51
|
Kaya SI, Karabulut TC, Kurbanoglu S, Ozkan SA. Chemically Modified Electrodes in Electrochemical Drug Analysis. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190304140433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrode modification is a technique performed with different chemical and physical methods
using various materials, such as polymers, nanomaterials and biological agents in order to enhance
sensitivity, selectivity, stability and response of sensors. Modification provides the detection of small
amounts of analyte in a complex media with very low limit of detection values. Electrochemical methods
are well suited for drug analysis, and they are all-purpose techniques widely used in environmental
studies, industrial fields, and pharmaceutical and biomedical analyses. In this review, chemically modified
electrodes are discussed in terms of modification techniques and agents, and recent studies related
to chemically modified electrodes in electrochemical drug analysis are summarized.
Collapse
Affiliation(s)
- Sariye I. Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tutku C. Karabulut
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinç Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
52
|
Sowbakkiyavathi ES, Murugadoss V, Sittaramane R, Angaiah S. Development of MoSe2/PANI composite nanofibers as an alternative to Pt counter electrode to boost the photoconversion efficiency of dye sensitized solar cell. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04728-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
53
|
García-Fernández A, Lozano-Torres B, Blandez JF, Monreal-Trigo J, Soto J, Collazos-Castro JE, Alcañiz M, Marcos MD, Sancenón F, Martínez-Máñez R. Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer. J Control Release 2020; 323:421-430. [PMID: 32371265 DOI: 10.1016/j.jconrel.2020.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
Abstract
The characteristics and electromechanical properties of conductive polymers together to their biocompatibility have boosted their application as a suitable tool in regenerative medicine and tissue engineering. However, conducting polymers as drug release materials are far from being ideal. A possibility to overcome this drawback is to combine conducting polymers with on-command delivery particles with inherent high-loading capacity. In this scenario, we report here the preparation of conduction polymers containing gated mesoporous silica nanoparticles (MSN) loaded with a cargo that is delivered on command by electro-chemical stimuli increasing the potential use of conducting polymers as controlled delivery systems. MSNs are loaded with Rhodamine B (Rh B), anchored to the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)], functionalized with a bipyridinium derivative and pores are capped with heparin (P3) by electrostatic interactions. P3 releases the entrapped cargo after the application of -640 mV voltage versus the saturated calomel electrode (SCE). Pore opening in the nanoparticles and dye delivery is ascribed to both (i) the reduction of the grafted bipyridinium derivative and (ii) the polarization of the conducting polymer electrode to negative potentials that induce detachment of positively charged heparin from the surface of the nanoparticles. Biocompatibility and cargo release studies were carried out in HeLa cells cultures.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Beatriz Lozano-Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Juan F Blandez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Javier Monreal-Trigo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Juan Soto
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Jorge E Collazos-Castro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Miguel Alcañiz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María D Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain.
| |
Collapse
|
54
|
Wei J, Zhao Z, Gao J, Wang Y, Ma L, Meng X, Wang Z. Polyacrylamide/Phytic Acid/Polydopamine Hydrogel as an Efficient Substrate for Electrochemical Enrichment of Circulating Cell-Free DNA from Blood Plasma. ACS OMEGA 2020; 5:5365-5371. [PMID: 32201826 PMCID: PMC7081438 DOI: 10.1021/acsomega.9b04397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/20/2020] [Indexed: 05/26/2023]
Abstract
A facile method has been developed for the rapid and efficient enrichment of DNAs from different media including synthetic single-strand DNAs (ssDNAs) from buffer solutions and cell-free DNAs (cfDNAs) from blood plasma through electric field-driven adsorption and desorption of DNAs by a polyacrylamide/phytic acid/polydopamine (PAAM/PA/PDA) hydrogel. The as-prepared PAAM/PA/PDA hydrogel possesses regular porosity with a large surface area, strong electric field responsiveness/good conductivity, and a rich aromatic structure, which can be used as an ideal adsorbent for DNA enrichment under a positive electric field. The enriched DNAs can be released efficiently when the positive electric field is converted to a negative electric field. The PAAM/PA/PDA hydrogel-based electrochemical method enables the completion of the process of DNA adsorption and release within 5 min and exhibits reasonable enrichment efficiencies and recovery rates of various DNAs. For instance, the high enrichment sensitivity (0.1 pmol L-1) together with the excellent recovery (>75%) of an ssDNA with 78 nucleotides is obtained. Combined with the PCR amplification technique, the practicability of the as-proposed method is demonstrated by the screening of circulating tumor DNAs (ctDNAs) with a BRAFV600E mutation in cfDNAs from the blood plasma samples of patients with papillary thyroid cancer or thyroid nodule and random patients from a clinical laboratory.
