51
|
Lepperhof V, Polchynski O, Kruttwig K, Brüggemann C, Neef K, Drey F, Zheng Y, Ackermann JP, Choi YH, Wunderlich TF, Hoehn M, Hescheler J, Šarić T. Bioluminescent imaging of genetically selected induced pluripotent stem cell-derived cardiomyocytes after transplantation into infarcted heart of syngeneic recipients. PLoS One 2014; 9:e107363. [PMID: 25226590 PMCID: PMC4167328 DOI: 10.1371/journal.pone.0107363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/15/2014] [Indexed: 01/16/2023] Open
Abstract
Cell loss after transplantation is a major limitation for cell replacement approaches in regenerative medicine. To assess the survival kinetics of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) we generated transgenic murine iPSC lines which, in addition to CM-specific expression of puromycin N-acetyl-transferase and enhanced green fluorescent protein (EGFP), also constitutively express firefly luciferase (FLuc) for bioluminescence (BL) in vivo imaging. While undifferentiated iPSC lines generated by random integration of the transgene into the genome retained stable FLuc activity over many passages, the BL signal intensity was strongly decreased in purified iPS-CM compared to undifferentiated iPSC. Targeted integration of FLuc-expression cassette into the ROSA26 genomic locus using zinc finger nuclease (ZFN) technology strongly reduced transgene silencing in iPS-CM, leading to a several-fold higher BL compared to iPS-CM expressing FLuc from random genomic loci. To investigate the survival kinetics of iPS-CM in vivo, purified CM obtained from iPSC lines expressing FLuc from a random or the ROSA26 locus were transplanted into cryoinfarcted hearts of syngeneic mice. Engraftment of viable cells was monitored by BL imaging over 4 weeks. Transplanted iPS-CM were poorly retained in the myocardium independently of the cell line used. However, up to 8% of cells survived for 28 days at the site of injection, which was confirmed by immunohistological detection of EGFP-positive iPS-CM in the host tissue. Transplantation of iPS-CM did not affect the scar formation or capillary density in the periinfarct region of host myocardium. This report is the first to determine the survival kinetics of drug-selected iPS-CM in the infarcted heart using BL imaging and demonstrates that transgene silencing in the course of iPSC differentiation can be greatly reduced by employing genome editing technology. FLuc-expressing iPS-CM generated in this study will enable further studies to reduce their loss, increase long-term survival and functional integration upon transplantation.
Collapse
Affiliation(s)
- Vera Lepperhof
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Olga Polchynski
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Klaus Kruttwig
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Chantal Brüggemann
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Klaus Neef
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Florian Drey
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Yunjie Zheng
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Justus P. Ackermann
- Max Planck Institute for Metabolism Research and Institute for Genetics, Cologne, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas F. Wunderlich
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Metabolism Research and Institute for Genetics, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tomo Šarić
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
52
|
Dighe N, Khoury M, Mattar C, Chong M, Choolani M, Chen J, Antoniou MN, Chan JKY. Long-term reproducible expression in human fetal liver hematopoietic stem cells with a UCOE-based lentiviral vector. PLoS One 2014; 9:e104805. [PMID: 25118036 PMCID: PMC4130605 DOI: 10.1371/journal.pone.0104805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic Stem Cell (HSC) targeted gene transfer is an attractive treatment option for a number of hematopoietic disorders caused by single gene defects. However, extensive methylation of promoter sequences results in silencing of therapeutic gene expression. The choice of an appropriate promoter is therefore crucial for reproducible, stable and long-term transgene expression in clinical gene therapy. Recent studies suggest efficient and stable expression of transgenes from the ubiquitous chromatin opening element (UCOE) derived from the human HNRPA2B1-CBX3 locus can be achieved in murine HSC. Here, we compared the use of HNRPA2B1-CBX3 UCOE (A2UCOE)-mediated transgene regulation to two other frequently used promoters namely EF1α and PGK in human fetal liver-derived HSC (hflHSC). Efficient transduction of hflHSC with a lentiviral vector containing an HNRPA2B1-CBX3 UCOE-eGFP (A2UCOE-eGFP) cassette was achieved at higher levels than that obtained with umbilical cord blood derived HSC (3.1x; p<0.001). While hflHSC were readily transduced with all three test vectors (A2UCOE-eGFP, PGK-eGFP and EF1α-eGFP), only the A2-UCOE construct demonstrated sustained transgene expression in vitro over 24 days (p<0.001). In contrast, within 10 days in culture a rapid decline in transgene expression in both PGK-eGFP and EF1α-eGFP transduced hflHSC was seen. Subsequently, injection of transduced cells into immunodeficient mice (NOD/SCID/Il2rg-/-) demonstrated sustained eGFP expression for the A2UCOE-eGFP group up to 10 months post transplantation whereas PGK-eGFP and EF1α-eGFP transduced hflHSC showed a 5.1 and 22.2 fold reduction respectively over the same time period. We conclude that the A2UCOE allows a more efficient and stable expression in hflHSC to be achieved than either the PGK or EF1α promoters and at lower vector copy number per cell.
