the clinicopathological characteristics of MM. Methods We retrospectively studied the clinicopathological characteristics of MM in 167 biopsy-proven cases of MM reported between January 2020 and December 2021 at Kings Mill Hospital, Sutton-in-Ashfield, United Kingdom. Clinical data such as the age, sex, and anatomical site of the lesion were obtained from the clinical referral forms. Biopsies of the lesions were performed, and the specimens collected were sent to the laboratory for histopathological study and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation evaluation. Formalin-fixed paraffin-embedded blocks (FFPE) were prepared, sectioned, and stained with hematoxylin and eosin for histological examination. Results A total of 167 cases of MM were included in the study. The age range was 23-96 years, with the median age at diagnosis found to be 66 years; males were more commonly affected (52.1%). The median Breslow thickness was 1.20 mm. The median mitotic activity was 1.0/mm2. The lower limb was the most common site of involvement (27.5%), followed by the thorax (25.1%). The most common histological subtype was superficial spreading melanoma (SSM) (77.8%), followed by nodular melanoma (14.4%). The in situ component was present in 95.8% of cases; a majority (92.2%) of the cases showed vertical growth phase, 71.9% of cases were at Clark's level IV of invasion, regression was noted in 70.7% of cases, ulceration was present in 21.6% of cases, and microsatellites were present in 3% of cases. Perineural invasion was present in 3% of cases, and lymphovascular invasion (LVI) was present in 4.2% of cases. BRAF mutation testing was performed on 36 cases, out of which 20 cases (55.6%) showed BRAF mutation. Acral lentiginous melanoma and nodular melanoma were most likely to show ulceration (66.7% and 37.5%, respectively). SSM and lentigo maligna melanoma were more likely to be associated with regression. Conclusion The study demonstrated that MM is prevalent among the elderly population with male predominance; SSM was found to be the most common subtype. The study further demonstrated various clinicopathological features of MM and its association with histological subtypes.
Collapse
Affiliation(s)
- Saroona Haroon
- Pathology, King's Mill Hospital, Sutton-in-Ashfield, GBR
| | | | - Khushbakht Rashid
- Internal Medicine, Liaquat National Hospital and Medical College, Karachi, PAK
| | - Mahnoor Aslam
- Internal Medicine, Baqai Medical University, Karachi, PAK
- Public Health Sciences, University of Alberta, Edmonton, CAN
| | - Heba Elmahdy
- Dermatology, King's Mill Hospital, Sutton-in-Ashfield, GBR
| | - Shamail Zia
- Pathology, Jinnah Sindh Medical University, Karachi, PAK
| | | | - Muhammad Irfan
- Statistics, Liaquat National Hospital and Medical College, Karachi, PAK
| | - Atif A Hashmi
- Pathology, Liaquat National Hospital and Medical College, Karachi, PAK
| |
Collapse
|
56
|
Yang TT, Yu S, Ke CLK, Cheng ST. The Genomic Landscape of Melanoma and Its Therapeutic Implications. Genes (Basel) 2023; 14:genes14051021. [PMID: 37239381 DOI: 10.3390/genes14051021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Melanoma is one of the most aggressive malignancies of the skin. The genetic composition of melanoma is complex and varies among different subtypes. With the aid of recent technologies such as next generation sequencing and single-cell sequencing, our understanding of the genomic landscape of melanoma and its tumor microenvironment has become increasingly clear. These advances may provide explanation to the heterogenic treatment outcomes of melanoma patients under current therapeutic guidelines and provide further insights to the development of potential new therapeutic targets. Here, we provide a comprehensive review on the genetics related to melanoma tumorigenesis, metastasis, and prognosis. We also review the genetics affecting the melanoma tumor microenvironment and its relation to tumor progression and treatment.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung 900, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chiao-Li Khale Ke
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Psychiatry, Kaohsiung Municipal SiaoGang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Shih-Tsung Cheng
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
57
|
Vand-Rajabpour F, Savage M, Belote RL, Judson-Torres RL. Critical Considerations for Investigating MicroRNAs during Tumorigenesis: A Case Study in Conceptual and Contextual Nuances of miR-211-5p in Melanoma. EPIGENOMES 2023; 7:9. [PMID: 37218870 PMCID: PMC10204420 DOI: 10.3390/epigenomes7020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs are non-coding RNAs fundamental to metazoan development and disease. Although the aberrant regulation of microRNAs during mammalian tumorigenesis is well established, investigations into the contributions of individual microRNAs are wrought with conflicting observations. The underlying cause of these inconsistencies is often attributed to context-specific functions of microRNAs. We propose that consideration of both context-specific factors, as well as underappreciated fundamental concepts of microRNA biology, will permit a more harmonious interpretation of ostensibly diverging data. We discuss the theory that the biological function of microRNAs is to confer robustness to specific cell states. Through this lens, we then consider the role of miR-211-5p in melanoma progression. Using literature review and meta-analyses, we demonstrate how a deep understating of domain-specific contexts is critical for moving toward a concordant understanding of miR-211-5p and other microRNAs in cancer biology.
Collapse
Affiliation(s)
- Fatemeh Vand-Rajabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran 14176-13151, Iran
| | - Meghan Savage
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Rachel L. Belote
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert L. Judson-Torres
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
58
|
Khaled ML, Tarhini AA, Forsyth PA, Smalley I, Piña Y. Leptomeningeal Disease (LMD) in Patients with Melanoma Metastases. Cancers (Basel) 2023; 15:cancers15061884. [PMID: 36980770 PMCID: PMC10047692 DOI: 10.3390/cancers15061884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Leptomeningeal disease (LMD) is a devastating complication caused by seeding malignant cells to the cerebrospinal fluid (CSF) and the leptomeningeal membrane. LMD is diagnosed in 5-15% of patients with systemic malignancy. Management of LMD is challenging due to the biological and metabolic tumor microenvironment of LMD being largely unknown. Patients with LMD can present with a wide variety of signs and/or symptoms that could be multifocal and include headache, nausea, vomiting, diplopia, and weakness, among others. The median survival time for patients with LMD is measured in weeks and up to 3-6 months with aggressive management, and death usually occurs due to progressive neurologic dysfunction. In melanoma, LMD is associated with a suppressive immune microenvironment characterized by a high number of apoptotic and exhausted CD4+ T-cells, myeloid-derived suppressor cells, and a low number of CD8+ T-cells. Proteomics analysis revealed enrichment of complement cascade, which may disrupt the blood-CSF barrier. Clinical management of melanoma LMD consists primarily of radiation therapy, BRAF/MEK inhibitors as targeted therapy, and immunotherapy with anti-PD-1, anti-CTLA-4, and anti-LAG-3 immune checkpoint inhibitors. This review summarizes the biology and anatomic features of melanoma LMD, as well as the current therapeutic approaches.
Collapse
Affiliation(s)
- Mariam Lotfy Khaled
- Metabolism and Physiology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt
| | - Ahmad A Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Peter A Forsyth
- Neuro-Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Inna Smalley
- Metabolism and Physiology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yolanda Piña
- Neuro-Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
59
|
Argyris PP, Naumann J, Jarvis MC, Wilkinson PE, Ho DP, Islam MN, Bhattacharyya I, Gopalakrishnan R, Li F, Koutlas IG, Giubellino A, Harris RS. Primary mucosal melanomas of the head and neck are characterised by overexpression of the DNA mutating enzyme APOBEC3B. Histopathology 2023; 82:608-621. [PMID: 36416305 PMCID: PMC10107945 DOI: 10.1111/his.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022]
Abstract
AIMS Primary head/neck mucosal melanomas (MMs) are rare and exhibit aggressive biologic behaviour and elevated mutational loads. The molecular mechanisms responsible for high genomic instability observed in head/neck MMs remain elusive. The DNA cytosine deaminase APOBEC3B (A3B) constitutes a major endogenous source of mutation in human cancer. A3B-related mutations are identified through C-to-T/-G base substitutions in 5'-TCA/T motifs. Herein, we present immunohistochemical and genomic data supportive of a role for A3B in head/neck MMs. METHODS AND RESULTS A3B protein levels were assessed in oral (n = 13) and sinonasal (n = 13) melanomas, and oral melanocytic nevi (n = 13) by immunohistochemistry using a custom rabbit α-A3B mAb (5210-87-13). Heterogeneous, selective-to-diffuse, nuclear only, A3B immunopositivity was observed in 12 of 13 (92.3%) oral melanomas (H-score range = 9-72, median = 40) and 8 of 13 (62%) sinonasal melanomas (H-score range = 1-110, median = 24). Two cases negative for A3B showed prominent cytoplasmic staining consistent with A3G. A3B protein levels were significantly higher in oral and sinonasal MMs than intraoral melanocytic nevi (P < 0.0001 and P = 0.0022, respectively), which were A3B-negative (H-score range = 1-8, median = 4). A3B levels, however, did not differ significantly between oral and sinonasal tumours (P > 0.99). NGS performed in 10 sinonasal MMs revealed missense NRAS mutations in 50% of the studied cases and one each KIT and HRAS mutations. Publicly available whole-genome sequencing (WGS) data disclosed that the number of C-to-T mutations and APOBEC3 enrichment score were markedly elevated in head/neck MMs (n = 2). CONCLUSION The above data strongly indicate a possible role for the mutagenic enzyme A3B in head/neck melanomagenesis, but not benign melanocytic neoplasms.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Jordan Naumann
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Matthew C Jarvis
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Peter E Wilkinson
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Dan P Ho
- Department of Diagnostic and Biological SciencesSchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Mohammed N Islam
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Indraneel Bhattacharyya
- Department of Oral and Maxillofacial Diagnostic SciencesUniversity of Florida College of DentistryGainesvilleFLUSA
| | - Rajaram Gopalakrishnan
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Faqian Li
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Ioannis G Koutlas
- Division of Oral and Maxillofacial PathologySchool of Dentistry, University of MinnesotaMinneapolisMNUSA
| | - Alessio Giubellino
- Department of Laboratory Medicine and PathologyMedical School, University of MinnesotaMinneapolisMNUSA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
60
|
Ohta S, Misawa A, Kyi-Tha-Thu C, Matsumoto N, Hirose Y, Kawakami Y. Melanoma antigens recognized by T cells and their use for immunotherapy. Exp Dermatol 2023; 32:297-305. [PMID: 36607252 DOI: 10.1111/exd.14741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Melanoma has been a prototype for cancer immunology research, and the mechanisms of anti-tumor T-cell responses have been extensively investigated in patients treated with various immunotherapies. Individual differences in cancer-immune status are defined mainly by cancer cell characteristics such as DNA mutations generating immunogenic neo-antigens, and oncogene activation causing immunosuppression, but also by patients' genetic backgrounds such as HLA types and genetic polymorphisms of immune related molecules, and environmental and lifestyle factors such as UV rays, smoking, gut microbiota and concomitant medications; these factors have an influence on the efficacy of immunotherapy. Recent comparative studies on responders and non-responders in immune-checkpoint inhibitor therapy using various new technologies including multi-omics analyses on genomic DNA, mRNA, metabolites and microbiota and single cell analyses of various immune cells have led to the advance of human tumor immunology and the development of new immunotherapy. Based on the new findings from these investigations, personalized cancer immunotherapies along with appropriate biomarkers and therapeutic targets are being developed for patients with melanoma. Here, we will discuss one of the essential subjects in tumor immunology: identification of immunogenic tumor antigens and their effective use in various immunotherapies including cancer vaccines and adoptive T-cell therapy.