Collapse
Affiliation(s)
- Jia Wei
- Department
of Thyroid Surgery, The First Hospital of
Jilin University, Changchun, Jilin 130021, P. R. China
| | - Zhen Zhao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jiaxue Gao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yaoqi Wang
- Department
of Thyroid Surgery, The First Hospital of
Jilin University, Changchun, Jilin 130021, P. R. China
| | - Lina Ma
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xianying Meng
- Department
of Thyroid Surgery, The First Hospital of
Jilin University, Changchun, Jilin 130021, P. R. China
| | - Zhenxin Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
55
|
Borràs-Brull M, Blondeau P, Riu J. The Use of Conducting Polymers for Enhanced Electrochemical Determination of Hydrogen Peroxide. Crit Rev Anal Chem 2020; 51:204-217. [PMID: 31992056 DOI: 10.1080/10408347.2020.1718482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The role of hydrogen peroxide in a wide range of biological processes has led to a steady increase in research into hydrogen peroxide determination in recent years, and conducting polymers have attracted much interest in electrochemistry as promising materials in this area. We present an overview of electrochemical devices for hydrogen peroxide determination using conducting polymers, either as a target or as a byproduct of redox reactions. We describe different combinations of electrode modifications through the incorporation of conducting polymers as the main component along with other materials or nanomaterials. We critically compare the analytical performances cited and highlight some of the future challenges for the feasible application of such devices.
Collapse
Affiliation(s)
- Marta Borràs-Brull
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pascal Blondeau
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Riu
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
56
|
Hai W, Pu S, Wang X, Bao L, Han N, Duan L, Liu J, Goda T, Wu W. Poly(3,4-ethylenedioxythiophene) Bearing Pyridylboronic Acid Group for Specific Recognition of Sialic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:546-553. [PMID: 31849232 DOI: 10.1021/acs.langmuir.9b03442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conducting polymers tethered with molecular recognition elements are good candidates for biosensing applications such as detecting a target molecule with selectivity. We develop a new monomer, namely, 3,4-ethylenedioxythiophene bearing a pyridylboronic acid moiety (EDOT-PyBA), for label-free detection of sialic acid as a cancer biomarker. PyBA, which is known to show specific binding to sialic acid in acid conditions is used as a synthetic ligand instead of lectins. PyBA confirms the enhanced binding affinity for sialic acid at pH 5.0-6.0 compared with traditional phenylboronic acid. Poly(EDOT-PyBA) is electrodeposited on a planar glassy carbon electrode and the obtained film is successfully characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, water contact angle measurements, and electrochemical impedance spectroscopy. The specific interaction of PyBA with sialic acid at the solution/electrode interface is detected by differential pulse voltammetry in a dynamic range 0.1-3.0 mM with a detection limit of 0.1 mM for a detection time of 3 min. The sensitivity covers the total level of free sialic acid in human serum and the assay time is the shorter than that of other methods. The poly(EDOT-PyBA) electrode successfully detects spiked sialic acid in human serum samples. Owing to its processability, mass productivity, and robustness, polythiophene conjugated with "boronolectin" is a candidate material for developing point-of-care and wearable biosensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda , Tokyo 101-0062 , Japan
| | - Wenming Wu
- State Key Laboratory of Applied Optics, Chuangchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
| |
Collapse
|
57
|
Wang Y, Jiang D, Zhang L, Li B, Sun C, Yan H, Wu Z, Liu H, Zhang J, Fan J, Hou H, Ding T, Guo Z. Hydrogen bonding derived self-healing polymer composites reinforced with amidation carbon fibers. NANOTECHNOLOGY 2020; 31:025704. [PMID: 31550686 DOI: 10.1088/1361-6528/ab4743] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-healing polymer materials (SHPM) have aroused great interests in recent years. Ideal SHPM should have not only simple operations, but also high elongations at break, tensile strain and self-healing properties at room temperature. Herein, the amidated carbon fibers (CFs) reinforced self-healing polymer composites were designed by hydrogen bonding interaction between functionalized CFs and hyperbranched polymers. The amidated CFs were prepared by transformation of hydroxyl to acylamino through a one-step amidation. By introducing amidated CFs, amidated CFs self-healing polymer composites (called AD-CF) exhibited many desirable characteristics compared to pure polymer composites, such as a better elasticity, lower healing temperatures, and higher self-healing efficiencies. The stress-strain test was selected to carefully study the self-healing property of the AD-CF. The observed same recovery condition, i.e. without any mechanical breakdown after the 10 sequential cycles of cutting and healing indicates no aging of the AD-CF. The ability of AD-CF to exhibit a soft state and rapid self-healing at room temperature makes it possible for much wider applications.