Collapse
Affiliation(s)
- Niraja Dighe
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maroun Khoury
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore
| | - Citra Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark Chong
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael N. Antoniou
- Department of Medical and Molecular Genetics, King's College London School of Medicine, Guys Hospital, London, United Kingdom
| | - Jerry K. Y. Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
53
|
Distance effect of matrix attachment regions on transgene expression in stably transfected Chinese hamster ovary cells. Biotechnol Lett 2014; 36:1937-43. [PMID: 24930099 DOI: 10.1007/s10529-014-1563-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023]
Abstract
The β-globin matrix attachment regions (MARs) were inserted into the 5'-site of the eukaryotic expression vector cassette and DNA fragments 350 and 750 bp in length were inserted into the site to generate expression vectors with varying distances between the expression cassette and MAR. The vectors containing MARs increased chloramphenicol acetyltransferase (CAT) expression levels compared to the negative control vector lacking the MAR; the highest expression increase was 3.8-fold. A greater MAR-transgene distance (750 bp) correlated with a greater increase in transgene expression when compared to the control vector that lacked separation between the MAR and transgene. CAT gene copy numbers were higher in cells transformed with the vector possessing a smaller MAR-transgene distance (350 bp) than in cells belonging to the other three groups. However, MAR-induced transgene expression levels did not exhibit a direct relationship with gene copy number.
Collapse
|
54
|
Lentiviral MGMT(P140K)-mediated in vivo selection employing a ubiquitous chromatin opening element (A2UCOE) linked to a cellular promoter. Biomaterials 2014; 35:7204-13. [PMID: 24875758 DOI: 10.1016/j.biomaterials.2014.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/01/2014] [Indexed: 12/17/2022]
Abstract
Notwithstanding recent successes, insertional mutagenesis as well as silencing and variegation of transgene expression still represent considerable obstacles to hematopoietic gene therapy. This also applies to O(6)-methylguanine DNA methyltransferase (MGMT)-mediated myeloprotection, a concept recently proven clinically effective in the context of glioblastoma therapy. To improve on this situation we here evaluate a SIN-lentiviral vector expressing the MGMT(P140K)-cDNA from a combined A2UCOE/PGK-promoter. In a murine in vivo chemoselection model the A2UCOE.PGK.MGMT construct allowed for significant myeloprotection as well as robust and stable selection of transgenic hematopoietic cells. In contrast, only transient enrichment and severe myelotoxicity was observed for a PGK.MGMT control vector. Selection of A2UCOE.PGK.MGMT-transduced myeloid and lymphoid mature and progenitor cells was demonstrated in the peripheral blood, bone marrow, spleen, and thymus. Unlike the PGK and SFFV promoters used as controls, the A2UCOE.PGK promoter allowed for sustained vector copy number-related transgene expression throughout the experiment indicating an increased resistance to silencing, which was further confirmed by CpG methylation studies of the PGK promoter. Thus, our data support a potential role of the A2UCOE.PGK.MGMT-vector in future MGMT-based myeloprotection and chemoselection strategies, and underlines the suitability of the A2UCOE element to stabilize lentiviral transgene expression in hematopoietic gene therapy.