Collapse
Affiliation(s)
- Shigeki Ohta
- Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Aya Misawa
- Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Chaw Kyi-Tha-Thu
- Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Naomi Matsumoto
- Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Yoshie Hirose
- Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Yutaka Kawakami
- Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
61
|
Hypoxia in Skin Cancer: Molecular Basis and Clinical Implications. Int J Mol Sci 2023; 24:ijms24054430. [PMID: 36901857 PMCID: PMC10003002 DOI: 10.3390/ijms24054430] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Skin cancer is one of the most prevalent cancers in the Caucasian population. In the United States, it is estimated that at least one in five people will develop skin cancer in their lifetime, leading to significant morbidity and a healthcare burden. Skin cancer mainly arises from cells in the epidermal layer of the skin, where oxygen is scarce. There are three main types of skin cancer: malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Accumulating evidence has revealed a critical role for hypoxia in the development and progression of these dermatologic malignancies. In this review, we discuss the role of hypoxia in treating and reconstructing skin cancers. We will summarize the molecular basis of hypoxia signaling pathways in relation to the major genetic variations of skin cancer.
Collapse
|
62
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
63
|
Jicman PA, Smart H, Ayello EA, Sibbald RG. Early Malignant Melanoma Detection, Especially in Persons with Pigmented Skin. Adv Skin Wound Care 2023; 36:69-77. [PMID: 36662039 DOI: 10.1097/01.asw.0000911156.19843.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
GENERAL PURPOSE To present a comprehensive gap analysis of podiatric melanoma literature. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After participating in this educational activity, the participant will:1. Select the appropriate assessment techniques for screening patients, especially those with skin of color, for melanoma.2. Compare and contrast the various types of melanoma.3. Discuss the results of the literature review that offer insight to clinicians screening patients for melanoma.
Collapse
|
64
|
Gajón JA, Juarez-Flores A, De León Rodríguez SG, Aguilar Flores C, Mantilla A, Fuentes-Pananá EM, Bonifaz LC. Immunotherapy Options for Acral Melanoma, A fast-growing but Neglected Malignancy. Arch Med Res 2022; 53:794-806. [PMID: 36460547 DOI: 10.1016/j.arcmed.2022.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Melanoma is the deadliest form of skin cancer. It is classified as cutaneous and non-cutaneous, with the former characterized by developing in sun-exposed areas of the skin, UV-light radiation being its most important risk factor and ordinarily affecting fair skin populations. In recent years, the incidence of melanoma has been increasing in populations with darker complexion, for example, Hispanics, in which acral melanoma is highly prevalent. The WHO estimates that the incidence and mortality of melanoma will increase by more than 60% by 2040, particularly in low/medium income countries. Acral melanoma appears in the palms, soles and nails, and because of these occult locations, it is often considered different from other cutaneous melanomas even though it also originates in the skin. Acral melanoma is very rare in Caucasian populations and is often not included from genetic analysis and clinical trials. In this review, we present the worldwide epidemiology of acral melanoma; we summarize its genetic characterization and point out important signaling pathways for targeted therapy. We also discuss how genetic analyses have shown that acral melanoma carries a sufficient mutational load and neoantigen formation to be targeted by the immune system, arguing for a potential benefit with novel immunotherapeutic strategies, alone or combined with targeted therapy. This is important because chemotherapy remains the first-line treatment in non-developed nations despite a disheartening response. In summary, the increased incidence and mortality of acral melanoma in low/medium income countries calls for increasing our knowledge about its nature and therapeutic options and leveling off the asymmetric research conducted primarily on Caucasian populations.
Collapse
Affiliation(s)
- Julian A Gajón
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angel Juarez-Flores
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Saraí G De León Rodríguez
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Cristina Aguilar Flores
- Unidad de Investigación Médica en Inmunología Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Alejandra Mantilla
- Servicio de Patología, Hospital de Oncología Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México, México.
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| |
Collapse
|
65
|
Advances in the Application of Nanomaterials to the Treatment of Melanoma. Pharmaceutics 2022; 14:pharmaceutics14102090. [PMID: 36297527 PMCID: PMC9610396 DOI: 10.3390/pharmaceutics14102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma can be divided into cutaneous melanoma, uveal melanoma, mucosal melanoma, etc. It is a very aggressive tumor that is prone to metastasis. Patients with metastatic melanoma have a poor prognosis and shorter survival. Although current melanoma treatments have been dramatically improved, there are still many problems such as systemic toxicity and the off-target effects of drugs. The use of nanoparticles may overcome some inadequacies of current melanoma treatments. In this review, we summarize the limitations of current therapies for cutaneous melanoma, uveal melanoma, and mucosal melanoma, as well as the adjunct role of nanoparticles in different treatment modalities. We suggest that nanomaterials may have an effective intervention in melanoma treatment in the future.
Collapse
|
66
|
Kim YS, Lee M, Chung YJ. Two subtypes of cutaneous melanoma with distinct mutational signatures and clinico-genomic characteristics. Front Genet 2022; 13:987205. [PMID: 36246650 PMCID: PMC9557124 DOI: 10.3389/fgene.2022.987205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background: To decipher mutational signatures and their associations with biological implications in cutaneous melanomas (CMs), including those with a low ultraviolet (UV) signature. Materials and Methods: We applied non-negative matrix factorization (NMF) and unsupervised clustering to the 96-class mutational context of The Cancer Genome Atlas (TCGA) cohort (N = 466) as well as other publicly available datasets (N = 527). To explore the feasibility of mutational signature-based classification using panel sequencing data, independent panel sequencing data were analyzed. Results: NMF decomposition of the TCGA cohort and other publicly available datasets consistently found two mutational signatures: UV (SBS7a/7b dominant) and non-UV (SBS1/5 dominant) signatures. Based on mutational signatures, TCGA CMs were classified into two clusters: UV-high and UV-low. CMs belonging to the UV-low cluster showed significantly worse overall survival and landmark survival at 1-year than those in the UV-high cluster; low or high UV signature remained the most significant prognostic factor in multivariate analysis. The UV-low cluster showed distinct genomic and functional characteristic patterns: low mutation counts, increased proportion of triple wild-type and KIT mutations, high burden of copy number alteration, expression of genes related to keratinocyte differentiation, and low activation of tumor immunity. We verified that UV-high and UV-low clusters can be distinguished by panel sequencing. Conclusion: Our study revealed two mutational signatures of CMs that divide CMs into two clusters with distinct clinico-genomic characteristics. Our results will be helpful for the clinical application of mutational signature-based classification of CMs.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Integrated Research Center for Genome Polymorphism (IRCGP), College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, South Korea
| | - Yeun-Jun Chung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Integrated Research Center for Genome Polymorphism (IRCGP), College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
67
|
Heerfordt IM, Andersen JD, Philipsen PA, Langhans L, Tvedebrink T, Schmidt G, Poulsen T, Lerche CM, Morling N, Wulf HC. Detection of cutaneous malignant melanoma using RNA sampled by tape strips: A study protocol. PLoS One 2022; 17:e0274413. [PMID: 36129945 PMCID: PMC9491607 DOI: 10.1371/journal.pone.0274413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Background Cutaneous malignant melanoma (CMM) is curable if detected in its early stages. However, the clinical recognition of CMM is challenging. An American research group has shown promising results in detecting CMM based on RNA profiles sampled from suspicious lesions with tape strips. We aim to further develop this technique and validate if RNA profiles sampled with tape strips can detect CMM. Methods This prospective cohort study will include approximately 200 lesions clinically suspected of CMM requiring surgical removal. Tape stripping of the lesions will be performed just before surgical excision. Subsequently, RNA on the tape strips is analyzed using quantitative real-time polymerase chain reaction with TaqMan technology. The results are combined into a binary outcome where positive indicates CMM and negative indicates no CMM. The histopathological diagnosis of the lesions will be used as the gold standard. The main outcome is the results of the RNA test and the histopathological diagnosis, which, combined, provide the sensitivity and specificity of the test. Discussion The accuracy of the clinical examination in CMM diagnostics is limited. This clinical trial will explore the ability to use RNA analysis to improve the management of suspicious lesions by enhancing early diagnostic accuracy. Hopefully, it can reduce the number of benign lesions being surgically removed to rule out CMM and decrease patient morbidity. Trial registration The project was approved by The Committee on Health Research Ethics of the Capital Region of Denmark (H-15010559) and registered at the Danish Data Protection Agency (BFH-2015-065).