Collapse
Affiliation(s)
- Ying Wang
- College of Science, Northeast Forestry University, Harbin 150040, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Electrodeposited poly(3,4-ethylenedioxythiophene) doped with graphene oxide for the simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Mikrochim Acta 2020; 187:94. [PMID: 31902014 DOI: 10.1007/s00604-019-4083-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/13/2019] [Indexed: 01/20/2023]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) films were electrodeposited by cyclic voltammetry on a glassy carbon electrode (GCE) in aqueous solution. Three kinds of supporting electrolytes were used, viz. graphene oxide (GO), phosphate buffered saline (PBS), and GO in PBS, respectively. The surface morphology of the modified electrodes was characterized by scanning electron microscopy. The electrochemical performance of the modified electrodes was investigated by cyclic voltammetry and electrochemical impedance spectroscopy by using the hexacyanoferrate redox system. The results demonstrate that the PEDOT-GO/GCE, which was electropolymerized in aqueous solutions containing EDOT and GO, shows the best electrochemical activities compared with other modified electrodes. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were investigated by cyclic voltammetry. The PEDOT-GO/GCE exhibits enhanced electrocatalytic activities towards these important biomolecules. Under physiological pH conditions and in the mixed system of AA, DA and UA, the modified GCE exhibits the following figures of merit: (a) a linear voltammetric response in the concentration ranges of 100-1000 μM for AA, 6.0-200 μM for DA, and 40-240 μM for UA; (b) well separated oxidation peaks near 31, 213 and 342 mV (vs. saturated Ag/AgCl) for AA, DA and UA, respectively; and (c) detection of limits (at S/N = 3) of 20, 2.0 and 10 μM. The results demonstrate that GO, based on its relatively large number of anionic sites, can be used as the sole weak electrolyte and charge balance dopant for the preparation of functionally doped conducting polymers by electrodeposition. Graphical abstractSchematic representation of a nanostructure composed of hybrid conducting polymer PEDOT-GO nanocomposites, and its application to simultaneous determination of ascorbic acid, dopamine and uric acid.
Collapse
|
59
|
Chen C, Guo Y, Chen P, Peng H. Recent advances of tissue-interfaced chemical biosensors. J Mater Chem B 2020; 8:3371-3381. [DOI: 10.1039/c9tb02476j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review discusses recent advances of tissue interfaced chemical biosensors, highlights current challenges and gives an outlook on future possibilities.
Collapse
Affiliation(s)
- Chuanrui Chen
- Laboratory of Advanced Materials
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| | - Yue Guo
- Laboratory of Advanced Materials
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| | - Peining Chen
- Laboratory of Advanced Materials
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| | - Huisheng Peng
- Laboratory of Advanced Materials
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| |
Collapse
|
60
|
Guo B, Ma Z, Pan L, Shi Y. Properties of conductive polymer hydrogels and their application in sensors. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24899] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bin Guo
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and EngineeringNanjing University Nanjing Jiangsu 210093 China
| |
Collapse
|
61
|
Ehsani A, Heidari AA, Asgari R. Electrocatalytic Oxidation of Ethanol on the Surface of Graphene Based Nanocomposites: An Introduction and Review to it in Recent Studies. CHEM REC 2019; 19:2341-2360. [PMID: 30887728 DOI: 10.1002/tcr.201800176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 01/24/2023]
Abstract
This review gives an overview of the electrochemical investigations about the properties of various types of graphene composites in the ethanol oxidation. Various routes to provide appropriate graphene-based materials required electrochemical techniques for investigation of different types of the materials as well as their performance and efficacy in ethanol oxidation are discussed in detail. Furthermore, it is demonstrated that the incorporation of suitable materials, e. g. noble metals (graphene-supported binary and ternary metal nanoparticles), metal oxides, conductive polymer, etc, with graphene results in excellent electrocatalytic activity, superb durability and selectivity in ethanol oxidation. Immobilization of electrocatalytically active NPs on graphene supports using physical approaches is considered as an effective route to prepare direct ethanol fuel cell (DEFC) anode catalysts.