Collapse
|
55
|
Schwanke K, Merkert S, Kempf H, Hartung S, Jara-Avaca M, Templin C, Göhring G, Haverich A, Martin U, Zweigerdt R. Fast and efficient multitransgenic modification of human pluripotent stem cells. Hum Gene Ther Methods 2014; 25:136-53. [PMID: 24483184 DOI: 10.1089/hgtb.2012.248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) represent a prime cell source for pharmacological research and regenerative therapies because of their extensive expansion potential and their ability to differentiate into essentially all somatic lineages in vitro. Improved methods to stably introduce multiple transgenes into hPSCs will promote, for example, their preclinical testing by facilitating lineage differentiation and purification in vitro and the subsequent in vivo monitoring of respective progenies after their transplantation into relevant animal models. To date, the establishment of stable transgenic hPSC lines is still laborious and time-consuming. Current limitations include the low transfection efficiency of hPSCs via nonviral methods, the inefficient recovery of genetically engineered clones, and the silencing of transgene expression. Here we describe a fast, electroporation-based method for the generation of multitransgenic hPSC lines by overcoming the need for any preadaptation of conventional hPSC cultures to feeder-free conditions before genetic manipulation. We further show that the selection for a single antibiotic resistance marker encoded on one plasmid allowed for the stable genomic (co-)integration of up to two additional, independent expression plasmids. The method thereby enables the straightforward, nonviral generation of valuable multitransgenic hPSC lines in a single step. Practical applicability of the method is demonstrated for antibiotic-based lineage enrichment in vitro and for sodium iodide symporter transgene-based in situ cell imaging after intramyocardial cell infusion into explanted pig hearts.
Collapse
Affiliation(s)
- Kristin Schwanke
- 1 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) , Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lachmann N, Happle C, Ackermann M, Lüttge D, Wetzke M, Merkert S, Hetzel M, Kensah G, Jara-Avaca M, Mucci A, Skuljec J, Dittrich AM, Pfaff N, Brennig S, Schambach A, Steinemann D, Göhring G, Cantz T, Martin U, Schwerk N, Hansen G, Moritz T. Gene correction of human induced pluripotent stem cells repairs the cellular phenotype in pulmonary alveolar proteinosis. Am J Respir Crit Care Med 2014; 189:167-82. [PMID: 24279725 DOI: 10.1164/rccm.201306-1012oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Hereditary pulmonary alveolar proteinosis (hPAP) caused by granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain (CSF2RA) deficiency is a rare, life-threatening lung disease characterized by accumulation of proteins and phospholipids in the alveolar spaces. The disease is caused by a functional insufficiency of alveolar macrophages, which require GM-CSF signaling for terminal differentiation and effective degradation of alveolar proteins and phospholipids. Therapeutic options are extremely limited, and the pathophysiology underlying the defective protein degradation in hPAP alveolar macrophages remains poorly understood. OBJECTIVES To further elucidate the cellular mechanisms underlying hPAP and evaluate novel therapeutic strategies, we here investigated the potential of hPAP patient-derived induced pluripotent stem cell (PAP-iPSCs) derived monocytes and macrophages. METHODS Patient-specific PAP-iPSCs were generated from CD34(+) bone marrow cells of a CSF2RA-deficient patient with PAP. We assessed pluripotency, chromosomal integrity, and genetic correction of established iPSC lines. On hematopoietic differentiation, genetically corrected or noncorrected monocytes and macrophages were investigated in GM-CSF-dependent assays. MEASUREMENTS AND MAIN RESULTS Although monocytes and macrophages differentiated from noncorrected PAP-iPSCs exhibited distinct defects in GM-CSF-dependent functions, such as perturbed CD11b activation, phagocytic activity, and STAT5 phosphorylation after GM-CSF exposure and lack of GM-CSF uptake, these defects were fully repaired on lentiviral gene transfer of a codon-optimized CSF2RA-cDNA. CONCLUSIONS These data establish PAP-iPSC-derived monocytes and macrophages as a valid in vitro disease model of CSF2RA-deficient PAP, and introduce gene-corrected iPSC-derived monocytes and macrophages as a potential autologous cell source for innovative therapeutic strategies. Transplantation of such cells to patients with hPAP could serve as a paradigmatic proof for the potential of iPSC-derived cells in clinical gene therapy.
