51
|
Schiffbauer H, Berger MS, Ferrari P, Freudenstein D, Rowley HA, Roberts TPL. Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg 2002; 97:1333-42. [PMID: 12507131 DOI: 10.3171/jns.2002.97.6.1333] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The aim of this study was to compare quantitatively the methods of preoperative magnetic source (MS) imaging and intraoperative electrophysiological cortical mapping (ECM) in the localization of sensorimotor cortex in patients with intraaxial brain tumors. METHODS Preoperative magnetoencephalography (MEG) was performed while patients received painless tactile somatosensory stimulation of the lip, hand, and foot. The early somatosensory evoked field was modeled using a single equivalent current dipole approach to estimate the spatial source of the response. Three-dimensional magnetic resonance image volume data sets with fiducials were coregistered with the MEG recordings to form the MS image. These individualized functional brain maps were integrated into a neuronavigation system. Intraoperative mapping of somatosensory and/or motor cortex was performed and sites were compared. In two subgroups of patients we compared intraoperative somatosensory and motor stimulation sites with MS imaging-based somatosensory localizations. Mediolateral projection of the MS imaging source localizations to the cortical surface reduced systematic intermodality discrepancies. The distance between two corresponding points determined using MS imaging and ECM was 12.5 +/- 1.3 mm for somatosensory-somatosensory and 19 +/- 1.3 mm for somatosensory-motor comparisons. The observed 6.5 mm increase in site separation was systematically demonstrated in the anteroposterior direction, as expected from actual anatomy. In fact, intraoperative sites at which stimulation evoked the same patient response exhibited a spatial variation of 10.7 +/- 0.7 mm. CONCLUSIONS Preoperative MS imaging and intraoperative ECM show a favorable degree of quantitative correlation. Thus, MS imaging can be considered a valuable and accurate planning adjunct in the treatment of patients with intraaxial brain tumors.
Collapse
|
52
|
Jannin P, Morandi X, Fleig OJ, Le Rumeur E, Toulouse P, Gibaud B, Scarabin JM. Integration of sulcal and functional information for multimodal neuronavigation. J Neurosurg 2002; 96:713-23. [PMID: 11990812 DOI: 10.3171/jns.2002.96.4.0713] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors present the use of cortical sulci, segmented from magnetic resonance (MR) imaging, and functional data from functional (f)MR imaging and magnetoencephalography (MEG) in the image-guided surgical management of lesions adjacent to the sensorimotor cortex. METHODS In an initial set of 11 patients, sulci near lesions were automatically segmented from MR imaging data sets, then MEG and fMR imaging examinations were performed. Relevant functional information was preoperatively interpreted and selected from MEG and fMR imaging and subsequently transferred to the navigation system for selected sulci. A neuronavigation system consisting of a surgical microscope with enhanced reality overlay display was used. Data were displayed as contours on the cut-plane images of a stereotactic workstation and as contours on the overlay screen of the head-up display within the optical path of the right eyepiece of the surgical microscope. CONCLUSIONS This method, in which both sulcal and functional mapping are used for surgery planning and neuronavigation, provides helpful information. It is a promising procedure for the treatment of patients who harbor lesions in areas around the eloquent cortex.
Collapse
Affiliation(s)
- Pierre Jannin
- Laboratoire IDM and LRMBM, Faculté de Médecine Univsersité de Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
53
|
Romstöck J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C. Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 2002; 72:221-9. [PMID: 11796773 PMCID: PMC1737735 DOI: 10.1136/jnnp.72.2.221] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Intraoperative localisation of the sensorimotor cortex using the phase reversal of somatosensory evoked potentials (SEPs) is an essential tool for surgery in and around the perirolandic gyri, but unsuccessful and perplexing results have been reported. This study examines the effect of tumour masses on the waveform characteristics and feasibility of SEP compared with functional neuronavigation and electrical motor cortex mapping. METHODS In 230 patients with tumours of the sensorimotor region the SEP phase reversal of N20-P20 was recorded from the exposed cortex using a subdural grid or strip electrode. In one subgroup of 80 patients functional neuronavigation was performed with motor and sensory magnetic source imaging and in one subgroup of 40 patients the motor cortex hand area was localised by electrical stimulation mapping. RESULTS The intraoperative SEP method was successful in 92% of all patients, it could be shown that the success rate rather depended on the location of the lesion than on preoperative neurological deficits. In 13% of the patients with postcentral tumours no N20-P20 phase reversal was recorded but characteristic polyphasic and high amplitude waves at 25 ms and later made the identification of the postcentral gyrus possible nevertheless. Electrical mapping of the motor cortex took up to 30 minutes until a clear result was obtained. It was successful in 37 patients, but failed in three patients with precentral and central lesions. Functional neuronavigation indicating the tumour margins and the motor and sensory evoked fields was possible in all patients. CONCLUSION The SEP phase reversal of N20-P20 is a simple and reliable technique, but the success rate is much lower in large central and postcentral tumours. With the use of polyphasic late waveforms the sensorimotor cortex may be localised. By contrast with motor electrical mapping it is less time consuming. Functional neuronavigation is a desirable tool for both preoperative surgical planning and intraoperative use during surgery on perirolandic tumours, but compensation for brain shift, accuracy, and cost effectiveness are still a matter for discussion.
