51
|
Baum T, Carballido-Gamio J, Huber MB, Müller D, Monetti R, Räth C, Eckstein F, Lochmüller EM, Majumdar S, Rummeny EJ, Link TM, Bauer JS. Automated 3D trabecular bone structure analysis of the proximal femur--prediction of biomechanical strength by CT and DXA. Osteoporos Int 2010; 21:1553-64. [PMID: 19859642 PMCID: PMC2912724 DOI: 10.1007/s00198-009-1090-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 10/01/2009] [Indexed: 12/19/2022]
Abstract
SUMMARY The standard diagnostic technique for assessing osteoporosis is dual X-ray absorptiometry (DXA) measuring bone mass parameters. In this study, a combination of DXA and trabecular structure parameters (acquired by computed tomography [CT]) most accurately predicted the biomechanical strength of the proximal femur and allowed for a better prediction than DXA alone. INTRODUCTION An automated 3D segmentation algorithm was applied to determine specific structure parameters of the trabecular bone in CT images of the proximal femur. This was done to evaluate the ability of these parameters for predicting biomechanical femoral bone strength in comparison with bone mineral content (BMC) and bone mineral density (BMD) acquired by DXA as standard diagnostic technique. METHODS One hundred eighty-seven proximal femur specimens were harvested from formalin-fixed human cadavers. BMC and BMD were determined by DXA. Structure parameters of the trabecular bone (i.e., morphometry, fuzzy logic, Minkowski functionals, and the scaling index method [SIM]) were computed from CT images. Absolute femoral bone strength was assessed with a biomechanical side-impact test measuring failure load (FL). Adjusted FL parameters for appraisal of relative bone strength were calculated by dividing FL by influencing variables such as body height, weight, or femoral head diameter. RESULTS The best single parameter predicting FL and adjusted FL parameters was apparent trabecular separation (morphometry) or DXA-derived BMC or BMD with correlations up to r = 0.802. In combination with DXA, structure parameters (most notably the SIM and morphometry) added in linear regression models significant information in predicting FL and all adjusted FL parameters (up to R(adj) = 0.872) and allowed for a significant better prediction than DXA alone. CONCLUSION A combination of bone mass (DXA) and structure parameters of the trabecular bone (linear and nonlinear, global and local) most accurately predicted absolute and relative femoral bone strength.
Collapse
Affiliation(s)
- T Baum
- Institut für Röntgendiagnostik, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Sievänen H. Bone densitometry and true BMD accuracy for predicting fractures: what are the alternatives? ACTA ACUST UNITED AC 2010. [DOI: 10.2217/ijr.10.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
53
|
Gong M, Zhang D, Wan Y, Edmondson B, Cui Q, Li X. Engineered synovial joint condyle using demineralized bone matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
54
|
|
55
|
Chappard C, Bousson V, Bergot C, Mitton D, Marchadier A, Moser T, Benhamou CL, Laredo JD. Prediction of femoral fracture load: cross-sectional study of texture analysis and geometric measurements on plain radiographs versus bone mineral density. Radiology 2010; 255:536-43. [PMID: 20332378 DOI: 10.1148/radiol.10090232] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To use standard radiographs to determine which combination of co-occurrence textural parameters, geometric measurements, and cortical thickness measurements from femur radiographs provided the best estimate of femoral failure load and to compare these with total hip dual-energy x-ray absorptiometry bone mineral density (BMD) evaluation. MATERIALS AND METHODS Digital radiographs of 40 pairs of excised femurs (24 women, 16 men; mean age, 82 years + or - 12 [standard deviation]) were obtained. Regions of interest in the femoral neck, greater trochanter, intertrochanteric area, and femoral head were then selected. Three textural parameters derived from a co-occurrence matrix were estimated with imaging software. Neck-shaft angle, femoral neck axis length, calcar femorale thickness, and internal and external femoral shaft thickness were assessed. The femurs were randomly allocated to single-stance (femoral neck fracture) or side-impact (intertrochanteric fracture) configurations for failure load measurement. RESULTS Textural parameters correlated significantly with site-matched BMD. Stepwise regression analysis was performed, and total hip BMD explained 73% and 78% of the failure load in single-stance and side-impact configurations, respectively. Combining internal femoral shaft thickness with one or two textural parameters explained 72%-79% of failure load variance in the single-stance configuration and 63%-76% of failure load variance in the side-impact configuration. CONCLUSION In these excised femurs, combining textural parameters with cortical thickness measurements had a performance comparable to that of BMD alone in the explanation of femoral failure load.