Collapse
Affiliation(s)
- A Ehsani
- Department of Chemistry, Faculty of science, University of Qom, Qom, Iran
| | - A A Heidari
- Department of Chemistry, Faculty of science, University of Qom, Qom, Iran
| | - R Asgari
- Department of Chemistry, Faculty of science, University of Qom, Qom, Iran
| |
Collapse
|
62
|
Zhang S, Xu F, Liu ZQ, Chen YS, Luo YL. Novel electrochemical sensors from poly[N-(ferrocenyl formacyl) pyrrole]@multi-walled carbon nanotubes nanocomposites for simultaneous determination of ascorbic acid, dopamine and uric acid. NANOTECHNOLOGY 2019; 31:085503. [PMID: 31675739 DOI: 10.1088/1361-6528/ab53bb] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel multi-walled carbon nanotubes coated with poly[N-(ferrocenyl formacyl) pyrrole] (MWCNTs@PFFP) nanocomposites were prepared through the in situ oxidation polymerization reaction of N-(ferrocenyl formacyl) pyrrole in the presence of MWCNTs. The MWCNTs@PFFP nanocomposites were characterized by FT-IR, Raman, TGA, XRD, XPS, SEM and TEM techniques. The MWCNTs@PFFP nanocomposites were fabricated into novel electrochemical sensors for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The electrochemical behavior of the MWCNTs@PFFP/GCE sensors was examined, and the parameters that influence electrochemical signals were optimized. The experimental results showed that the fabricated modified electrode sensors exhibited good sensitivity, selectivity, specificity, repeatability and a long lifetime, remaining the initial current of at least 92.5% after 15 days storage in air. The sensors possessed a linear response concentration range over 200-400 μM for AA, 2-16 μM for both DA and UA, and a limit of detection as low as 40.0, 1.1 and 7.3 × 10-1 μM for AA, DA and UA, respectively. They are expected to be used as a potential tool for the simultaneous detection of DA, AA and UA in the human body.
Collapse
Affiliation(s)
- Sen Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | | | | | | | | |
Collapse
|
63
|
Asadi Atoi P, Talebpour Z, Fotouhi L. Introduction of electropolymerization of pyrrole as a coating method for stir bar sorptive extraction of estradiol followed by gas chromatography. J Chromatogr A 2019; 1604:460478. [DOI: 10.1016/j.chroma.2019.460478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023]
|
64
|
Nanomaterials as efficient platforms for sensing DNA. Biomaterials 2019; 214:119215. [DOI: 10.1016/j.biomaterials.2019.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
65
|
Indarit N, Kim YH, Petchsang N, Jaisutti R. Highly sensitive polyaniline-coated fiber gas sensors for real-time monitoring of ammonia gas. RSC Adv 2019; 9:26773-26779. [PMID: 35528555 PMCID: PMC9070429 DOI: 10.1039/c9ra04005f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022] Open
Abstract
A single-yarn-based gas sensor has been made from conductive polyaniline coated on commercial yarns. This can detect ammonia gas concentration in an environment or a working area. Cotton, rayon and polyester are utilized as substrates using a dip-coating process. The conductive yarns show ohmic behavior with an electrical resistance of 15-31 kΩ cm-1. The conductive polyester yarn exhibits higher mechanical strength even after intensive chemical treatment. It also has the highest gas response of 57% of 50 ppm ammonia gas, the concentration at which health problems will occur. A linear gas response of the yarn sensor appears in a range of 5-25 ppm ammonia concentration. The polyester yarn sensor can be reused without any change in its sensing response. It can monitor gas levels continuously giving real-time results. By using a microcontroller as part of the circuitry, the gas detection results are transferred and updated wirelessly to a computer or to a smartphone. The textile-based gas sensor can be sewn directly onto the fabrics since it is made with the same fabric. This single-yarn-based gas sensor is suitable for mass production and is appropriate for sophisticated applications.