Collapse
Affiliation(s)
- J Romstöck
- Department of Neurosurgery, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
54
|
Schlösser R, Hunsche S, Gawehn J, Grunert P, Vucurevic G, Gesierich T, Kaufmann B, Rossbach W, Stoeter P. Characterization of BOLD-fMRI signal during a verbal fluency paradigm in patients with intracerebral tumors affecting the frontal lobe. Magn Reson Imaging 2002; 20:7-16. [PMID: 11973025 DOI: 10.1016/s0730-725x(01)00434-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Previous studies have indicated that the BOLD-fMRI signal can be modified by tumor processes in close vicinity to functional brain areas. This effect has been investigated primarily for the perirolandic area but there is only a limited number of studies concerning frontal cortical regions. Therefore, the aim of the current study was to characterize BOLD-fMRI signal and activation patterns in patients with frontal brain tumors while performing a verbal fluency task. Six patients (ages 31-56 years) suffering from frontal (5 left sided and 1 right sided) intracerebral tumors were examined with fMRI while performing a verbal fluency task in a blocked paradigm design. Eight healthy volunteers served as the control group. The patients (5 right and 1 left handed) demonstrated left frontal activation which could be clearly located outside the tumor area and adjacent edema with varying degrees of additional right frontal activation. In the predominant left frontal activation cluster, the mean voxel based z-score and cluster size were not statistically different between patients and controls. The present fMRI study is indicating that language related BOLD signal changes in the frontal cortex of patients with tumors close to functional areas were comparable to the signal in normal controls. Additionally, the temporal hemodynamic response characteristic was comparable in both groups. This is an important finding consistent with PET results and corroborates the feasibility of functional mapping approaches in patients with tumors affecting the frontal lobe. Additional studies investigating alterations of the hemodynamic response depending on tumor location and histology are required in order to further elucidate the association between pathophysiology and BOLD fMRI signal.
Collapse
|
55
|
Kober H, Möller M, Nimsky C, Vieth J, Fahlbusch R, Ganslandt O. New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp 2001; 14:236-50. [PMID: 11668655 PMCID: PMC6871960 DOI: 10.1002/hbm.1056] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 08/06/2001] [Indexed: 11/11/2022] Open
Abstract
We used a current localization by spatial filtering-technique to determine primary language areas with magnetoencephalography (MEG) using a silent reading and a silent naming task. In all cases we could localize the sensory speech area (Wernicke) in the posterior part of the left superior temporal gyrus (Brodmann area 22) and the motor speech area (Broca) in the left inferior frontal gyrus (Brodmann area 44). Left hemispheric speech dominance was determined in all cases by a laterality index comparing the current source strength of the activated left side speech areas to their right side homologous. In 12 cases we found early Wernicke and later Broca activation corresponding to the Wernicke-Geschwind model. In three cases, however, we also found early Broca activation indicating that speech-related brain areas need not necessarily be activated sequentially but can also be activated simultaneously. Magnetoencephalography can be a potent tool for functional mapping of speech-related brain areas in individuals, investigating the time-course of brain activation, and identifying the speech dominant hemisphere. This may have implications for presurgical planning in epilepsy and brain tumor patients.