Collapse
|
56
|
Quantitative computed tomographic assessment of the effects of 24 months of teriparatide treatment on 3D femoral neck bone distribution, geometry, and bone strength: results from the EUROFORS study. J Bone Miner Res 2010; 25:472-81. [PMID: 19778182 DOI: 10.1359/jbmr.090820] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We studied the changes in bone distribution, geometry, and bone strength based on 3D quantitative computed tomography (QCT) of the femoral neck (FN) in subjects receiving teriparatide (TPTD). Fifty-two postmenopausal women with severe osteoporosis were analyzed. Patients were divided into three subgroups based on their prior treatment with osteoporosis drugs: treatment-naive (Tx-naive; n = 8), pretreated (pre-Tx; n = 12), and pretreated showing an inadequate response to treatment (inad. pre-Tx; n = 32). QCT scans were performed at baseline and after 6, 12, and 24 months of treatment and were analyzed with Mindways QCT-PRO BIT software. Minimum and maximum section modulus, buckling ratio (BR), and cross-sectional area (CSA) were calculated as measurements of bending strength, risk of buckling, and bone apposition, respectively. After 24 months of TPTD treatment, areal and volumetric FN BMD increased significantly by 4.0% and 3.0%, respectively, compared with baseline. Decreases in cortical volumetric BMD occurred in locations not adversely affecting minimum bending strength indicators. Cortical CSA increased by 4.3%, whereas total CSA remained unchanged over the study duration, indicating that endosteal but no periosteal growth was observed. Strength parameters for buckling did not change at 6 and 12 months but improved significantly at 24 months. Measures of bending strength showed a trend toward improvement. Changes tended to be larger in individuals at higher risk of buckling failure. Prior antiresorptive treatment may delay response to TPTD, but based on the small magnitude of the mostly insignificant changes at 6 months, this does not appear to lead to an interim phase of reduced bone strength. In summary, FN QCT provides a tool for detailed longitudinal investigation of bone strength indices in vivo for different loading modes, yields insight into underlying structural changes, and provides relevant mechanostructural information beyond dual-energy X-ray absorptiometry. Continuous TPTD treatment for 24 months improves FN bone strength parameters.
Collapse
|
57
|
Huber MB, Carballido-Gamio J, Fritscher K, Schubert R, Haenni M, Hengg C, Majumdar S, Link TM. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs. Med Phys 2010; 36:5089-98. [PMID: 19994519 DOI: 10.1118/1.3215535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between various different texture analysis methods and the femurs' anchorage strength. METHODS Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. RESULTS In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R2=0.61 (MF and MG features, p<0.01) and were partially independent of BMD. The correlations were dependent on the choice of the ROI and the texture measure. The best predictive multiregression model for failure load R2adj=0.86 (p<0.001) included a set of recently developed texture methods (MF and SIM) but excluded bone mineral density and commonly used texture measures. CONCLUSIONS The results suggest that texture information contained in trabecular bone structure visualized on radiographs may predict whether an implant anchorage can be used and may determine the local bone quality from preoperative radiographs.
Collapse
Affiliation(s)
- M B Huber
- Department of Radiology and Biomedical Imaging, University of California, 400 Parnassus Avenue, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Diederichs G, Link TM, Kentenich M, Schwieger K, Huber MB, Burghardt AJ, Majumdar S, Rogalla P, Issever AS. Assessment of trabecular bone structure of the calcaneus using multi-detector CT: correlation with microCT and biomechanical testing. Bone 2009; 44:976-83. [PMID: 19442610 DOI: 10.1016/j.bone.2009.01.372] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 11/30/2022]
Abstract
The prediction of bone strength can be improved when determining bone mineral density (BMD) in combination with measures of trabecular microarchitecture. The goal of this study was to assess parameters of trabecular bone structure and texture of the calcaneus by clinical multi-detector row computed tomography (MDCT) in an experimental in situ setup and to correlate these parameters with microCT (microCT) and biomechanical testing. Thirty calcanei in 15 intact cadavers were scanned using three different protocols on a 64-slice MDCT scanner with an in-plane pixel size of 208 microm and 500 microm slice thickness. Bone cores were harvested from each specimen and microCT images with a voxel size of 16 microm were obtained. After image coregistration, trabecular bone structure and texture were evaluated in identical regions on the MDCT images. After data acquisition, uniaxial compression testing was performed. Significant correlations between MDCT- and microCT-derived measures of bone volume fraction (BV/TV), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp) were found (range, R(2)=0.19-0.65, p<0.01 or 0.05). The MDCT-derived parameters of volumetric BMD, app. BV/TV, app. Tb.Th and app. Tb.Sp were capable of predicting 60%, 63%, 53% and 25% of the variation in bone strength (p<0.01). When combining those measures with one additional texture index (either GLCM, TOGLCM or MF.euler), prediction of mechanical competence was significantly improved to 86%, 85%, 71% and 63% (p<0.01). In conclusion, this study showed the feasibility of trabecular microarchitecture assessment using MDCT in an experimental setup simulating the clinical situation. Multivariate models of BMD or structural parameters combined with texture indices improved prediction of bone strength significantly and might provide more reliable estimates of fracture risk in patients.