Collapse
Affiliation(s)
- Ida M. Heerfordt
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, Denmark
- * E-mail:
| | - Jeppe D. Andersen
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter A. Philipsen
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Linnea Langhans
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Torben Tvedebrink
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Grethe Schmidt
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Thomas Poulsen
- Department of Pathology, Hospital of Southern Jutland, Soenderborg, Denmark
| | - Catharina M. Lerche
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Department of Forensic Medicine, Section of Forensic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Christian Wulf
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
68
|
Advanced Acral Melanoma Therapies: Current Status and Future Directions. Curr Treat Options Oncol 2022; 23:1405-1427. [PMID: 36125617 PMCID: PMC9526689 DOI: 10.1007/s11864-022-01007-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Melanoma is one of the deadliest malignancies. Its incidence has been significantly increasing in most countries in recent decades. Acral melanoma (AM), a peculiar subgroup of melanoma occurring on the palms, soles, and nails, is the main subtype of melanoma in people of color and is extremely rare in Caucasians. Although great progress has been made in melanoma treatment in recent years, patients with AM have shown limited benefit from current therapies and thus consequently have worse overall survival rates. Achieving durable therapeutic responses in this high-risk melanoma subtype represents one of the greatest challenges in the field. The frequency of BRAF mutations in AM is much lower than that in cutaneous melanoma, which prevents most AM patients from receiving treatment with BRAF inhibitors. However, AM has more frequent mutations such as KIT and CDK4/6, so targeted therapy may still improve the survival of some AM patients in the future. AM may be less susceptible to immune checkpoint inhibitors because of the poor immunogenicity. Therefore, how to enhance the immune response to the tumor cells may be the key to the application of immune checkpoint inhibitors in advanced AM. Anti-angiogenic drugs, albumin paclitaxel, or interferons are thought to enhance the effectiveness of immune checkpoint inhibitors. Combination therapies based on the backbone of PD-1 are more likely to provide greater clinical benefits. Understanding the molecular landscapes and immune microenvironment of AM will help optimize our combinatory strategies.
Collapse
|
69
|
Phelps GB, Amsterdam A, Hagen HR, García NZ, Lees JA. MITF deficiency and oncogenic GNAQ each promote proliferation programs in zebrafish melanocyte lineage cells. Pigment Cell Melanoma Res 2022; 35:539-547. [PMID: 35869673 PMCID: PMC9541221 DOI: 10.1111/pcmr.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Uveal melanoma (UM) is the most common primary malignancy of the adult eye but lacks any FDA-approved therapy for the deadly metastatic disease. Thus, there is a great need to dissect the driving mechanisms for UM and develop strategies to evaluate potential therapeutics. Using an autochthonous zebrafish model, we previously identified MITF, the master melanocyte transcription factor, as a tumor suppressor in GNAQQ209L -driven UM. Here, we show that zebrafish mitfa-deficient GNAQQ209L -driven tumors significantly up-regulate neural crest markers, and that higher expression of a melanoma-associated neural crest signature correlates with poor UM patient survival. We further determined how the mitfa-null state, as well as expression of GNAQQ209L , YAPS127A;S381A , or BRAFV600E oncogenes, impacts melanocyte lineage cells before they acquire the transformed state. Specifically, examination 5 days post-fertilization showed that mitfa-deficiency is sufficient to up-regulate pigment progenitor and neural crest markers, while GNAQQ209L expression promotes a proliferative phenotype that is further enhanced by YAPS127A;S381A co-expression. Finally, we show that this oncogene-induced proliferative phenotype can be used to screen chemical inhibitors for their efficacy against the UM pathway. Overall, this study establishes that a neural crest signature correlates with poor UM survival, and describes an in vivo assay for preclinical trials of potential UM therapeutics.
Collapse
Affiliation(s)
- Grace B. Phelps
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Hannah R. Hagen
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nicole Zambrana García
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research and Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
70
|
Bur D, Thibodeaux Q, Keeling B. Verrucous Melanoma Presenting as a Cutaneous Horn. Am J Dermatopathol 2022; 44:e106-e107. [PMID: 35642969 DOI: 10.1097/dad.0000000000002222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Verrucous malignant melanoma (MM) is a rare variant of melanoma that often presents diagnostic challenges. This case highlights the unique presentation of verrucous MM underlying a cutaneous horn. It is vital for dermatologists to be aware of this potentially benign-appearing variant to be able to diagnose and treat MM early on.
Collapse
Affiliation(s)
- Delfina Bur
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX; and
| | - Quinn Thibodeaux
- Department of Dermatology, The University of Texas at Austin Dell Medical School, Austin, TX
| | - Brett Keeling
- Department of Dermatology, The University of Texas at Austin Dell Medical School, Austin, TX
| |
Collapse
|
71
|
Characterization of Vemurafenib-Resistant Melanoma Cell Lines Reveals Novel Hallmarks of Targeted Therapy Resistance. Int J Mol Sci 2022; 23:ijms23179910. [PMID: 36077308 PMCID: PMC9455970 DOI: 10.3390/ijms23179910] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Regardless of the significant improvements in treatment of melanoma, the majority of patients develop resistance whose mechanisms are still not completely understood. Hence, we generated and characterized two melanoma-derived cell lines, primary WM793B and metastatic A375M, with acquired resistance to the RAF inhibitor vemurafenib. The morphology of the resistant primary WM793B melanoma cells showed EMT-like features and exhibited a hybrid phenotype with both epithelial and mesenchymal characteristics. Surprisingly, the vemurafenib-resistant melanoma cells showed a decreased migration ability but also displayed a tendency to collective migration. Signaling pathway analysis revealed the reactivation of MAPK and the activation of the PI3K/AKT pathway depending on the vemurafenib-resistant cell line. The acquired resistance to vemurafenib caused resistance to chemotherapy in primary WM793B melanoma cells. Furthermore, the cell-cycle analysis and altered levels of cell-cycle regulators revealed that resistant cells likely transiently enter into cell cycle arrest at the G0/G1 phase and gain slow-cycling cell features. A decreased level of NME1 and NME2 metastasis suppressor proteins were found in WM793B-resistant primary melanoma, which is possibly the result of vemurafenib-acquired resistance and is one of the causes of increased PI3K/AKT signaling. Further studies are needed to reveal the vemurafenib-dependent negative regulators of NME proteins, their role in PI3K/AKT signaling, and their influence on vemurafenib-resistant melanoma cell characteristics.
Collapse
|
72
|
Sun N, Tian Y, Chen Y, Guo W, Li C. Metabolic rewiring directs melanoma immunology. Front Immunol 2022; 13:909580. [PMID: 36003368 PMCID: PMC9393691 DOI: 10.3389/fimmu.2022.909580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma results from the malignant transformation of melanocytes and accounts for the most lethal type of skin cancers. In the pathogenesis of melanoma, disordered metabolism is a hallmark characteristic with multiple metabolic paradigms involved in, e.g., glycolysis, lipid metabolism, amino acid metabolism, oxidative phosphorylation, and autophagy. Under the driving forces of oncogenic mutations, melanoma metabolism is rewired to provide not only building bricks for macromolecule synthesis and sufficient energy for rapid proliferation and metastasis but also various metabolic intermediates for signal pathway transduction. Of note, metabolic alterations in tumor orchestrate tumor immunology by affecting the functions of surrounding immune cells, thereby interfering with their antitumor capacity, in addition to the direct influence on tumor cell intrinsic biological activities. In this review, we first introduced the epidemiology, clinical characteristics, and treatment proceedings of melanoma. Then, the components of the tumor microenvironment, especially different populations of immune cells and their roles in antitumor immunity, were reviewed. Sequentially, how metabolic rewiring contributes to tumor cell malignant behaviors in melanoma pathogenesis was discussed. Following this, the proceedings of metabolism- and metabolic intermediate-regulated tumor immunology were comprehensively dissertated. Finally, we summarized currently available drugs that can be employed to target metabolism to intervene tumor immunology and modulate immunotherapy.
Collapse
Affiliation(s)
- Ningyue Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuhan Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chunying Li, ; Weinan Guo,
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chunying Li, ; Weinan Guo,
| |
Collapse
|
73
|
Differential RNA expression of immune-related genes and tumor cell proximity from intratumoral M1 macrophages in acral lentiginous melanomas treated with PD-1 blockade. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166516. [DOI: 10.1016/j.bbadis.2022.166516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
|
74
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
75
|
Xu YY, Ren ZL, Liu XL, Zhang GM, Huang SS, Shi WH, Ye LX, Luo X, Liu SW, Li YL, Yu L. BAP1 loss augments sensitivity to BET inhibitors in cancer cells. Acta Pharmacol Sin 2022; 43:1803-1815. [PMID: 34737422 PMCID: PMC9253001 DOI: 10.1038/s41401-021-00783-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The tumor suppressor gene BAP1 encodes a widely expressed deubiquitinase for histone H2A. Both hereditary and acquired mutations are associated with multiple cancer types, including cutaneous melanoma (CM), uveal melanoma (UM), and clear cell renal cell carcinoma (ccRCC). However, there is no personalized therapy for BAP1-mutant cancers. Here, we describe an epigenetic drug library screening to identify small molecules that exert selective cytotoxicity against BAP1 knockout CM cells over their isogenic parental cells. Hit characterization reveals that BAP1 loss renders cells more vulnerable to bromodomain and extraterminal (BET) inhibitor-induced transcriptional alterations, G1/G0 cell cycle arrest and apoptosis. The association of BAP1 loss with sensitivity to BET inhibitors is observed in multiple BAP1-deficient cancer cell lines generated by gene editing or derived from patient tumors as well as immunodeficient xenograft and immunocompetent allograft murine models. We demonstrate that BAP1 deubiquitinase activity reduces sensitivity to BET inhibitors. Concordantly, ectopic expression of RING1A or RING1B (H2AK119 E3 ubiquitin ligases) enhances sensitivity to BET inhibitors. The mechanistic study shows that the BET inhibitor OTX015 exerts a more potent suppressive effect on the transcription of various proliferation-related genes, especially MYC, in BAP1 knockout cells than in their isogenic parental cells, primarily by targeting BRD4. Furthermore, ectopic expression of Myc rescues the BET inhibitor-sensitizing effect induced by BAP1 loss. Our study reveals new approaches to specifically suppress BAP1-deficient cancers, including CM, UM, and ccRCC.