Collapse
Affiliation(s)
- H Kober
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
56
|
Schiffbauer H, Ferrari P, Rowley HA, Berger MS, Roberts TP. Functional activity within brain tumors: a magnetic source imaging study. Neurosurgery 2001; 49:1313-20; discussion 1320-1. [PMID: 11846930 DOI: 10.1097/00006123-200112000-00005] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2000] [Accepted: 07/20/2001] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To determine whether low-grade gliomas contain functional cortical activity more often than high-grade gliomas within radiologically defined abnormal tissue. METHODS Patients with intra-axial cerebral lesions located in the vicinity of eloquent brain cortex preoperatively underwent magnetic source imaging. A dual 37-channel biomagnetometer was used to perform the imaging. Evoked magnetic fields were analyzed using the single-equivalent dipole representation to ascertain the neuronal source. Stimuli included painless tactile somatosensory stimulation of fingers, toes, and lips and auditory presentation of pure sinusoidal tones. RESULTS A retrospective analysis of 106 nonconsecutively treated patients, who had undergone preoperative magnetic source imaging between February 1996 and December 1999, revealed that 24.5% of the patients had been at risk for neurological deficits, because functionally active tissue was located within or at the border of the tumor. Functional activity was found within the radiologically defined lesion in 18% of Grade 2 tumors, in 17% of Grade 3 tumors, and in 8% of Grade 4 tumors. CONCLUSION The results confirm that, regardless of tumor grade, intra-axial brain tumors may involve or directly border on functional cortex. The degree of involvement of functionally viable cortex appeared greater for low-grade tumors than for high-grade lesions. On the other hand, high-grade lesions were more likely to be associated with functional cortex at their margins or within peritumoral edema. To safely maximize tumor resection, preoperative functional imaging and intraoperative electrophysiological mapping of the cerebral cortex and the white matter tracts are deemed necessary.
Collapse
Affiliation(s)
- H Schiffbauer
- Oulu Clinic for Neurosurgery, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
57
|
Kober H, Nimsky C, Möller M, Hastreiter P, Fahlbusch R, Ganslandt O. Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 2001; 14:1214-28. [PMID: 11697953 DOI: 10.1006/nimg.2001.0909] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study we investigated the spatial heterotopy of MEG and fMRI localizations after sensory and motor stimulation tasks. Both methods are frequently used to study the topology of the primary and secondary motor cortex, as well as a tool for presurgical brain mapping. fMRI was performed with a 1.5T MR system, using echo-planar imaging with a motor and a sensory task. Somatosensory and motor evoked fields were recorded with a biomagnetometer. fMRI activation was determined with a cross-correlation analysis. MEG source localization was performed with a single equivalent current dipole model and a current density localization approach. Distances between MEG and fMRI activation sites were measured within the same anatomical 3-D-MR image set. The central region could be identified by MEG and fMRI in 33 of 34 cases. However, MEG and fMRI localization results showed significantly different activation sites for the motor and sensory task with a distance of 10 and 15 mm, respectively. This reflects the different neurophysiological mechanisms: direct neuronal current flow (MEG) and secondary changes in cerebral blood flow and oxygenation level of activated versus non activated brain structures (fMRI). The result of our study has clinical implications when MEG and fMRI localizations are used for pre- and intraoperative brain mapping. Although both modalities are useful for the estimation of the motor cortex, a single modality may err in the exact topographical labeling of the motor cortex. In some unclear cases a combination of both methods should be used in order to avoid neurological deficits.
Collapse
Affiliation(s)
- H Kober
- Department of Neurosurgery and Neurocenter, University Erlangen-Nürnberg, Erlangen, 91054, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Inoue T, Shimizu H, Yoshimoto T, Kabasawa H. Spatial functional distribution in the corticospinal tract at the corona radiata: a three-dimensional anisotropy contrast study. Neurol Med Chir (Tokyo) 2001; 41:293-8; discussion 298-9. [PMID: 11458741 DOI: 10.2176/nmc.41.293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spatial functional distribution of the nerve fibers was investigated in the corticospinal tract at the level of the corona radiata. Thirteen patients with corona radiata infarction underwent axial single-shot echo planar diffusion-weighted magnetic resonance imaging using a 1.5 Tesla scanner. Image analysis used the three-dimensional anisotropy contrast (3DAC) method to demarcate the nerve fibers in the corticospinal tract. Axial 3DAC images demonstrated the corticospinal tract as a distinct area indicating nerve fiber integrity in all normal hemispheres and infarction as a dark or black area in affected hemispheres. Seven patients with upper extremity-dominant motor dysfunction had infarction located in the middle one third of the corticospinal tract. A patient with lower extremity-dominant motor dysfunction had infarction in the posterior one third. Five patients with equal motor dysfunction in the upper and lower extremities had infarction in both the middle and posterior one thirds of the corticospinal tract. The recovery of motor dysfunction at one month follow up correlated with the location of the corticospinal tract injury on the initial 3DAC images. The findings of the 3DAC images provide an indicator of the pattern and the recovery from acute and chronic motor dysfunction in patients with corona radiata infarction.