Collapse
Affiliation(s)
- Gerd Diederichs
- Department of Radiology, Charité - Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Bauer JS, Monetti R, Krug R, Matsuura M, Mueller D, Eckstein F, Rummeny EJ, Lochmueller EM, Raeth CW, Link TM. Advances of 3T MR imaging in visualizing trabecular bone structure of the calcaneus are partially SNR-independent: Analysis using simulated noise in relation to micro-CT, 1.5T MRI, and biomechanical strength. J Magn Reson Imaging 2009; 29:132-40. [DOI: 10.1002/jmri.21625] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
60
|
Diederichs G, Link T, Marie K, Huber M, Rogalla P, Burghardt A, Majumdar S, Issever A. Feasibility of measuring trabecular bone structure of the proximal femur using 64-slice multidetector computed tomography in a clinical setting. Calcif Tissue Int 2008; 83:332-41. [PMID: 18855036 DOI: 10.1007/s00223-008-9181-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 09/18/2008] [Indexed: 11/28/2022]
Abstract
We studied the feasibility of cancellous bone structure assessment of the proximal femur using multidetector computed tomography (MDCT) in an simulated in vivo experimental model. The proximal femur of 15 intact human cadavers was examined using 64-row MDCT using a thin-section protocol with an in-plane spatial resolution of 273 mum. High-resolution peripheral quantitative computed tomography (HR-pQCT) of the isolated specimens with a voxel size of 82 mum served as a standard of reference. Trabecular bone structure and optimized textural parameters were calculated in MDCT images and compared to measures obtained by HR-pQCT. Significant correlations between MDCT- and HR-pQCT-derived values for bone fraction (r = 0.87), trabecular separation (r = 0.66), and number (r = 0.53) were found. Parameters derived from textural analysis performed better in predicting trabecular separation (up to r = 0.86) and number (up to r = 0.83). Trabecular thickness could not be quantified correctly using MDCT, most likely due to its limited resolution. Individual parameters for assessement of trabecular microarchitecture can be measured using MDCT-derived imaging studies and a simulated in vivo setup. Thus, in vivo assessment of bone architecture in addition to BMD may be feasible in clinical practice.
Collapse
Affiliation(s)
- Gerd Diederichs
- Department of Radiology, Charité-Universitätsmedizin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Bone fracture occurs when the bone strength (i.e. the ability of the bone to resist a force) is less than the force applied to the bone. In the elderly, falls represent the more severe forces applied to bone. Bone density is a good marker of bone strength, and has been used widely in this respect. Nevertheless, many aspects of bone strength cannot be explained by bone density alone. For this reason there has been increasing interest in studying architectural parameters of bone, beyond bone density, which may affect bone strength. Macro-architectural parameters include e.g. bone size and geometry assessed with techniques such as radiography, dual-energy x-ray absorptiometry (DXA), peripheral quantitative computed tomography (QCT), computed tomography (CT) and magnetic resonance imaging (MRI). Micro-architectural parameters include fine cortical and trabecular structural detail which can be evaluated using high-resolution imaging techniques such as multidetector CT, MRI, and high-resolution peripheral QCT. These techniques are providing a great deal of new information on the physiological architectural responses of bone to aging, weightlessness, and treatment. This will ultimately lead to the prediction of fracture risk being improved through a combined assessment of bone density and architectural parameters.