Collapse
Affiliation(s)
- Yu-Yan Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Lu Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Medicinal Information and Real World Engineering Technology Center of Universities, Guangzhou, 510006, China
| | - Xiao-Lian Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gui-Ming Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Si-Si Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Hui Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin-Xuan Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Lei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
76
|
Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int J Mol Sci 2022; 23:6001. [PMID: 35682684 PMCID: PMC9181002 DOI: 10.3390/ijms23116001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM. In normal melanocytes, MITF regulates melanocyte development, melanin synthesis, and melanocyte survival. The expression profile and the behaviour of MITF-expressing cells suggest that MITF promotes local proliferation and inhibits invasion, inflammation, and epithelial-to-mesenchymal (EMT) transition. Loss of MITF expression leads to increased invasion and inflammation and is more prevalent in malignant cells. Cutaneous melanoma cells switch between MITF-high and MITF-low states in different phases of tumour development. In UM, MITF loss is associated with loss of BAP1 protein expression, which is a marker of poor prognosis. These data indicate a dual role for MITF in benign and malignant melanocytic cells.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Laurien E. Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Thomas Strub
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Imène Krossa
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| |
Collapse
|
77
|
Andrieu C, McNamee N, Larkin AM, Maguire A, Menon R, Mueller-Eisert J, Horgan N, Kennedy S, Gullo G, Crown J, Walsh N. Clinical Impact of Immune Checkpoint Inhibitor (ICI) Response, DNA Damage Repair (DDR) Gene Mutations and Immune-Cell Infiltration in Metastatic Melanoma Subtypes. Med Sci (Basel) 2022; 10:26. [PMID: 35736346 PMCID: PMC9230974 DOI: 10.3390/medsci10020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
Molecular and histopathological analysis of melanoma subtypes has revealed distinct epidemiological, genetic, and clinical features. However, immunotherapy for advanced metastatic melanoma patients does not differ based on subtype. Response to immune checkpoint inhibitors (ICI) has been shown to vary, therefore, predictive biomarkers are needed in the design of precision treatments. Targeted sequencing and histopathological analysis (CD8 and CD20 immunohistochemistry) were performed on subtypes of metastatic melanoma (cutaneous melanoma (CM, n = 10); head and neck melanoma (HNM, n = 7); uveal melanoma (UM, n = 4); acral lentiginous melanoma (AM, n = 1) and mucosal melanoma (MM, n = 1) treated with ICI). Progression-free survival (PFS) was significantly associated with high CD8 expression (p = 0.025) and mutations in DNA damage repair (DDR) pathway genes (p = 0.012) in all subtypes but not with CD20 expression. Our study identified that immune cell infiltration and DDR gene mutations may have an impact in response to ICI treatment in metastatic melanoma but differs among subtypes. Therefore, a comprehensive understanding of the immune infiltration cells' role and DDR gene mutations in metastatic melanoma may identify prognostic biomarkers.
Collapse
Affiliation(s)
- Charlotte Andrieu
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Glasnevin, D09 E432 Dublin, Ireland; (C.A.); (N.M.); (A.-M.L.); (A.M.)
| | - Niamh McNamee
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Glasnevin, D09 E432 Dublin, Ireland; (C.A.); (N.M.); (A.-M.L.); (A.M.)
| | - Anne-Marie Larkin
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Glasnevin, D09 E432 Dublin, Ireland; (C.A.); (N.M.); (A.-M.L.); (A.M.)
- Department of Life Sciences, Institute of Technology Sligo, F91 YW50 Sligo, Ireland
| | - Alanna Maguire
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Glasnevin, D09 E432 Dublin, Ireland; (C.A.); (N.M.); (A.-M.L.); (A.M.)
| | - Roopika Menon
- Siemens Healthcare Diagnostics Products GmbH, 50667 Cologne, Germany; (R.M.); (J.M.-E.)
| | - Judith Mueller-Eisert
- Siemens Healthcare Diagnostics Products GmbH, 50667 Cologne, Germany; (R.M.); (J.M.-E.)
| | - Noel Horgan
- Royal Victoria Eye and Ear Hospital, Adelaide Road, D02 XK51 Dublin, Ireland; (N.H.); (S.K.)
| | - Susan Kennedy
- Royal Victoria Eye and Ear Hospital, Adelaide Road, D02 XK51 Dublin, Ireland; (N.H.); (S.K.)
| | - Giuseppe Gullo
- Department of Medical Oncology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland; (G.G.); (J.C.)
| | - John Crown
- Department of Medical Oncology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland; (G.G.); (J.C.)
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Glasnevin, D09 E432 Dublin, Ireland; (C.A.); (N.M.); (A.-M.L.); (A.M.)
| |
Collapse
|
78
|
Casalou C, Moreiras H, Mayatra JM, Fabre A, Tobin DJ. Loss of 'Epidermal Melanin Unit' Integrity in Human Skin During Melanoma-Genesis. Front Oncol 2022; 12:878336. [PMID: 35574390 PMCID: PMC9097079 DOI: 10.3389/fonc.2022.878336] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma can be a most challenging neoplasm of high lethality, in part due to its extreme heterogeneity and characteristic aggressive and invasive nature. Indeed, its moniker 'the great masquerader' reflects that not all melanomas are created equal in terms of their originating cellular contexts, but also that melanoma cells in the malignant tumor can adopt a wide range of different cell states and variable organotropism. In this review, we focus on the early phases of melanomagenesis by discussing how the originating pigment cell of the melanocyte lineage can be influenced to embark on a wide range of tumor fates with distinctive microanatomical pathways. In particular, we assess how cells of the melanocyte lineage can differ by maturation status (stem cell; melanoblast; transiently amplifying cell; differentiated; post-mitotic; terminally-differentiated) as well as by micro-environmental niche (in the stratum basale of the epidermis; within skin appendages like hair follicle, eccrine gland, etc). We discuss how the above variable contexts may influence the susceptibility of the epidermal-melanin unit (EMU) to become unstable, which may presage cutaneous melanoma development. We also assess how unique features of follicular-melanin unit(s) (FMUs) can, by contrast, protect melanocytes from melanomagenesis. Lastly, we postulate how variable melanocyte fates in vitiligo, albinism, psoriasis, and alopecia areata may provide new insights into immune-/non immune-mediated outcomes for melanocytes in cutaneous melanin units.
Collapse
Affiliation(s)
- Cristina Casalou
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Hugo Moreiras
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jay M Mayatra
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- Department of Histopathology, St Vincent's University Hospital, Dublin, Ireland.,UCD School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
79
|
Tímár J, Ladányi A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int J Mol Sci 2022; 23:5384. [PMID: 35628196 PMCID: PMC9140388 DOI: 10.3390/ijms23105384] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
Similar to other malignancies, TCGA network efforts identified the detailed genomic picture of skin melanoma, laying down the basis of molecular classification. On the other hand, genome-wide association studies discovered the genetic background of the hereditary melanomas and the susceptibility genes. These genetic studies helped to fine-tune the differential diagnostics of malignant melanocytic lesions, using either FISH tests or the myPath gene expression signature. Although the original genomic studies on skin melanoma were mostly based on primary tumors, data started to accumulate on the genetic diversity of the progressing disease. The prognostication of skin melanoma is still based on staging but can be completed with gene expression analysis (DecisionDx). Meanwhile, this genetic knowledge base of skin melanoma did not turn to the expected wide array of target therapies, except the BRAF inhibitors. The major breakthrough of melanoma therapy was the introduction of immune checkpoint inhibitors, which showed outstanding efficacy in skin melanoma, probably due to their high immunogenicity. Unfortunately, beyond BRAF, KIT mutations and tumor mutation burden, no clinically validated predictive markers exist in melanoma, although several promising biomarkers have been described, such as the expression of immune-related genes or mutations in the IFN-signaling pathway. After the initial success of either target or immunotherapies, sooner or later, relapses occur in the majority of patients, due to various induced genetic alterations, the diagnosis of which could be developed to novel predictive genetic markers.