Collapse
Affiliation(s)
- T Inoue
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
59
|
Roberts TP, Ferrari P, Perry D, Rowley HA, Berger MS. Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol 2001; 17:57-64. [PMID: 11210172 DOI: 10.1007/bf02482736] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We compare noninvasive preoperative mapping with magnetic source imaging to intraoperative cortical stimulation mapping. These techniques were directly compared in 17 patients who underwent preoperative and postoperative somatosensory mapping of a total of 22 comparable anatomic sites (digits, face). Our findings are presented in the context of previous studies that used magnetic source imaging and functional magnetic resonance imaging as noninvasive surrogates of intraoperative mapping for the identification of sensorimotor and language-specific brain functional centers in patients with brain tumors. We found that magnetic source imaging results were reasonably concordant with intraoperative mapping findings in over 90% of cases, and that concordance could be defined as "good" in 77% of cases. Magnetic source imaging therefore provides a viable, if coarse, identification of somatosensory areas and, consequently, can guide and reduce the time taken for intraoperative mapping procedures.
Collapse
Affiliation(s)
- T P Roberts
- Department of Radiology, University of California, San Francisco 94143, USA.
| | | | | | | | | |
Collapse
|
60
|
Mäkelä JP, Kirveskari E, Seppä M, Hämäläinen M, Forss N, Avikainen S, Salonen O, Salenius S, Kovala T, Randell T, Jääskeläinen J, Hari R. Three-dimensional integration of brain anatomy and function to facilitate intraoperative navigation around the sensorimotor strip. Hum Brain Mapp 2001; 12:180-92. [PMID: 11170309 PMCID: PMC6871856 DOI: 10.1002/1097-0193(200103)12:3<180::aid-hbm1014>3.0.co;2-n] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We studied 12 patients with brain tumors in the vicinity of the sensorimotor region to provide a preoperative three-dimensional visualization of the functional anatomy of the rolandic cortex. We also evaluated the role of cortex-muscle coherence analysis and anatomical landmarks in identifying the sensorimotor cortex. The functional landmarks were based on neuromagnetic recordings with a whole-scalp magnetometer, coregistred with magnetic resonance images. Evoked fields to median and tibial nerve and lip stimuli were recorded to identify hand, foot and face representations in the somatosensory cortex. Oscillatory cortical activity, coherent with surface electromyogram during isometric muscle contraction, was analyzed to reveal the hand and foot representations in the precentral motor cortex. The central sulcus was identified also by available anatomical landmarks. The source locations, calculated from the neuromagnetic data, were displayed on 3-D surface reconstructions of the individual brains, including the veins. The preoperative data were verified during awake craniotomy by cortical stimulation in 7 patients and by cortical somatosensory evoked potentials in 5 patients. Sources of somatosensory evoked fields identified correctly the postcentral gyrus in all patients. Useful corroborative information was obtained from anatomical landmarks in 11 patients and from cortex-muscle correlograms in 8 patients. The preoperative visualization of the functional anatomy of the sensorimotor strip assisted in designing the operational strategy, facilitated orientation of the neurosurgeon during the operation, and speeded up the selection of sites for intraoperative stimulation or mapping, thereby helping to prevent damage of eloquent brain areas during surgery.
Collapse
Affiliation(s)
- J P Mäkelä
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Nakasato N, Yoshimoto T. Somatosensory, auditory, and visual evoked magnetic fields in patients with brain diseases. J Clin Neurophysiol 2000; 17:201-11. [PMID: 10831111 DOI: 10.1097/00004691-200003000-00009] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The features of somatosensory (SEFs), auditory (AEFs), and visual evoked fields (VEFs) in healthy subjects and patients with brain diseases provide the basis for clinical investigations using magnetoencephalography (MEG). The SEFs provide clinically useful information to identify the central sulcus and somatotopic organization of the primary somatosensory cortex. Localization accuracy of the SEFs can be tested by cortical stimulation during surgery. Functional reorganization suggested by SEF studies must be verified by other modalities. The AEFs can localize the auditory cortex in the bilateral temporal lobes. Separation of bilateral activities is much clearer in AEFs than in auditory evoked potentials. Modulation of the interhemispheric differences of latency, amplitude, and source localization of AEFs can be used to evaluate auditory function in patients with intracranial lesions. Pattern reversal VEFs provide stable localization of the primary visual function. Separation of bihemispherical activities is the advantage of VEFs over visual evoked potentials. Investigation of VEFs provides objective evaluation of visual field deficits such as homonymous or bitemporal hemianopsia in patients with intracranial lesions. Evoked magnetic fields can provide useful diagnostic information. Such clinical findings, in turn, provides the opportunity to test the source estimation accuracy of MEG.
Collapse
Affiliation(s)
- N Nakasato
- Department of Neurosurgery, Tohoku University School of Medicine, Sendai, Japan
| | | |
Collapse
|