Collapse
Affiliation(s)
- James F Griffith
- Department of Diagnostic Radiology and Organ Imaging, Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | |
Collapse
|
62
|
Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res 2008; 23:1326-33. [PMID: 18348697 PMCID: PMC2680175 DOI: 10.1359/jbmr.080316] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The structure of the femoral neck contributes to hip strength, but the relationship of specific structural features of the hip to hip fracture risk is unclear. The objective of this study is to determine the contribution of structural features and volumetric density of both trabecular and cortical bone in the proximal femur to the prediction of hip fracture in older men. Baseline QCT scans of the hip were obtained in 3347 men >or=65 yr of age enrolled in the Osteoporotic Fractures in Men Study (MrOS). All men were followed prospectively for an average of 5.5 yr. Areal BMD (aBMD) by DXA was also assessed. We determined the associations between QCT-derived measures of femoral neck structure, volumetric bone density, and hip fracture risk. Forty-two men sustained incident hip fractures during follow-up: an overall rate of 2.3/1000 person-years. Multivariable analyses showed that, among the QCT-derived measures, lower percent cortical volume (hazard ratio [HR] per SD decrease: 3.2; 95% CI: 2.2-4.6), smaller minimal cross-sectional area (HR: 1.6; 95% CI: 1.2-2.1), and lower trabecular BMD (HR: 1.7; 95% CI: 1.2-2.4) were independently related to increased hip fracture risk. Femoral neck areal BMD was also strongly related to hip fracture risk (HR: 4.1; 95% CI: 2.7-6.4). In multivariable models, percent cortical volume and minimum cross-sectional area remained significant predictors of hip fracture risk after adjustment for areal BMD, but overall prediction was not improved by adding QCT parameters to DXA. Specific structural features of the proximal femur were related to an increased risk of hip fracture. Whereas overall hip fracture prediction was not improved relative to aBMD, by adding QCT parameters, these results yield useful information concerning the causation of hip fracture, the evaluation of hip fracture risk, and potential targets for therapeutic intervention.
Collapse
|
63
|
Sievänen H, Weynand LS, Wacker WK, Simonelli C, Burke PK, Ragi S, Del Rio L. A novel DXA-based hip failure index captures hip fragility independent of BMD. J Clin Densitom 2008; 11:367-72. [PMID: 18456529 DOI: 10.1016/j.jocd.2008.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 11/28/2022]
Abstract
Capability of a novel dual-energy X-ray absorptiometry (DXA)-based hip failure index (HiFI) to discriminate between hip fracture cases and controls was evaluated. Given the constraints of planar DXA, the femoral neck was assumed a foam-filled ( approximately trabecular bone), thin-walled ( approximately cortical bone) sandwich structure, while HiFI estimated the critical force sufficient to buckle the wall of such a structure. Proximal femur DXA data from 1379 women aged 65yr and older, 268 with prior hip fracture were used. Comparison between standard areal bone mineral density (BMD), femur strength index (FSI), and HiFI was based on areas under receiver operatoring characteristic curves (AUC). The mean femoral neck BMD (SD) was 0.689 (0.109) g/cm(2) among the cases and 0.768 (0.119) g/cm(2) among the controls; the mean FSI 1.33 (0.36) and 1.54 (0.41), and the mean HiFI -0.28 (0.14) and -0.18 (0.15), respectively; all intergroup differences were highly significant (p<0.001). The intergroup difference for HiFI remained significant (p<0.002) after adjusting for age and BMD or FSI. The AUCs were 0.696 (95% confidence interval [CI]: 0.661-0.730) for BMD, 0.665 (0.630-0.700) for FSI, and 0.701 (0.666-0.736) for HiFI. In conclusion, HiFI may capture structural traits that account for femoral neck fragility independently of BMD or FSI. Obviously, the use of actual geometric and structural information from three-dimensional imaging of the femoral neck would help diminish the crude assumptions of the present DXA approach and reveal the true potential of the HiFI approach to gauge hip fragility and identify at-risk individuals for hip fractures.