Collapse
Affiliation(s)
- József Tímár
- 2nd Department of Pathology, Semmelweis University, 1191 Budapest, Hungary
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| |
Collapse
|
80
|
Riccardo F, Tarone L, Camerino M, Giacobino D, Iussich S, Barutello G, Arigoni M, Conti L, Bolli E, Quaglino E, Merighi IF, Morello E, Dentini A, Ferrone S, Buracco P, Cavallo F. Antigen mimicry as an effective strategy to induce CSPG4-targeted immunity in dogs with oral melanoma: a veterinary trial. J Immunother Cancer 2022; 10:e004007. [PMID: 35580930 PMCID: PMC9114861 DOI: 10.1136/jitc-2021-004007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Melanoma is the most lethal form of skin cancer in humans. Conventional therapies have limited efficacy, and overall response is still unsatisfactory considering that immune checkpoint inhibitors induce lasting clinical responses only in a low percentage of patients. This has prompted us to develop a vaccination strategy employing the tumor antigen chondroitin sulfate proteoglycan (CSPG)4 as a target. METHODS To overcome the host's unresponsiveness to the self-antigen CSPG4, we have taken advantage of the conservation of CSPG4 sequence through phylogenetic evolution, so we have used a vaccine, based on a chimeric DNA molecule encompassing both human (Hu) and dog (Do) portions of CSPG4 (HuDo-CSPG4). We have tested its safety and immunogenicity (primary objectives), along with its therapeutic efficacy (secondary outcome), in a prospective, non-randomized, veterinary clinical trial enrolling 80 client-owned dogs with surgically resected, CSPG4-positive, stage II-IV oral melanoma. RESULTS Vaccinated dogs developed anti-Do-CSPG4 and Hu-CSPG4 immune response. Interestingly, the antibody titer in vaccinated dogs was significantly associated with the overall survival. Our data suggest that there may be a contribution of the HuDo-CSPG4 vaccination to the improvement of survival of vaccinated dogs as compared with controls treated with conventional therapies alone. CONCLUSIONS HuDo-CSPG4 adjuvant vaccination was safe and immunogenic in dogs with oral melanoma, with potential beneficial effects on the course of the disease. Thanks to the power of naturally occurring canine tumors as predictive models for cancer immunotherapy response, these data may represent a basis for the translation of this approach to the treatment of human patients with CSPG4-positive melanoma subtypes.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
81
|
Zeng H, Li J, Hou K, Wu Y, Chen H, Ning Z. Melanoma and Nanotechnology-Based Treatment. Front Oncol 2022; 12:858185. [PMID: 35356202 PMCID: PMC8959641 DOI: 10.3389/fonc.2022.858185] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Melanoma is a malignant tumor arising in melanocytes from the basal layer of the epidermis and is the fifth most commonly diagnosed cancer in the United States. Melanoma is aggressive and easily metastasizes, and the survival rate is low. Nanotechnology-based diagnosis and treatment of melanoma have attracted increasing attention. Importantly, nano drug delivery systems have the advantages of increasing drug solubility, enhancing drug stability, prolonging half-life, optimizing bioavailability, targeting tumors, and minimizing side effects; thus, these systems can facilitate tumor cytotoxicity to achieve effective treatment of melanoma. In this review, we discuss current nanosystems used in the diagnosis and treatment of melanoma, including lipid systems, inorganic nanoparticles, polymeric systems, and natural nanosystems. The excellent characteristics of novel and effective drug delivery systems provide a basis for the broad applications of these systems in the diagnosis and treatment of melanoma, particularly metastatic melanoma.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeng Ning
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
82
|
Cook MG, Powell BWEM, Grant ME, Green AC. Evolution of superficial spreading melanoma to resemble desmoplastic melanoma: case report. Virchows Arch 2022; 480:945-947. [PMID: 34286349 PMCID: PMC9023384 DOI: 10.1007/s00428-021-03127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/03/2022]
Abstract
Desmoplastic melanoma commonly occurs on the head and neck in a pure form, but occasionally, it occurs in a mixed tumor with another type, usually superficial spreading melanoma (SSM), and rarely as a metastasis from a primary SSM. We report here a primary SSM on the leg of a 32-year-old male which metastasised to lymph nodes, and 10 years later recurred at the primary site initially with mixed features but evolving to resemble a uniformly desmoplastic, deeply invasive melanoma. This unusual case has implications for clinical management and is additionally notable for its reversal in behavior, from metastatic to local infiltrative type, correlating with the change in morphology.
Collapse
Affiliation(s)
- Martin G Cook
- Department of Histopathology, Royal Surrey County Hospital, Egerton Road, Guildford, GU2 7XX, UK.
- Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
- Division of Clinical Medicine, University of Surrey, Guildford, GU2 7XH, Surrey, UK.
| | - Barry W E M Powell
- Department of Plastic and Reconstructive Surgery, St. George's Hospital, Blackshaw Road, Tooting, London, SW17 0QT, UK
| | - Megan E Grant
- Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Adele C Green
- Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| |
Collapse
|
83
|
Weiss JM, Hunter MV, Cruz NM, Baggiolini A, Tagore M, Ma Y, Misale S, Marasco M, Simon-Vermot T, Campbell NR, Newell F, Wilmott JS, Johansson PA, Thompson JF, Long GV, Pearson JV, Mann GJ, Scolyer RA, Waddell N, Montal ED, Huang TH, Jonsson P, Donoghue MTA, Harris CC, Taylor BS, Xu T, Chaligné R, Shliaha PV, Hendrickson R, Jungbluth AA, Lezcano C, Koche R, Studer L, Ariyan CE, Solit DB, Wolchok JD, Merghoub T, Rosen N, Hayward NK, White RM. Anatomic position determines oncogenic specificity in melanoma. Nature 2022; 604:354-361. [PMID: 35355015 PMCID: PMC9355078 DOI: 10.1038/s41586-022-04584-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2022] [Indexed: 12/19/2022]
Abstract
Oncogenic alterations to DNA are not transforming in all cellular contexts1,2. This may be due to pre-existing transcriptional programmes in the cell of origin. Here we define anatomic position as a major determinant of why cells respond to specific oncogenes. Cutaneous melanoma arises throughout the body, whereas the acral subtype arises on the palms of the hands, soles of the feet or under the nails3. We sequenced the DNA of cutaneous and acral melanomas from a large cohort of human patients and found a specific enrichment for BRAF mutations in cutaneous melanoma and enrichment for CRKL amplifications in acral melanoma. We modelled these changes in transgenic zebrafish models and found that CRKL-driven tumours formed predominantly in the fins of the fish. The fins are the evolutionary precursors to tetrapod limbs, indicating that melanocytes in these acral locations may be uniquely susceptible to CRKL. RNA profiling of these fin and limb melanocytes, when compared with body melanocytes, revealed a positional identity gene programme typified by posterior HOX13 genes. This positional gene programme synergized with CRKL to amplify insulin-like growth factor (IGF) signalling and drive tumours at acral sites. Abrogation of this CRKL-driven programme eliminated the anatomic specificity of acral melanoma. These data suggest that the anatomic position of the cell of origin endows it with a unique transcriptional state that makes it susceptible to only certain oncogenic insults.
Collapse
Affiliation(s)
- Joshua M Weiss
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Miranda V Hunter
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arianna Baggiolini
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohita Tagore
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yilun Ma
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sandra Misale
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelangelo Marasco
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Simon-Vermot
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathaniel R Campbell
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Emily D Montal
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ting-Hsiang Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip Jonsson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher C Harris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tianhao Xu
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligné
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pavel V Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald Hendrickson
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cecilia Lezcano
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenz Studer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte E Ariyan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Weill Cornell Medicine, New York, NY, USA
| | | | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
84
|
Zebrafish Syndromic Albinism Models as Tools for Understanding and Treating Pigment Cell Disease in Humans. Cancers (Basel) 2022; 14:cancers14071752. [PMID: 35406524 PMCID: PMC8997128 DOI: 10.3390/cancers14071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Zebrafish (Danio rerio) is an emerging model for studying many diseases, including disorders originating in black pigment cells, melanocytes. In this review of the melanocyte literature, we discuss the current knowledge of melanocyte biology relevant to understanding different forms of albinism and the potential of the zebrafish model system for finding novel mechanisms and treatments. Abstract Melanin is the pigment that protects DNA from ultraviolet (UV) damage by absorbing excess energy. Melanin is produced in a process called melanogenesis. When melanogenesis is altered, diseases such as albinism result. Albinism can result in an increased skin cancer risk. Conversely, black pigment cell (melanocyte) development pathways can be misregulated, causing excessive melanocyte growth that leads to melanoma (cancer of melanocytes). Zebrafish is an emerging model organism used to study pigment disorders due to their high fecundity, visible melanin development in melanophores (melanocytes in mammals) from 24 h post-fertilization, and conserved melanogenesis pathways. Here, we reviewed the conserved developmental pathways in zebrafish melanophores and mammalian melanocytes. Additionally, we summarized the progress made in understanding pigment cell disease and evidence supporting the strong potential for using zebrafish to find novel treatment options for albinism.
Collapse
|
85
|
Hsieh CC, Su YC, Jiang KY, Ito T, Li TW, Kaku-Ito Y, Cheng ST, Chen LT, Hwang DY, Shen CH. TRPM1 promotes tumor progression in acral melanoma by activating the Ca 2+/CaMKIIδ/AKT pathway. J Adv Res 2022; 43:45-57. [PMID: 36585114 PMCID: PMC9811324 DOI: 10.1016/j.jare.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Acral melanoma is a predominant and aggressive subtype of melanoma in non-Caucasian populations. There is a lack of genotype-driven therapies for over 50% of patients. TRPM1 (transient receptor potential melastatin 1), a nonspecific cation channel, is mainly expressed in retinal bipolar neurons and skin. Nonetheless, the function of TRPM1 in melanoma progression is poorly understood. OBJECTIVES We investigated the association between TRPM1 and acral melanoma progression and revealed the molecular mechanisms by which TRPM1 promotes tumor progression and malignancy. METHODS TRPM1 expression and CaMKII phosphorylation in tumor specimens were tested by immunohistochemistry analysis and scored by two independent investigators. The functions of TRPM1 and CaMKII were assessed using loss-of-function and gain-of-function approaches and examined by western blotting, colony formation, cell migration and invasion, and xenograft tumor growth assays. The effects of a CaMKII inhibitor, KN93, were evaluated using both in vitro cell and in vivo xenograft mouse models. RESULTS We revealed that TRPM1 protein expression was positively associated with tumor progression and shorter survival in patients with acral melanoma. TRPM1 promoted AKT activation and the colony formation, cell mobility, and xenograft tumor growth of melanoma cells. TRPM1 elevated cytosolic Ca2+ levels and activated CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) to promote the CaMKIIδ/AKT interaction and AKT activation. The functions of TRPM1 in melanoma cells were suppressed by a CaMKII inhibitor, KN93. Significant upregulation of phospho-CaMKII levels in acral melanomas was related to increased expression of TRPM1. An acral melanoma cell line with high expression of TRPM1, CA11, was isolated from a patient to show the anti-tumor activity of KN93 in vitro and in vivo. CONCLUSIONS TRPM1 promotes tumor progression and malignancy in acral melanoma by activating the Ca2+/CaMKIIδ/AKT pathway. CaMKII inhibition may be a potential therapeutic strategy for treating acral melanomas with high expression of TRPM1.