Collapse
Affiliation(s)
- Nico Lachmann
- 1 Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Schambach A, Moritz T. Toward position-independent retroviral vector expression in pluripotent stem cells. Mol Ther 2014; 21:1474-7. [PMID: 23903574 DOI: 10.1038/mt.2013.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
58
|
Antoniou MN, Skipper KA, Anakok O. Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 2014; 24:363-74. [PMID: 23517535 DOI: 10.1089/hum.2013.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With their ability to integrate their genetic material into the target cell genome, retroviral vectors (RV) of both the gamma-retroviral (γ-RV) and lentiviral vector (LV) classes currently remain the most efficient and thus the system of choice for achieving transgene retention and therefore potentially long-term expression and therapeutic benefit. However, γ-RV and LV integration comes at a cost in that transcription units will be present within a native chromatin environment and thus be subject to epigenetic effects (DNA methylation, histone modifications) that can negatively impact on their function. Indeed, highly variable expression and silencing of γ-RV and LV transgenes especially resulting from promoter DNA methylation is well documented and was the cause of the failure of gene therapy in a clinical trial for X-linked chronic granulomatous disease. This review will critically explore the use of different classes of genetic control elements that can in principle reduce vector insertion site position effects and epigenetic-mediated silencing. These transcriptional regulatory elements broadly divide themselves into either those with a chromatin boundary or border function (scaffold/matrix attachment regions, insulators) or those with a dominant chromatin remodeling and transcriptional activating capability (locus control regions,, ubiquitous chromatin opening elements). All these types of elements have their strengths and weaknesses within the constraints of a γ-RV and LV backbone, showing varying degrees of efficacy in improving reproducibility and stability of transgene function. Combinations of boundary and chromatin remodeling; transcriptional activating elements, which do not impede vector production; transduction efficiency; and stability are most likely to meet the requirements within a gene therapy context especially when targeting a stem cell population.
Collapse
Affiliation(s)
- Michael N Antoniou
- Gene Expression and Therapy Group, King's College London School of Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, United Kingdom.
| | | | | |
Collapse
|
59
|
Ciuculescu MF, Brendel C, Harris CE, Williams DA. Retroviral transduction of murine and human hematopoietic progenitors and stem cells. Methods Mol Biol 2014; 1185:287-309. [PMID: 25062637 DOI: 10.1007/978-1-4939-1133-2_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetic modification of cells using retroviral vectors is the method of choice when the cell population is difficult to transfect and/or requires persistent transgene expression in progeny cells. There are innumerable potential applications for these procedures in laboratory research and clinical therapeutic interventions. One paradigmatic example is the genetic modification of hematopoietic stem and progenitor cells (HSPCs). These are rare nucleated cells which reside in a specialized microenvironment within the bone marrow, and have the potential to self-renew and/or differentiate into all hematopoietic lineages. Due to their enormous regenerative capacity in steady state or under stress conditions these cells are routinely used in allogeneic bone marrow transplantation to reconstitute the hematopoietic system in patients with metabolic, inflammatory, malignant, and other hematologic disorders. For patients lacking a matched bone marrow donor, gene therapy of autologous hematopoietic stem cells has proven to be an alternative as highlighted recently by several successful gene therapy trials. Genetic modification of HSPCs using retrovirus vectors requires ex vivo manipulation to efficiently introduce the new genetic material into cells (transduction). Optimal culture conditions are essential to facilitate this process while preserving the stemness of the cells. The most frequently used retroviral vector systems for the genetic modifications of HSPCs are derived either from Moloney murine leukemia-virus (Mo-MLV) or the human immunodeficiency virus-1 (HIV-1) and are generally termed according to their genus gamma-retroviral (γ-RV) or lentiviral vectors (LV), respectively. This chapter describes in a step-by-step fashion some techniques used to produce research grade vector supernatants and to obtain purified murine or human hematopoietic stem cells for transduction, as well as follow-up methods for analysis of transduced cell populations.
