51
|
Lee S, Kang M, Bae JH, Sohn JH, Sung BH. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front Bioeng Biotechnol 2019; 7:209. [PMID: 31552235 PMCID: PMC6733911 DOI: 10.3389/fbioe.2019.00209] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Lignin, an aromatic polymer found in plants, has been studied for years in many biological fields. Initially, when biofuel was produced from lignocellulosic biomass, lignin was regarded as waste generated by the biorefinery and had to be removed, because of its inhibitory effects on fermentative bacteria. Although it has since proven to be a natural resource for bio-products with considerable potential, its utilization is confined by its complex structure. Hence, the microbial degradation of lignin has attracted researchers' interest to overcome this problem. From this perspective, the studies have primarily focused on fungal systems, such as extracellular peroxidase and laccase from white- and brown-rot fungi. However, recent reports have suggested that bacteria play an increasing role in breaking down lignin. This paper, therefore, reviews the role of bacteria in lignin and lignin-related research. Several reports on bacterial species in soil that can degrade lignin and their enzymes are included. In addition, a cellulolytic anaerobic bacterium capable of solubilizing lignin and carbohydrate simultaneously has recently been identified, even though the enzyme involved has not been discovered yet. The assimilation of lignin-derived small molecules and their conversion to renewable chemicals by bacteria, such as muconic acid and polyhydroxyalkanoates, including genetic modification to enhance their capability was discussed. This review also covers the indirect use of bacteria for lignin degradation, which is concerned with whole-cell biosensors designed to detect the aromatic chemicals released from lignin transformation.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Minsik Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biosystems and Bioengineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
52
|
Zhang P, Xu J, Wang XJ, He B, Gao SQ, Lin YW. The Third Generation of Artificial Dye-Decolorizing Peroxidase Rationally Designed in Myoglobin. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ping Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
53
|
Lin Y. Rational design of heme enzymes for biodegradation of pollutants toward a green future. Biotechnol Appl Biochem 2019; 67:484-494. [DOI: 10.1002/bab.1788] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ying‐Wu Lin
- School of Chemistry and Chemical Engineering University of South China Hengyang People's Republic of China
- Laboratory of Protein Structure and Function University of South China Hengyang People's Republic of China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes University of South China Hengyang People's Republic of China
| |
Collapse
|
54
|
Expression and Characterization of a Dye-Decolorizing Peroxidase from Pseudomonas Fluorescens Pf0-1. Catalysts 2019. [DOI: 10.3390/catal9050463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The consumption of dyes is increasing worldwide in line with the increase of population and demand for clothes and other colored products. However, the efficiency of dyeing processes is still poor and results in large amounts of colored effluents. It is desired to develop a portfolio of enzymes which can be used for the treatment of colored wastewaters. Herein, we used genome sequence information to discover a dye-decolorizing peroxidase (DyP) from Pseudomonas fluorescens Pf-01. Two genes putatively encoding for DyPs were identified in the respective genome and cloned for expression in Escherichia coli, of which one (PfDyP B2) could be overexpressed as a soluble protein. PfDyP B2 shows some typical features known for DyPs which includes the ability to convert dyes at the expense of hydrogen peroxide. Interestingly, t-butyl hydroperoxide could be used as an alternative substrate to hydrogen peroxide. Immobilization of PfDyP B2 in calcium-alginate beads resulted in a significant increase in stability: PfDyP B2 retains 80% of its initial activity after 2 h incubation at 50 °C, while the soluble enzyme is inactivated within minutes. PfDyP B2 was also tested with aniline and ethyl diazoacetate as substrates. Based on GC-MS analyses, 30% conversion of the starting material was achieved after 65 h at 30 °C. Importantly, this is the first report of a DyP-catalyzed insertion of a carbene into an N-H bond.