Collapse
Affiliation(s)
- Naraporn Indarit
- Department of Physics, Faculty of Science and Technology, Thammasat University Pathumthani 12121 Thailand
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University Suwon 440746 Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University Suwon 440746 Korea
| | - Nattasamon Petchsang
- Department of Materials Science, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Rawat Jaisutti
- Department of Physics, Faculty of Science and Technology, Thammasat University Pathumthani 12121 Thailand
| |
Collapse
|
66
|
Bertucci C, Koppes R, Dumont C, Koppes A. Neural responses to electrical stimulation in 2D and 3D in vitro environments. Brain Res Bull 2019; 152:265-284. [PMID: 31323281 DOI: 10.1016/j.brainresbull.2019.07.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Electrical stimulation (ES) to manipulate the central (CNS) and peripheral nervous system (PNS) has been explored for decades, recently gaining momentum as bioelectronic medicine advances. The application of ES in vitro to modulate a variety of cellular functions, including regenerative potential, migration, and stem cell fate, are being explored to aid neural degeneration, dysfunction, and injury. This review describes the materials and approaches for the application of ES to the PNS and CNS microenvironments, towards an improved understanding of how ES can be harnessed for beneficial clinical applications. Emphasized are some recent advances in ES, including conductive polymers, methods of charge transfer, impact on neural cells, and a brief overview of alternative methodologies for cellular targeting including magneto, ultrasonic, and optogenetic stimulation. This review will examine how heterogenous cell populations, including neurons, glia, and neural stem cells respond to a wide range of conductive 2D and 3D substrates, stimulation regimes, known mechanisms of response, and how cellular sources impact the response to ES.
Collapse
Affiliation(s)
- Christopher Bertucci
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Ryan Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Courtney Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33146, United States.
| | - Abigail Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States; Department of Biology, Boston, 02115, MA, United States.
| |
Collapse
|
67
|
Reddy S, Xiao Q, Liu H, Li C, Chen S, Wang C, Chiu K, Chen N, Tu Y, Ramakrishna S, He L. Bionanotube/Poly(3,4-ethylenedioxythiophene) Nanohybrid as an Electrode for the Neural Interface and Dopamine Sensor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18254-18267. [PMID: 31034196 DOI: 10.1021/acsami.9b04862] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly(3,4-ethylene dioxythiophene) (PEDOT) is a promising conductive material widely used for interfacing with tissues in biomedical fields because of its unique properties. However, obtaining high charge injection capability and high stability remains challenging. In this study, pristine carbon nanotubes (CNTs) modified by dopamine (DA) self-polymerization on the surface polydopamine (PDA@CNTs) were utilized as dopants of PEDOT to prepare hybrid films through electrochemical deposition on the indium tin oxide (ITO) electrode. The PDA@CNTs-PEDOT film of the nanotube network topography exhibited excellent stability and strong adhesion to the ITO substrate compared with PEDOT and PEDOT/ p-toulene sulfonate. The PDA@CNTs-PEDOT-coated ITO electrodes demonstrated lower impedance and enhanced charge storage capacity than the bare ITO. When applying exogenous electrical stimulation (ES), robust long neurites sprouted from the dorsal root ganglion (DRG) neurons cultured on the PDA@CNTs-PEDOT film. Moreover, ES promoted Schwann cell migration out from the DRG spheres and enhanced myelination. The PDA@CNTs-PEDOT film served as an excellent electrochemical sensor for the detection of DA in the presence of biomolecule interferences. Results would shed light into the advancement of conducting nanohybrids for applications in the multifunctional bioelectrode in neuroscience.