Collapse
Affiliation(s)
- Marioara F Ciuculescu
- Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, 300 Longwood Ave., Karp 08125.3, 02115, Boston, MA, USA
| | | | | | | |
Collapse
|
60
|
Ou W, Li P, Reiser J. Targeting of herpes simplex virus 1 thymidine kinase gene sequences into the OCT4 locus of human induced pluripotent stem cells. PLoS One 2013; 8:e81131. [PMID: 24312266 PMCID: PMC3843684 DOI: 10.1371/journal.pone.0081131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/15/2013] [Indexed: 11/23/2022] Open
Abstract
The in vitro differentiation of human induced pluripotent stem cells (hiPSC) to generate specific types of cells is inefficient, and the remaining undifferentiated cells may form teratomas. This raises safety concerns for clinical applications of hiPSC-derived cellular products. To improve the safety of hiPSC, we attempted to site-specifically insert a herpes simplex virus 1 thymidine kinase (HSV1-TK) suicide gene at the endogenous OCT4 (POU5F1) locus of hiPSC. Since the endogenous OCT4 promoter is active in undifferentiated cells only, we speculated that the HSV1-TK suicide gene will be transcribed in undifferentiated cells only and that the remaining undifferentiated cells can be depleted by treating them with the prodrug ganciclovir (GCV) prior to transplantation. To insert the HSV1-TK gene at the OCT4 locus, we cotransfected hiPSC with a pair of plasmids encoding an OCT4-specific zinc finger nuclease (ZFN) and a donor plasmid harboring a promoter-less transgene cassette consisting of HSV1-TK and puromycin resistance gene sequences, flanked by OCT4 gene sequences. Puromycin resistant clones were established and characterized regarding their sensitivity to GCV and the site of integration of the HSV1-TK/puromycin resistance gene cassette. Of the nine puromycin-resistant iPSC clones analyzed, three contained the HSV1-TK transgene at the OCT4 locus, but they were not sensitive to GCV. The other six clones were GCV-sensitive, but the TK gene was located at off-target sites. These TK-expressing hiPSC clones remained GCV sensitive for up to 90 days, indicating that TK transgene expression was stable. Possible reasons for our failed attempt to selectively target the OCT4 locus are discussed.
Collapse
Affiliation(s)
- Wu Ou
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, United States of America
| | - Pingjuan Li
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, United States of America
| | - Jakob Reiser
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
61
|
Ackermann M, Lachmann N, Hartung S, Eggenschwiler R, Pfaff N, Happle C, Mucci A, Göhring G, Niemann H, Hansen G, Schambach A, Cantz T, Zweigerdt R, Moritz T. Promoter and lineage independent anti-silencing activity of the A2 ubiquitous chromatin opening element for optimized human pluripotent stem cell-based gene therapy. Biomaterials 2013; 35:1531-42. [PMID: 24290698 DOI: 10.1016/j.biomaterials.2013.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/07/2013] [Indexed: 12/31/2022]
Abstract
Epigenetic silencing of retroviral transgene expression in pluripotent stem cells (PSC) and their differentiated progeny constitutes a major roadblock for PSC-based gene therapy. As ubiquitous chromatin opening elements (UCOEs) have been successfully employed to stabilize transgene expression in murine hematopoietic and pluripotent stem cells as well as their differentiated progeny, we here investigated UCOE activity in their human counterparts to establish a basis for future clinical application of the element. To this end, we demonstrate profound anti-silencing activity of the A2UCOE in several human iPS and ES cell lines including their progeny obtained upon directed cardiac or hematopoietic differentiation. We also provide evidence for A2UCOE activity in murine iPSC-derived hepatocyte-like cells, thus establishing efficacy of the element in cells of different germ layers. Finally, we investigated combinations of the A2UCOE with viral promoter/enhancer elements again demonstrating profound stabilization of transgene expression. In all these settings the effect of the A2UCOE was associated with strongly reduced promoter DNA-methylation. Thus, our data clearly support the concept of the A2UCOE as a generalized strategy to prevent epigenetic silencing in PSC and their differentiated progeny and strongly favors its application to stabilize transgene expression in PSC-based cell and gene therapy approaches.