Collapse
Affiliation(s)
- H Sievänen
- Bone Research Group, UKK Institute, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
64
|
Huber MB, Carballido-Gamio J, Bauer JS, Baum T, Eckstein F, Lochmüller EM, Majumdar S, Link TM. Proximal femur specimens: automated 3D trabecular bone mineral density analysis at multidetector CT--correlation with biomechanical strength measurement. Radiology 2008; 247:472-81. [PMID: 18430879 DOI: 10.1148/radiol.2472070982] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To prospectively evaluate an automated volume of interest (VOI)-fitting algorithm for quantitative computed tomography (CT) of proximal femur specimens, correlate bone mineral density (BMD) with biomechanically determined bone strength in vitro, and compare that correlation with those observed at dual-energy x-ray absorptiometry (DXA) measurement of BMD. MATERIALS AND METHODS The study was compliant with institutional and legislative requirements; donors had dedicated their body for education and research before death. Multidetector CT and DXA scans were acquired in 178 proximal femur specimens harvested from human cadavers (91 women, 87 men; mean age at death, 79 years +/- 10.2; range, 52-100 years). An automated VOI-fitting algorithm was used to calculate BMD and bone mineral content (BMC) in the head, neck, and trochanter from CT findings and pixel distribution parameters. The femur failure load (FL) was determined by using a mechanical test. Quantitative CT BMD, quantitative CT pixel distribution parameters, DXA BMD, and FL were correlated at multiple regression analysis. RESULTS Mean precision errors in quantitative CT BMD measurements at segmentation with repositioning were 0.56%, 2.26%, and 0.61% for the head, neck, and trochanter, respectively. For the head, neck, and trochanter, respectively, r values were 0.77, 0.53, and 0.59 for the correlation between quantitative CT BMD and FL and 0.74, 0.55, and 0.65 for the correlation between quantitative CT BMC and FL (P < .001). Values ranged from 0.77 to 0.80 for correlations between DXA BMD and FL and from 0.73 to 0.82 for correlations between DXA BMC and FL (P < .001). In a multiple regression model that included quantitative CT pixel distributions, adjusted multivariate correlation coefficient values for correlations with FL increased to up to 0.88. CONCLUSION Regional BMD of the proximal femur can be determined in vitro from quantitative CT data with high precision by using an automated VOI-fitting algorithm. The best multiple regression model for predicting FL included DXA BMD and regional quantitative CT BMD measurements.
Collapse
Affiliation(s)
- Markus B Huber
- Musculoskeletal and Quantitative Imaging Research, Department of Radiology, University of California, San Francisco, 185 Berry St, Suite 350, San Francisco, CA 94107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Pulkkinen P, Jämsä T, Lochmüller EM, Kuhn V, Nieminen MT, Eckstein F. Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry. Osteoporos Int 2008; 19:547-58. [PMID: 17891327 DOI: 10.1007/s00198-007-0479-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/04/2007] [Indexed: 11/30/2022]
Abstract
UNLABELLED Computerized analysis of the trabecular structure was used to test whether femur failure load can be estimated from radiographs. The study showed that combined analysis of trabecular bone structure and geometry predicts in vitro failure load with similar accuracy as DXA. INTRODUCTION Since conventional radiography is widely available with low imaging cost, it is of considerable interest to discover how well bone mechanical competence can be determined using this technology. We tested the hypothesis that the mechanical strength of the femur can be estimated by the combined analysis of the bone trabecular structure and geometry. METHODS The sample consisted of 62 cadaver femurs (34 females, 28 males). After radiography and DXA, femora were mechanically tested in side impact configuration. Fracture patterns were classified as being cervical or trochanteric. Computerized image analysis was applied to obtain structure-related trabecular parameters (trabecular bone area, Euler number, homogeneity index, and trabecular main orientation), and set of geometrical variables (neck-shaft angle, medial calcar and femoral shaft cortex thicknesses, and femoral neck axis length). Multiple linear regression analysis was performed to identify the variables that best explain variation in BMD and failure load between subjects. RESULTS In cervical fracture cases, trabecular bone area and femoral neck axis length explained 64% of the variability in failure loads, while femoral neck BMD also explained 64%. In trochanteric fracture cases, Euler number and femoral cortex thickness explained 66% of the variability in failure load, while trochanteric BMD explained 72%. CONCLUSIONS Structural parameters of trabecular bone and bone geometry predict in vitro failure loads of the proximal femur with similar accuracy as DXA, when using appropriate image analysis technology.