Collapse
|
55
|
Characterization of a New DyP-Peroxidase from the Alkaliphilic Cellulomonad, Cellulomonas bogoriensis. Molecules 2019; 24:molecules24071208. [PMID: 30934796 PMCID: PMC6479361 DOI: 10.3390/molecules24071208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
DyP-type peroxidases are heme-containing enzymes that have received increasing attention over recent years with regards to their potential as biocatalysts. A novel DyP-type peroxidase (CboDyP) was discovered from the alkaliphilic cellulomonad, Cellulomonas bogoriensis, which could be overexpressed in Escherichia coli. The biochemical characterization of the recombinant enzyme showed that it is a heme-containing enzyme capable to act as a peroxidase on several dyes. With the tested substrates, the enzyme is most active at acidic pH values and is quite tolerant towards solvents. The crystal structure of CboDyP was solved which revealed atomic details of the dimeric heme-containing enzyme. A peculiar feature of CboDyP is the presence of a glutamate in the active site which in most other DyPs is an aspartate, being part of the DyP-typifying sequence motif GXXDG. The E201D CboDyP mutant was prepared and analyzed which revealed that the mutant enzyme shows a significantly higher activity on several dyes when compared with the wild-type enzyme.
Collapse
|
56
|
Javaid R, Sabir A, Sheikh N, Ferhan M. Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals. Molecules 2019; 24:E786. [PMID: 30813221 PMCID: PMC6412211 DOI: 10.3390/molecules24040786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Processing of fossil fuels is the major environmental issue today. Biomass utilization for the production of chemicals presents an alternative to simple energy generation by burning. Lignocellulosic biomass (cellulose, hemicellulose and lignin) is abundant and has been used for variety of purposes. Among them, lignin polymer having phenyl-propanoid subunits linked together either through C-C bonds or ether linkages can produce chemicals. It can be depolymerized by fungi using their enzyme machinery (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Fungal natural organic acids production is thought to have many key roles in nature depending upon the type of fungi producing them. Biological conversion of lignocellulosic biomass is beneficial over physiochemical processes. Laccases, copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H₂O₂. Lignin depolymerization yields value-added compounds, the important ones are aromatics and phenols as well as certain polymers like polyurethane and carbon fibers. Thus, this review will provide a concept that biological modifications of lignin using acidophilic fungi can generate certain value added and environmentally friendly chemicals.
Collapse
Affiliation(s)
- Rehman Javaid
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Aqsa Sabir
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| | - Nadeem Sheikh
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Muhammad Ferhan
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| |
Collapse
|
57
|
Yadav N, Patel V, Singh S. Cerium Oxide-Based Nanozymes in Biology and Medicine. SPRINGER PROCEEDINGS IN PHYSICS 2019. [DOI: 10.1007/978-981-15-0202-6_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
58
|
Falade AO, Mabinya LV, Okoh AI, Nwodo UU. Biochemical and molecular characterization of a novel dye-decolourizing peroxidase from Raoultella ornithinolytica OKOH-1. Int J Biol Macromol 2019; 121:454-462. [DOI: 10.1016/j.ijbiomac.2018.10.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/26/2022]
|
59
|
|
60
|
Duan Z, Shen R, Liu B, Yao M, Jia R. Comprehensive investigation of a dye-decolorizing peroxidase and a manganese peroxidase from Irpex lacteus F17, a lignin-degrading basidiomycete. AMB Express 2018; 8:119. [PMID: 30019324 PMCID: PMC6049852 DOI: 10.1186/s13568-018-0648-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 12/02/2022] Open
Abstract
Irpex lacteus F17 is well-known for its ability to degrade recalcitrant aromatic pollutants, which mainly results from the action of the manganese peroxidase (MnP) that it is able to produce. Recently, the genome sequencing and annotation of this strain provided comprehensive picture of the ligninolytic peroxidase gene family. In addition to revealing the presence of 13 MnPs, genes for five dye-decolorizing peroxidases (DyPs) were also discovered in the I. lacteus F17 genome, which are unrelated to the fungal class II peroxidases. In the present study, amino acid sequences of five DyPs and 13 MnPs, representing two different families of heme peroxidases, were analyzed. Of these, two enzymes, a DyP (Il-DyP4) and a MnP (Il-MnP6) were expressed respectively in Escherichia coli, and were characterized by comparing their molecular models, substrate specificities, and catalytic features. The results showed that Il-DyP4 possessed a higher catalytic efficiency for some representative substrates, and a stronger decolorizing ability to a wide range of synthetic dyes in acidic conditions. Based on electrochemical measurements, Il-DyP4 was found to have a high redox potential of 27 mV at pH 3.5, which was superior to that of Il-MnP6 (− 75 mV), thereby contributing to its ability to oxidize high redox potential substrates, such as veratryl alcohol and polymeric dye Poly R-478. The results highlighted the potential of Il-DyP4 for use in industrial and environmental applications.