Collapse
Affiliation(s)
- Mania Ackermann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony 30625, Germany; Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Nico Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony 30625, Germany; Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Susann Hartung
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Reto Eggenschwiler
- Translational Hepatology and Stem Cell Biology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Nils Pfaff
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony 30625, Germany; Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Christine Happle
- Department of Pediatrics, Hannover Medical School, Hannover, Lower Saxony 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the Center for Lung Research (DZL), Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Adele Mucci
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Gudrun Göhring
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Löffler-Institut, Mariensee/Neustadt, Lower Saxony 31535, Germany
| | - Gesine Hansen
- Department of Pediatrics, Hannover Medical School, Hannover, Lower Saxony 30625, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the Center for Lung Research (DZL), Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony 30625, Germany; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony 30625, Germany
| | - Thomas Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony 30625, Germany; Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony 30625, Germany.
| |
Collapse
|
62
|
Genomic cis-acting Sequences Improve Expression and Establishment of a Nonviral Vector. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e118. [PMID: 24002728 PMCID: PMC3759742 DOI: 10.1038/mtna.2013.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 01/30/2023]
Abstract
The vector pEPI was the first nonviral and episomally replicating vector. Its functional element is an expression unit linked to a chromosomal scaffold/matrix attached region (S/MAR). The vector replicates autonomously with low copy number in various cell lines, is mitotically stable in the absence of selection over hundreds of generations, and was successfully used for the efficient generation of genetically modified pigs. Since it is assumed that establishment of the vector is a stochastic event and strongly depends on the nuclear compartment it reaches after transfection, it is of great interest to identify genomic sequences that guide DNA sequences into certain nuclear compartments. Here we inserted genomic cis-acting sequences into pEPI and examined their impact on transgene expression, long-term stability, and vector establishment. We demonstrated that a ubiquitous chromatin-opening element (UCOE) mediated enhanced transgene expression, while an insulator sequence (cHS4) increased establishment efficiency, presumably via an additional interaction with the nuclear matrix. Thus, besides being a promising alternative to currently used viral vectors in gene therapeutic approaches, pEPI may also serve as a tool to study nuclear compartmentalization; identification of genomic cis-acting sequences that are involved in nuclear organization will contribute to our understanding of the interplay between transgene expression, plasmid establishment, and nuclear architecture.
Collapse
|
63
|
Rival-Gervier S, Lo MY, Khattak S, Pasceri P, Lorincz MC, Ellis J. Kinetics and epigenetics of retroviral silencing in mouse embryonic stem cells defined by deletion of the D4Z4 element. Mol Ther 2013; 21:1536-50. [PMID: 23752310 PMCID: PMC3734652 DOI: 10.1038/mt.2013.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/21/2013] [Indexed: 11/21/2022] Open
Abstract
Retroviral vectors are silenced in embryonic stem (ES) cells by epigenetic mechanisms whose kinetics are poorly understood. We show here that a 3′D4Z4 insulator directs retroviral expression with persistent but variable expression for up to 5 months. Combining an internal 3′D4Z4 with HS4 insulators in the long terminal repeats (LTRs) shows that these elements cooperate, and defines the first retroviral vector that fully escapes long-term silencing. Using FLP recombinase to induce deletion of 3′D4Z4 from the provirus in ES cell clones, we established retroviral silencing at many but not all integration sites. This finding shows that 3′D4Z4 does not target retrovirus integration into favorable epigenomic domains but rather protects the transgene from silencing. Chromatin analyses demonstrate that 3′D4Z4 blocks the spread of heterochromatin marks including DNA methylation and repressive histone modifications such as H3K9 methylation. In addition, our deletion system reveals three distinct kinetic classes of silencing (rapid, gradual or not silenced), in which multiple epigenetic pathways participate in silencing at different integration sites. We conclude that vectors with both 3′D4Z4 and HS4 insulator elements fully block silencing, and may have unprecedented utility for gene transfer applications that require long-term gene expression in pluripotent stem (PS) cells.
Collapse
Affiliation(s)
- Sylvie Rival-Gervier
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
64
|
Cell culture processes for biologics manufacturing: recent developments and trends. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|