Collapse
Affiliation(s)
- Chi-Che Hsieh
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Yue-Chiu Su
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Ying Jiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ting-Wei Li
- Department of Life Sciences, National Cheng Kung University, Tainan 704, Taiwan
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shih-Tsung Cheng
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan,Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan,Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan,Ph.D. Program in Tissue Engineering and Regenerative Medicine, Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan,Corresponding author at: National Institute of Cancer Research, National Health Research Institutes, No. 367, Sheng-Li Rd., North District, Tainan 70456, Taiwan.
| |
Collapse
|
86
|
Kramer ET, Godoy PM, Kaufman CK. Transcriptional profile and chromatin accessibility in zebrafish melanocytes and melanoma tumors. G3 (BETHESDA, MD.) 2022; 12:jkab379. [PMID: 34791221 PMCID: PMC8727958 DOI: 10.1093/g3journal/jkab379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/02/2021] [Indexed: 11/14/2022]
Abstract
Transcriptional and epigenetic characterization of melanocytes and melanoma cells isolated from their in vivo context promises to unveil key differences between these developmentally related normal and cancer cell populations. We therefore engineered an enhanced Danio rerio (zebrafish) melanoma model with fluorescently labeled melanocytes to allow for isolation of normal (wild type) and premalignant (BRAFV600E-mutant) populations for comparison to fully transformed BRAFV600E-mutant, p53 loss-of-function melanoma cells. Using fluorescence-activated cell sorting to isolate these populations, we performed high-quality RNA- and ATAC-seq on sorted zebrafish melanocytes vs. melanoma cells, which we provide as a resource here. Melanocytes had consistent transcriptional and accessibility profiles, as did melanoma cells. Comparing melanocytes and melanoma, we note 4128 differentially expressed genes and 56,936 differentially accessible regions with overall gene expression profiles analogous to human melanocytes and the pigmentation melanoma subtype. Combining the RNA- and ATAC-seq data surprisingly revealed that increased chromatin accessibility did not always correspond with increased gene expression, suggesting that though there is widespread dysregulation in chromatin accessibility in melanoma, there is a potentially more refined gene expression program driving cancerous melanoma. These data serve as a resource to identify candidate regulators of the normal vs. diseased states in a genetically controlled in vivo context.
Collapse
Affiliation(s)
- Eva T Kramer
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Paula M Godoy
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| |
Collapse
|
87
|
Sidlik Muskatel R, Pillar N, Godefroy J, Lotem M, Goldstein G. Case report: Robust response of metastatic clear cell sarcoma treated with cabozantinib and immunotherapy. Front Pediatr 2022; 10:940927. [PMID: 36275056 PMCID: PMC9582433 DOI: 10.3389/fped.2022.940927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Clear Cell Sarcoma (CCS), also referred to as malignant melanoma of soft parts, is a rare and aggressive malignant tumor. It comprises 1% of all soft tissue sarcomas and is known to be radio- and chemotherapy resistant. CCS shares morphological and immunohistochemical features with malignant melanoma, including melanin biosynthesis and melanocytic markers. However, it is distinct for the presence of EWSR1-ATF1 translocation which activates MITF transcription factor. We report here of an aggressive case of CCS in a 9-year-old patient, which demonstrates the critical role of molecular analysis in the diagnosis and treatment of uncommon cancer variants in the era of personalized medicine. The EWSR1-ATF1 translocation induces pathological c-Met activation, and so, following unsuccessful CTLA4 and PD-1 blockade immunotherapy, the child received cabozantinib, a small molecule tyrosine kinase inhibitor, with the intent to block c-Met oncogenic effect. In parallel, active immunization, using hapten di-nitrophenyl modified autologous tumor cells was administered with monotherapy PD-1 inhibitor nivolumab. Under this "triplet" therapy, the patient attained an initial partial response and was progression-free for 2 years, in good performance status and resumed schooling. Based on our observation, cabozantinib can be used as an effective and potentially life-prolonging treatment in CCS. We suggest that priming the child's immune system using her autologous tumor and combating T cell exhaustion with PD-1 blockade may have synergized with the targeted therapy. Combining targeted and immunotherapy is a rapidly growing practice in solid tumors and provides a glimpse of hope in situations that previously lacked any treatment option.
Collapse
Affiliation(s)
- Rakefet Sidlik Muskatel
- The Dyna and Fala Weinstock Department of Pediatric Hematology Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Nir Pillar
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jeremy Godefroy
- Hadassah Hebrew University Medical Center, Nuclear Medicine Institute, Jerusalem, Israel
| | - Michal Lotem
- Center for Melanoma and Cancer Immunotherapy, Hadassah Hebrew University Medical Center, Sharett Institute of Oncology, Jerusalem, Israel
| | - Gal Goldstein
- The Dyna and Fala Weinstock Department of Pediatric Hematology Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
88
|
Piltcher-da-Silva R, Sasaki VL, Hutten DO, Percicote AP, Trippia CH, Junior RAA, da Costa MAR, Coelho JCU. Biliary tract melanoma metastasis mimicking hilar cholangiocarcinoma: a case report. J Surg Case Rep 2021; 2021:rjab549. [PMID: 34909174 PMCID: PMC8666198 DOI: 10.1093/jscr/rjab549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Malignant melanoma is the 19th leading cause of cancer worldwide. It is an aggressive neoplastic disease in which pathophysiological understanding and management has been in constant evolution in recent decades. The primary site is the skin, uvea and mucous membranes and has the capacity to metastasize to any organ. There are few reports of primary or secondary involvement of the biliary tract. We present the case of a 73-year-old woman with a bile duct lesion suggestive of cholangiocarcinoma and a final diagnosis of a single melanoma metastasis. Surgical treatment was performed due to oligometastatic stage IV melanoma with possibility of R0 resection followed by immune checkpoint therapy.
Collapse
Affiliation(s)
| | - Vivian Laís Sasaki
- Division of General and Digestive Surgery, Hospital Nossa Senhora das Graças, Curitiba, Brazil
| | - Debora Oliveira Hutten
- Division of General and Digestive Surgery, Hospital Nossa Senhora das Graças, Curitiba, Brazil
| | - Ana Paula Percicote
- Department of Pathology, Hospital Nossa Senhora das Graças, Curitiba, Brazil
| | | | | | | | - Júlio Cezar Uili Coelho
- Division of General and Digestive Surgery, Hospital Nossa Senhora das Graças, Curitiba, Brazil
| |
Collapse
|
89
|
Tyumentseva A, Averchuk A, Palkina N, Zinchenko I, Moshev A, Savchenko A, Ruksha T. Transcriptomic Profiling Revealed Plexin A2 Downregulation With Migration and Invasion Alteration in Dacarbazine-Treated Primary Melanoma Cells. Front Oncol 2021; 11:732501. [PMID: 34926249 PMCID: PMC8677675 DOI: 10.3389/fonc.2021.732501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Melanoma is highly heterogeneous type of malignant neoplasm that is responsible for the majority of deaths among other types of skin cancer. In the present study, we screened a list of differentially expressed genes in two primary, drug-naïve melanoma cell lines derived from patients with melanoma following treatment of the cells with the chemotherapeutic agent dacarbazine. The aim was to determine the transcriptomic profiles and associated alterations in the cell phenotype. We found the vascular endothelial growth factor A/vascular endothelial growth factor receptor 2, phosphoinositide 3-kinase/protein kinase B and focal adhesion signaling pathways to be top altered after dacarbazine treatment. In addition, we observed the expression levels of genes associated with tumor dissemination, integrin β8 and matrix metalloproteinase-1, to be diminished in both cell lines studied, the results of which were confirmed by reverse transcription-quantitative polymerase chain reaction. By contrast, plexin A2 expression was found to be upregulated in K2303 cells, where reduced migration and invasion were also observed, following dacarbazine treatment. Plexin A2 downregulation was associated with the promotion of migrative and invasive capacities in B0404 melanoma cells. Since plexin A2 is semaphorin co-receptor that is involved in focal adhesion and cell migration regulation, the present study suggested that plexin A2 may be implicated in the dacarbazine-mediated phenotypic shift of melanoma cells. We propose that the signature of cancer cell invasiveness can be revealed by using a combination of transcriptomic and functional approaches, which should be applied in the development of personalized therapeutic strategies for each patient with melanoma.
Collapse
Affiliation(s)
- Anna Tyumentseva
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Anton Averchuk
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Nadezhda Palkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Ivan Zinchenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Anton Moshev
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Andrey Savchenko
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Tatiana Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
90
|
Ferreira I, Droop A, Edwards O, Wong K, Harle V, Habeeb O, Gharpuray-Pandit D, Houghton J, Wiedemeyer K, Mentzel T, Billings SD, Ko JS, Füzesi L, Mulholland K, Prusac IK, Liegl-Atzwanger B, de Saint Aubain N, Caldwell H, Riva L, van der Weyden L, Arends MJ, Brenn T, Adams DJ. The clinicopathologic spectrum and genomic landscape of de-/trans-differentiated melanoma. Mod Pathol 2021; 34:2009-2019. [PMID: 34155350 DOI: 10.1038/s41379-021-00857-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Dedifferentiation and transdifferentiation are rare and only poorly understood phenomena in cutaneous melanoma. To study this disease more comprehensively we have retrieved 11 primary cutaneous melanomas from our pathology archives showing biphasic features characterized by a conventional melanoma and additional areas of de-/trans-differentiation as defined by a lack of immunohistochemical expression of all conventional melanocytic markers (S-100 protein, SOX10, Melan-A, and HMB-45). The clinical, histologic, and immunohistochemical findings were recorded and follow-up was obtained. The patients were mostly elderly (median: 81 years; range: 42-86 years) without significant gender predilection, and the sun-exposed skin of the head and neck area was most commonly affected. The tumors were deeply invasive with a mean depth of 7 mm (range: 4-80 mm). The dedifferentiated component showed atypical fibroxanthoma-like features in the majority of cases (7), while additional rhabdomyosarcomatous and epithelial transdifferentiation was noted histologically and/or immunohistochemically in two tumors each. The background conventional melanoma component was of desmoplastic (4), superficial spreading (3), nodular (2), lentigo maligna (1), or spindle cell (1) types. For the seven patients with available follow-up data (median follow-up period of 25 months; range: 8-36 months), two died from their disease, and three developed metastases. Next-generation sequencing of the cohort revealed somatic mutations of established melanoma drivers including mainly NF1 mutations (5) in the conventional component, which was also detected in the corresponding de-/trans-differentiated component. In summary, the diagnosis of primary cutaneous de-/trans-differentiated melanoma is challenging and depends on the morphologic identification of conventional melanoma. Molecular analysis is diagnostically helpful as the mutated gene profile is shared between the conventional and de-/trans-differentiated components. Importantly, de-/trans-differentiation does not appear to confer a more aggressive behavior.