Collapse
Affiliation(s)
- Sathish Reddy
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Qiao Xiao
- College of Life Science and Technology , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Haiqian Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Chuping Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Shengfeng Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Cong Wang
- Department of Traditional Therapy , The Second Clinical College of Guangzhou University of Chinese Medicine , Guangzhou 510120 , China
| | - Kin Chiu
- State Key Laboratory of Brain and Cognitive Sciences , The University of Hong Kong , Hong Kong SAR , P. R. China
| | - Nuan Chen
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering , National University of Singapore , 117576 , Singapore
| | - Yujie Tu
- College of Life Science and Technology , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Seeram Ramakrishna
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering , National University of Singapore , 117576 , Singapore
| | - Liumin He
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
- College of Life Science and Technology , Jinan University , Guangzhou , Guangdong , 510632 , China
| |
Collapse
|
68
|
Dubey N, Kushwaha CS, Shukla SK. A review on electrically conducting polymer bionanocomposites for biomedical and other applications. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1605513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Neelima Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Chandra Shekhar Kushwaha
- Department of Polymer Science, Bhaskaracharya College of Applied Science, University of Delhi, New Delhi, India
| | - S. K. Shukla
- Department of Polymer Science, Bhaskaracharya College of Applied Science, University of Delhi, New Delhi, India
| |
Collapse
|
69
|
Zhang L, Gupta B, Goudeau B, Mano N, Kuhn A. Wireless Electromechanical Readout of Chemical Information. J Am Chem Soc 2018; 140:15501-15506. [PMID: 30347149 DOI: 10.1021/jacs.8b10072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Collecting electrochemical information concerning the presence of molecules in a solution is usually achieved by measuring current, potential, resistance, or impedance via connection to a power supply. Here, we suggest wireless electromechanical actuation as a straightforward readout of chemical information. This can be achieved based on the concept of bipolar electrochemistry, which allows measuring the presence of different model species in a quantitative way. We validate the concept by using a free-standing polypyrrole film. Its positively polarized extremity participates in an oxidation of the analyte and delivers electrons to the opposite extremity for the reduction of the polymer. This reduction is accompanied by the insertion of counterions and thus leads to partial swelling of the film, inducing its bending. The resulting actuation is found to be a linear function of the analyte concentration, and also a Michaelis-Menten type correlation is obtained for biochemical analytes. This electromechanical transduction allows an easy optical readout and opens up very interesting perspectives not only in the field of sensing but also far beyond, such as for the elaboration of self-regulating biomimetic systems.
Collapse
Affiliation(s)
- Lin Zhang
- Université Bordeaux , CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 Avenue Pey Berland , 33607 Pessac , France.,Centre de Recherche Paul Pascal , CNRS UMR 5031, Avenue Albert Schweitzer , 33600 Pessac , France
| | - Bhavana Gupta
- Université Bordeaux , CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 Avenue Pey Berland , 33607 Pessac , France
| | - Bertrand Goudeau
- Université Bordeaux , CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 Avenue Pey Berland , 33607 Pessac , France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal , CNRS UMR 5031, Avenue Albert Schweitzer , 33600 Pessac , France
| | - Alexander Kuhn
- Université Bordeaux , CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 Avenue Pey Berland , 33607 Pessac , France
| |
Collapse
|
70
|
Hamtak M, Fotouhi L, Hosseini M, Reza Ganjali M. Sensitive Nonenzymatic Electrochemiluminescence Determination of Hydrogen Peroxide in Dental Products using a Polypyrrole/Polyluminol/Titanium Dioxide Nanocomposite. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1483940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Maryam Hamtak
- Department of Chemistry, Alzahra University, Tehran, Iran
| | - Lida Fotouhi
- Department of Chemistry, Alzahra University, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry College of Science, University of Tehran, Tehran, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
71
|
Dorraji PS, Fotouhi L. Improved effect of deep eutectic solvents on polymeric film of surfactant: application in determination and discrimination of dihydroxybenzene isomers as model molecules. NEW J CHEM 2018. [DOI: 10.1039/c8nj03485k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simultaneous determination of hydroquinone and catechol with different deep eutectic solvents (DESs) employed in the polymerization step of cetyltrimethylammonium bromide (CTAB) on an oxidized glassy carbon electrode is studied.
Collapse
Affiliation(s)
- Parisa Seyed Dorraji
- Department of Chemistry
- Faculty of Physics and Chemistry
- Alzahra University
- Tehran
- Iran
| | - Lida Fotouhi
- Department of Chemistry
- Faculty of Physics and Chemistry
- Alzahra University
- Tehran
- Iran
| |
Collapse
|