Collapse
Affiliation(s)
- P Pulkkinen
- Deparment of Medical Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
66
|
Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM. Clinical Use of Quantitative Computed Tomography and Peripheral Quantitative Computed Tomography in the Management of Osteoporosis in Adults: The 2007 ISCD Official Positions. J Clin Densitom 2008; 11:123-62. [PMID: 18442757 DOI: 10.1016/j.jocd.2007.12.010] [Citation(s) in RCA: 374] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
|
67
|
Bauer JS, Link TM, Burghardt A, Henning TD, Mueller D, Majumdar S, Prevrhal S. Analysis of trabecular bone structure with multidetector spiral computed tomography in a simulated soft-tissue environment. Calcif Tissue Int 2007; 80:366-73. [PMID: 17520165 DOI: 10.1007/s00223-007-9021-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 02/27/2007] [Indexed: 11/28/2022]
Abstract
We investigated the influence of soft tissue (ST) on image quality by high-resolution multidetector computed tomography (MDCT) scans and assessed the effect of surrounding ST on the quantification of trabecular bone structure. Eight bone cores obtained from human proximal femoral heads discarded during hip replacement surgery were scanned with micro-computed tomography (microCT) as well as with MDCT both without (w/o) and with (w) simulated surrounding ST, where a phantom imitated a human torso. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured in all scans. Apparent trabecular bone structure parameters were calculated and compared to similar parameters obtained in coregistered sections of the microCT scans. Residual errors were calculated as root-mean-square (RMS) errors relative to the microCT measurements. Compared to microCT results, trabecular structure parameters were overestimated by MDCT both w and w/o ST. SNR and CNR were significantly higher in the scans w/o ST. Significant correlations between microCT and MDCT results were found for bone fraction (r = 0.90 w/o ST, r = 0.84 w ST), trabecular number, and separation. RMS ranged from 10% to 15% for MDCT w/o ST and from 10% to 17% for MDCT w ST. Only bone fraction showed significantly different RMS and correlations for scans w/o vs. w ST (P < 0.05). This study showed that MDCT is able to visualize trabecular bone structure in an in vivo-like setting at skeletal sites within the torso such as the proximal femur. Even though ST scatter compromises image quality substantially, the major characteristics of the trabecular network can still be appreciated and quantified.
Collapse
Affiliation(s)
- Jan S Bauer
- Musculoskeletal and Quantitative Imaging Research, Department of Radiology, University of California in San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
In this review article current developments and applications in quantitative osteoporosis imaging are presented. Developments in the field of DXA include geometrical parameters of the proximal femur such as the "hip axis length" and new ROIs to determine BMD. Advances in QCT are new volumetric techniques to quantify BMD at the lumbar spine and the proximal femur. In addition techniques to determine BMD in standard contrast-enhanced abdominal computed tomography studies are described. Currently with the new bone quality concept in full bloom techniques to quantify trabecular bone architecture as new surrogates of bone strength are of increasing significance. Spatial high-resolution techniques such as magnetic resonance imaging and new computed tomography techniques have shown their potential in assessing trabecular bone structure. In addition ultrasound is considered a low-cost technique to explore bone quality.
Collapse
Affiliation(s)
- A S Issever
- Institut für Radiologie am Campus Mitte, Klinikum Charité der Universitätsmedizin Berlin
| | | |
Collapse
|
69
|
Valencia R, Stuermer EK, Dullin C, Herrmann KP, Kluever I, Zaroban A, Sehmisch S, Funke M, Knollmann F. Erste Erfahrungen mit einem Flächendetektor-Volumen-CT (fpVCT) in der experimentellen Osteoporosediagnostik am Kleintiermodell. Radiologe 2006; 46:893-9. [PMID: 16775690 DOI: 10.1007/s00117-006-1390-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Flat-panel volumetric computed tomography (fpVCT) is a new, noninvasive CT imaging modality with increased isotropic resolution. Technical details, potential applications, and our initial experience with a fpVCT prototype scanner in the imaging of osteoporosis in a rat model are presented. METHODS To date, 21 rats have been investigated in vivo with fpVCT. Pharmacologic effects on bone mineral density (BMD) and structure were of special interest. Image evaluation focussed on the second lumbar vertebra and the left femoral bone. To validate measurement results, BMD values calculated with fpVCT were correlated with results of BMD measurements from ashing of the second lumbar vertebra and femoral bones. RESULTS Our initial results show that fpVCT is capable of detecting differences in BMD between ovariectomized rats treated with estradiol and a control group with high statistical significance (p<0.05), corresponding to ashing as the gold standard. CONCLUSIONS In a rat model, fpVCT imaging is especially useful in longitudinal in vivo investigations of BMD measures. Spatial resolution of up to 150 microm allows imaging of the trabecular structure only in human cadaveric bones.
Collapse
Affiliation(s)
- R Valencia
- Abteilung Diagnostische Radiologie, Universitätsklinikum Göttingen.
| | | | | | | | | | | | | | | | | |
Collapse
|