Collapse
Affiliation(s)
- Ingrid Ferreira
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Université Libre de Bruxelles, Brussels, Belgium
| | - Alastair Droop
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Olivia Edwards
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Kim Wong
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Victoria Harle
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Omar Habeeb
- Department of Anatomic Pathology, Middlemore Hospital, Auckland, NZ, New Zealand
| | | | - Joseph Houghton
- Department of Pathology, Royal Victoria Hospital, Belfast, Ireland
| | - Katharina Wiedemeyer
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Thomas Mentzel
- Dermatopathology Friedrichshafen, Friedrichshafen, Germany
| | | | - Jennifer S Ko
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Laszlo Füzesi
- Center for Pathology, Robert-Weixler-Straße 48a, Kempten, Germany
| | | | - Ivana Kuzmic Prusac
- Department of Pathology, University Hospital Split and Split University School of Medicine, Split, Croatia
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Centre for Molecular Biomedicine, Diagnostic and Research Centre for Pathology, Translational Sarcoma Pathology, Comprehensive Cancer Centre Subunit Sarcoma, Medical University Graz, Graz, Austria
| | - Nicolas de Saint Aubain
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Helen Caldwell
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, UK
| | - Laura Riva
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, UK
| | - Thomas Brenn
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, UK.
- The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
91
|
Saginala K, Barsouk A, Aluru JS, Rawla P, Barsouk A. Epidemiology of Melanoma. Med Sci (Basel) 2021; 9:63. [PMID: 34698235 PMCID: PMC8544364 DOI: 10.3390/medsci9040063] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Melanoma accounts for 1.7% of global cancer diagnoses and is the fifth most common cancer in the US. Melanoma incidence is rising in developed, predominantly fair-skinned countries, growing over 320% in the US since 1975. However, US mortality has fallen almost 30% over the past decade with the approval of 10 new targeted or immunotherapy agents since 2011. Mutations in the signaling-protein BRAF, present in half of cases, are targeted with oral BRAF/MEK inhibitor combinations, while checkpoint inhibitors are used to restore immunosurveillance likely inactivated by UV radiation. Although the overall 5-year survival has risen to 93.3% in the US, survival for stage IV disease remains only 29.8%. Melanoma is most common in white, older men, with an average age of diagnosis of 65. Outdoor UV exposure without protection is the main risk factor, although indoor tanning beds, immunosuppression, family history and rare congenital diseases, moles, and obesity contribute to the disease. Primary prevention initiatives in Australia implemented since 1988, such as education on sun-protection, have increased sun-screen usage and curbed melanoma incidence, which peaked in Australia in 2005. In the US, melanoma incidence is not projected to peak until 2022-2026. Fewer than 40% of Americans report practicing adequate protection (sun avoidance from 10 a.m.-4 p.m. and regular application of broad-spectrum sunscreen with an SPF > 30). A 2-4-fold return on investment is predicted for a US sun-protection education initiative. Lesion-directed skin screening programs, especially for those at risk, have also cost-efficiently reduced melanoma mortality.
Collapse
Affiliation(s)
- Kalyan Saginala
- Plains Regional Medical Group Internal Medicine, Clovis, NM 88101, USA;
| | - Adam Barsouk
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - John Sukumar Aluru
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02212, USA;
| | | | | |
Collapse
|
92
|
Millán-Esteban D, Peña-Chilet M, García-Casado Z, Manrique-Silva E, Requena C, Bañuls J, López-Guerrero JA, Rodríguez-Hernández A, Traves V, Dopazo J, Virós A, Kumar R, Nagore E. Mutational Characterization of Cutaneous Melanoma Supports Divergent Pathways Model for Melanoma Development. Cancers (Basel) 2021; 13:5219. [PMID: 34680367 PMCID: PMC8533762 DOI: 10.3390/cancers13205219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
According to the divergent pathway model, cutaneous melanoma comprises a nevogenic group with a propensity to melanocyte proliferation and another one associated with cumulative solar damage (CSD). While characterized clinically and epidemiologically, the differences in the molecular profiles between the groups have remained primarily uninvestigated. This study has used a custom gene panel and bioinformatics tools to investigate the potential molecular differences in a thoroughly characterized cohort of 119 melanoma patients belonging to nevogenic and CSD groups. We found that the nevogenic melanomas had a restricted set of mutations, with the prominently mutated gene being BRAF. The CSD melanomas, in contrast, showed mutations in a diverse group of genes that included NF1, ROS1, GNA11, and RAC1. We thus provide evidence that nevogenic and CSD melanomas constitute different biological entities and highlight the need to explore new targeted therapies.
Collapse
Affiliation(s)
- David Millán-Esteban
- School of Medicine, Universidad Católica de València San Vicente Mártir, 46001 Valencia, Spain;
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (Z.G.-C.); (J.A.L.-G.)
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud, Hospital Virgen del Rocío, 41013 Sevilla, Spain; (M.P.-C.); (J.D.)
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, 41013 Sevilla, Spain;
| | - Zaida García-Casado
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (Z.G.-C.); (J.A.L.-G.)
| | - Esperanza Manrique-Silva
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (E.M.-S.); (A.R.-H.)
| | - Celia Requena
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, 41013 Sevilla, Spain;
| | - José Bañuls
- Department of Dermatology, El Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain;
| | - Jose Antonio López-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (Z.G.-C.); (J.A.L.-G.)
| | - Aranzazu Rodríguez-Hernández
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (E.M.-S.); (A.R.-H.)
| | - Víctor Traves
- Department of Pathological Anatomy, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud, Hospital Virgen del Rocío, 41013 Sevilla, Spain; (M.P.-C.); (J.D.)
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, 41013 Sevilla, Spain;
- Fundación Progreso y Salud-ELIXIR-es, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Amaya Virós
- Skin Cancer and Aging Lab, Cancer Research UK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK;
| | - Rajiv Kumar
- Division of Functional Genome Analysis, Deutsches Krebsforschüngzentrum, 69120 Heidelberg, Germany;
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska, 142 20 Prague, Czech Republic
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69117 Heidelberg, Germany
| | - Eduardo Nagore
- School of Medicine, Universidad Católica de València San Vicente Mártir, 46001 Valencia, Spain;
- Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain; (E.M.-S.); (A.R.-H.)
| |
Collapse
|
93
|
Liu J, Lu J, Li W. A Comprehensive Prognostic and Immunological Analysis of a Six-Gene Signature Associated With Glycolysis and Immune Response in Uveal Melanoma. Front Immunol 2021; 12:738068. [PMID: 34630418 PMCID: PMC8494389 DOI: 10.3389/fimmu.2021.738068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Uveal melanoma (UM) is a subtype of melanoma with poor prognosis. This study aimed to construct a new prognostic gene signature that can be used for survival prediction and risk stratification of UM patients. In this work, transcriptome data from the Molecular Signatures Database were used to identify the cancer hallmarks most relevant to the prognosis of UM patients. Weighted gene co-expression network, univariate least absolute contraction and selection operator (LASSO), and multivariate Cox regression analyses were used to construct the prognostic gene characteristics. Kaplan-Meier and receiver operating characteristic (ROC) curves were used to evaluate the survival predictive ability of the gene signature. The results showed that glycolysis and immune response were the main risk factors for overall survival (OS) in UM patients. Using univariate Cox regression analysis, 238 candidates related to the prognosis of UM patients were identified (p < 0.05). Using LASSO and multivariate Cox regression analyses, a six-gene signature including ARPC1B, BTBD6, GUSB, KRTCAP2, RHBDD3, and SLC39A4 was constructed. Kaplan-Meier analysis of the UM cohort in the training set showed that patients with higher risk scores had worse OS (HR = 2.61, p < 0.001). The time-dependent ROC (t-ROC) curve showed that the risk score had good predictive efficiency for UM patients in the training set (AUC > 0.9). Besides, t-ROC analysis showed that the predictive ability of risk scores was significantly higher than that of other clinicopathological characteristics. Univariate and multivariate Cox regression analyses showed that risk score was an independent risk factor for OS in UM patients. The prognostic value of risk scores was further verified in two external UM cohorts (GSE22138 and GSE84976). Two-factor survival analysis showed that UM patients with high hypoxia or immune response scores and high risk scores had the worst prognosis. Moreover, a nomogram based on the six-gene signature was established for clinical practice. In addition, risk scores were related to the immune infiltration profiles. Taken together, this study identified a new prognostic six-gene signature related to glycolysis and immune response. This six-gene signature can not only be used for survival prediction and risk stratification but also may be a potential therapeutic target for UM patients.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Jianjun Lu
- Department of Medical Affairs, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| |
Collapse
|
94
|
Chan WY, Brown LJ, Reid L, Joshua AM. PARP Inhibitors in Melanoma-An Expanding Therapeutic Option? Cancers (Basel) 2021; 13:cancers13184520. [PMID: 34572747 PMCID: PMC8464708 DOI: 10.3390/cancers13184520] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Melanomas with homologous recombination DNA damage repair pathways represent a subset of melanoma that may benefit from PARP inhibitors and immunotherapy. PARP inhibitors have an established role in treating cancers with underlying BRCA mutation through synthetic lethality; however, there is increasing evidence that it can be applied to a larger population including other types of homologous recombination defects. These gene mutations can be found in 20–40% of cutaneous melanoma. To date, PARP inhibitors and immunotherapy have been overlooked in the management of melanoma. This review explores the reasons for combining PARP inhibitors and immunotherapy. There is evidence to suggest that PARP inhibitors can improve the therapeutic effect of immune checkpoint inhibitors. Therefore, this combination approach has the potential to impact future treatment of patients with melanoma, particularly those with homologous recombination DNA damage repair defects. Abstract Immunotherapy has transformed the treatment landscape of melanoma; however, despite improvements in patient outcomes, monotherapy can often lead to resistance and tumour escape. Therefore, there is a need for new therapies, combination strategies and biomarker-guided decision making to increase the subset of patients most likely to benefit from treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors act by synthetic lethality to target tumour cells with homologous recombination deficiencies such as BRCA mutations. However, the application of PARP inhibitors could be extended to a broad range of BRCA-negative cancers with high rates of DNA damage repair pathway mutations, such as melanoma. Additionally, PARP inhibition has the potential to augment the therapeutic effect of immunotherapy through multi-faceted immune-priming capabilities. In this review, we detail the immunological role of PARP and rationale for combining PARP and immune checkpoint inhibitors, with a particular focus on a subset of melanoma with homologous recombination defects that may benefit most from this targeted approach. We summarise the biology supporting this combined regimen and discuss preclinical results as well as ongoing clinical trials in melanoma which may impact future treatment.