Collapse
|
61
|
Voběrková S, Solčány V, Vršanská M, Adam V. Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. CHEMOSPHERE 2018; 202:694-707. [PMID: 29602102 DOI: 10.1016/j.chemosphere.2018.03.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 05/20/2023]
Abstract
Ligninolytic enzymes from white-rot fungi are widely used in biotechnological processes. However, the application of these enzymes as free enzymes is limited due to their instability and lack of reusability. Enzyme stabilization is therefore a major challenge in biocatalytic process research, and immobilization methods are desirable. Using cross-linked enzyme aggregates (CLEAs) such as magnetic CLEAs, porous-CLEAs and combi-CLEAs is a promising technique for overcoming these issues. Cross-linking methods can stabilize and immobilize enzymes by interconnecting enzyme molecules via multiple bonds using cross-linking agents such as glutaraldehyde. The high catalyst density and microporous assembly of CLEAs guarantee high catalyst activity, which, together with their long shelf life, operational stability, and reusability, provide a cost-efficient alternative to matrix-assisted immobilization approaches. Here, we review current progress in ligninolytic enzyme immobilization and provide a comprehensive review of CLEAs. Moreover, we summarize the use of these CLEAs for biocatalysis processes, bioremediation such as dye decolourization, wastewater treatment or pharmaceutically active compound elimination.
Collapse
Affiliation(s)
- Stanislava Voběrková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Veronika Solčány
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Martina Vršanská
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
| |
Collapse
|
62
|
Avram A, Sengupta A, Pfromm PH, Zorn H, Lorenz P, Schwarz T, Nguyen KQ, Czermak P. Novel DyP from the basidiomycete Pleurotus sapidus: substrate screening and kinetics. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/boca-2018-0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractA novel Dye-decolorizing peroxidase from the basidiomycete Pleurotus sapidus was screened for dyedecolorizing peroxidase activity with 2,2‘-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid), Remazol Brilliant Blue R and Guaiacol. Additionally, the catalytic efficiency on degrading β-carotene into volatile products, and the catalyst storage stability with three different additives were also studied. The apparent inhibition constant (KS) was 51.7 μM. Optimal reaction rates (Vmax) and affinity constants (Km) towards the reducing substrates were obtained using Michaelis-Menten kinetic theory. The trend in the calculated Km’s was found to be 7.0 mM > 0.524 mM > 0.051 mM for Guaiacol, 2,2‘-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and Remazol Brilliant Blue R. The storage stability of the catalyst was evaluated with 7.0% w/v PEG400, 7.0% w/v PEG1450 and 0.1% w/v Tween®80 at 5°C over a period of 45 days. The study revealed the longest activity conservation with PEG1450, where rDyP had lost 30% of initial activity. The enzyme solution presented similar pH and temperature dependence to known fungal dye-decolorizing peroxidases with most prolific enzymatic activities registered at pH 4.0 and temperatures below 30°C. An interesting property of the catalyst was oxidation observed in the absence of hydrogen peroxide.
Collapse
|
63
|
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 2017; 41:941-962. [PMID: 29088355 PMCID: PMC5812493 DOI: 10.1093/femsre/fux049] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Justyna Sulej
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Urszula Swiderska-Burek
- Department of Botany and Mycology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkolazka
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Andrzej Paszczynski
- School of Food Science, Food Research Center, Room 103, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
64
|
Shrestha R, Huang G, Meekins DA, Geisbrecht BV, Li P. Mechanistic Insights into Dye-Decolorizing Peroxidase Revealed by Solvent Isotope and Viscosity Effects. ACS Catal 2017; 7:6352-6364. [PMID: 29308295 PMCID: PMC5751952 DOI: 10.1021/acscatal.7b01861] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dye-decolorizing peroxidases (DyPs) are a family of H2O2-dependent heme peroxidases, which have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been uncovered for the B-class ElDyP from Enterobacter lignolyticus. Its structure revealed that a water molecule acts as the sixth axial ligand with two channels at diameters of ~3.0 and 8.0 Å leading to the heme center. A conformational change of ERS* to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs' bisubstrate Ping-Pong mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type ElDyP with D2O2 at pH 3.5 suggested that cmpd 0 deprotonation by the distal aspartate is rate-limiting in the formation of cmpd I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with cmpd I instead of the free enzyme. The significant inverse sKIEs of kcat/KM and kERS* suggested that the aquo release in DyPs is mechanistically important and may explain the enzyme's adoption of two-electron reduction for cmpd I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining DyPs' acidic pH optimum. The kinetic mechanism of D143H-ElDyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs' lignolytic activity.