Collapse
Affiliation(s)
- Wei Yen Chan
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lauren J. Brown
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Lee Reid
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony M. Joshua
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Melanoma Institute of Australia, Sydney, NSW 2016, Australia
- Correspondence:
| |
Collapse
|
95
|
Chu PY, Chen YF, Li CY, Yang JS, King YA, Chiu YJ, Ma H. Factors influencing locoregional recurrence and distant metastasis in Asian patients with cutaneous melanoma after surgery: A retrospective analysis in a tertiary hospital in Taiwan. J Chin Med Assoc 2021; 84:870-876. [PMID: 34282077 DOI: 10.1097/jcma.0000000000000586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The goal of this study was to investigate the prognostic factors for locoregional recurrence and metastasis in patients with cutaneous melanoma (CM) who underwent surgery, especially in the acral lentiginous melanoma (ALM) subtype. METHODS This study was a retrospective review of patients who underwent surgery for CM at Taipei Veterans General Hospital between 2000 and 2018. We investigated the risk factors for locoregional and distant metastases. The association between clinicopathological factors and locoregional recurrence and distant metastasis of the CM and ALM subtypes was analyzed. In addition, the outcomes between the ALM and non-ALM groups were compared. RESULTS A total of 161 patients were included in the analysis. The most common histological subtype was ALM. The overall locoregional recurrence rate of CM was 13.0% and the distant metastasis rate was 42.9%, whereas that of the ALM subtype was 12.5% and 45.5%, respectively. In patients with CM, male sex, tumor with lymphovascular invasion, and positive lymph node status were the prognostic factors for both locoregional recurrence and distant metastasis. Among the patients with ALM, positive lymph node status was significantly associated with both locoregional recurrence and distant metastasis. CONCLUSION In this cohort, factors influencing locoregional recurrence and distant metastasis were similar between the ALM and non-ALM groups. The above-recommended surgical margin did not show any benefit in either the CM or the ALM subtype. ALM can be handled using the same surgical strategy as CM in the Asian population.
Collapse
Affiliation(s)
- Po-Yu Chu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei, Taiwan, ROC
| | - Yi-Fan Chen
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Cheng-Yuan Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
| | - Yih-An King
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan, ROC
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Surgery, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
96
|
Belote RL, Le D, Maynard A, Lang UE, Sinclair A, Lohman BK, Planells-Palop V, Baskin L, Tward AD, Darmanis S, Judson-Torres RL. Human melanocyte development and melanoma dedifferentiation at single-cell resolution. Nat Cell Biol 2021; 23:1035-1047. [PMID: 34475532 DOI: 10.1038/s41556-021-00740-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
In humans, epidermal melanocytes are responsible for skin pigmentation, defence against ultraviolet radiation and the deadliest common skin cancer, melanoma. Although there is substantial overlap in melanocyte development pathways between different model organisms, species-dependent differences are frequent and the conservation of these processes in human skin remains unresolved. Here, we used a single-cell enrichment and RNA-sequencing pipeline to study human epidermal melanocytes directly from the skin, capturing transcriptomes across different anatomical sites, developmental age, sexes and multiple skin tones. We uncovered subpopulations of melanocytes that exhibit anatomical site-specific enrichment that occurs during gestation and persists through adulthood. The transcriptional signature of the volar-enriched subpopulation is retained in acral melanomas. Furthermore, we identified human melanocyte differentiation transcriptional programs that are distinct from gene signatures generated from model systems. Finally, we used these programs to define patterns of dedifferentiation that are predictive of melanoma prognosis and response to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Rachel L Belote
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Daniel Le
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA, USA
| | - Ashley Maynard
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ursula E Lang
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology and Division of Pediatric Urology, University of California, San Francisco, CA, USA
| | - Brian K Lohman
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Vicente Planells-Palop
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Laurence Baskin
- Department of Urology and Division of Pediatric Urology, University of California, San Francisco, CA, USA
| | - Aaron D Tward
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech Inc, South San Francisco, CA, USA.
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
97
|
Abstract
Herein, we wanted to explore the molecular landscape of mucosal melanoma from different sites and identify potential molecular targets for future therapy. Mucosal melanomas (N = 40) from different sites (conjunctiva, sinonasal cavity, rectum, and vagina) were investigated. Targeted next-generation sequencing along with Nanostring gene expression profiling was performed. Genetically, conjunctival melanoma was characterized by BRAF-V600E (30%) and NF1 mutations (17%). Mucosal melanomas at nonsun-exposed sites harbored alterations in NRAS, KIT, NF1, along with atypical BRAF mutations. When comparing the gene expression profile of conjunctival melanoma and nonsun-exposed mucosal melanoma, 41 genes were found to be significantly deregulated. Programmed death-ligand 1 (PD-L1) presented a significant sixfold upregulation in conjunctival melanoma compared to the other mucosal melanomas. While melanomas of the sinonasal cavity, vagina, and rectum are molecularly similar, conjunctival melanoma is characterized by a higher frequency of BRAF-V600E mutations and differential expression of several genes involved in the immune response.
Collapse
|
98
|
Eddy K, Chen S. Glutamatergic Signaling a Therapeutic Vulnerability in Melanoma. Cancers (Basel) 2021; 13:3874. [PMID: 34359771 PMCID: PMC8345431 DOI: 10.3390/cancers13153874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Like other cancers, melanomas are associated with the hyperactivation of two major cell signaling cascades, the MAPK and PI3K/AKT pathways. Both pathways are activated by numerous genes implicated in the development and progression of melanomas such as mutated BRAF, RAS, and NF1. Our lab was the first to identify yet another driver of melanoma, Metabotropic Glutamate Receptor 1 (protein: mGluR1, mouse gene: Grm1, human gene: GRM1), upstream of the MAPK and PI3K/AKT pathways. Binding of glutamate, the natural ligand of mGluR1, activates MAPK and PI3K/AKT pathways and sets in motion the deregulated cellular responses in cell growth, cell survival, and cell metastasis. In this review, we will assess the proposed modes of action that mediate the oncogenic properties of mGluR1 in melanoma and possible application of anti-glutamatergic signaling modulator(s) as therapeutic strategy for the treatment of melanomas.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
99
|
A Novel Regimen for Treating Melanoma: MCL1 Inhibitors and Azacitidine. Pharmaceuticals (Basel) 2021; 14:ph14080749. [PMID: 34451846 PMCID: PMC8399604 DOI: 10.3390/ph14080749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Although treatment options for melanoma patients have expanded in recent years with the approval of immunotherapy and targeted therapy, there is still an unmet need for new treatment options for patients that are ineligible for, or resistant to these therapies. BH3 mimetics, drugs that mimic the activity of pro-apoptotic BCL2 family proteins, have recently achieved remarkable success in the clinical setting. The combination of BH3 mimetic ABT-199 (venetoclax) plus azacitidine has shown substantial benefit in treating acute myelogenous leukemia. We evaluated the efficacy of various combinations of BH3 mimetic + azacitidine in fourteen human melanoma cell lines from cutaneous, mucosal, acral and uveal subtypes. Using a combination of cell viability assay, BCL2 family knockdown cell lines, live cell imaging, and sphere formation assay, we found that combining inhibition of MCL1, an anti-apoptotic BCL2 protein, with azacitidine had substantial pro-apoptotic effects in multiple melanoma cell lines. Specifically, this combination reduced cell viability, proliferation, sphere formation, and induced apoptosis. In addition, this combination is highly effective at reducing cell viability in rare mucosal and uveal subtypes. Overall, our data suggest this combination as a promising therapeutic option for some patients with melanoma and should be further explored in clinical trials.
Collapse
|
100
|
Revythis A, Shah S, Kutka M, Moschetta M, Ozturk MA, Pappas-Gogos G, Ioannidou E, Sheriff M, Rassy E, Boussios S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11081341. [PMID: 34441278 PMCID: PMC8391989 DOI: 10.3390/diagnostics11081341] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biomarkers in medicine has become essential in clinical practice in order to help with diagnosis, prognostication and prediction of treatment response. Since Alexander Breslow’s original report on “melanoma and prognostic values of thickness”, providing the first biomarker for melanoma, many promising new biomarkers have followed. These include serum markers, such as lactate dehydrogenase and S100 calcium-binding protein B. However, as our understanding of the DNA mutational profile progresses, new gene targets and proteins have been identified. These include point mutations, such as mutations of the BRAF gene and tumour suppressor gene tP53. At present, only a small number of the available biomarkers are being utilised, but this may soon change as more studies are published. The aim of this article is to provide a comprehensive review of melanoma biomarkers and their utility for current and, potentially, future clinical practice.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Mikolaj Kutka
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon, 21 CH-1011 Lausanne, Switzerland;
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds IP33 2QZ, UK;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|