Collapse
Affiliation(s)
- Ruben Shrestha
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Gaochao Huang
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - David A. Meekins
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
65
|
|
66
|
Wasak A, Drozd R, Struk Ł, Grygorcewicz B. Entrapment of DyP-type peroxidase from Pseudomonas fluorescens Pf-5 into Ca-alginate magnetic beads. Biotechnol Appl Biochem 2017; 65:238-245. [PMID: 28326617 DOI: 10.1002/bab.1562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/15/2017] [Indexed: 11/10/2022]
Abstract
The aim of this study was to investigate the optimal conditions for the immobilization and stabilization of DyP1B dye decolorizing peroxidases type B (DyP1B) from Pseudomonas fluorescens Pf-5 immobilized in Ca-alginate ferromagnetic beads. The immobilized DyP1B was used in the degradation of the Reactive Blue 5 (RB5) synthetic dye. The enzyme was successfully entrapped in a Ca-alginate matrix and showed an encapsulation efficiency of 94%. The concentration of DyP1B (0.8 mg mL-1 ), 2% of alginate and magnetite (10.0 mg mL-1 ) was optimal for immobilization. The immobilized DyP1B showed optimum activity at pH 7.0 and 40 °C compared with pH 5.5 and 30 °C for free peroxidase. Reusability studies showed that after five cycles, the immobilized DyP1B system retained more than 58% of its initial activity. The immobilized DyP1B was able to decolorize RB5 at concentrations of 0.1, 0.05, and 0.01% (w v-1 ) with efficiency rates of about 20, 29, and 45%, respectively. The immobilization of DyP1B in alginate beads with the addition of Fe3 O4 increased its catalytic and applicative potential.
Collapse
Affiliation(s)
- Agata Wasak
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Poland
| | - Radosław Drozd
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Poland
| | - Łukasz Struk
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
67
|
Rais D, Zibek S. Biotechnological and Biochemical Utilization of Lignin. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:469-518. [PMID: 28540404 DOI: 10.1007/10_2017_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This chapter provides an overview of the biosynthesis and structure of lignin. Moreover, examples of the commercial use of lignin and its promising future implementation are briefly described. Many applications are still hampered by the properties of technical lignins. Thus, the major challenge is the conversion of lignins into suitable building blocks or aromatics in order to open up new avenues for the usage of this renewable raw material. This chapter focuses on details about natural lignin degradation by fungi and bacteria, which harbor potential tools for lignin degradation and modification, which might help to develop eco-efficient processes for lignin utilization.
Collapse
Affiliation(s)
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| |
Collapse
|
68
|
Li LL, Yuan H, Liao F, He B, Gao SQ, Wen GB, Tan X, Lin YW. Rational design of artificial dye-decolorizing peroxidases using myoglobin by engineering Tyr/Trp in the heme center. Dalton Trans 2017; 46:11230-11238. [DOI: 10.1039/c7dt02302b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial dye-decolorizing peroxidases (DyPs) have been rationally designed using myoglobin (Mb) as a protein scaffold by engineering Tyr/Trp in the heme center, such as F43Y/F138 W Mb, which exhibited catalytic performance comparable to some native DyPs.
Collapse
Affiliation(s)
- Le-Le Li
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science
- Fudan University
- Shanghai 200433
- China
| | - Fei Liao
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Bo He
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function
- University of South China
- Hengyang 421001
- China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function
- University of South China
- Hengyang 421001
- China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science
- Fudan University
- Shanghai 200433
- China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
- Laboratory of Protein Structure and Function
| |
Collapse
|
69
|
Shrestha R, Chen X, Ramyar KX, Hayati Z, Carlson EA, Bossmann SH, Song L, Geisbrecht BV, Li P. Identification of Surface-Exposed Protein Radicals and A Substrate Oxidation Site in A-Class Dye-Decolorizing Peroxidase from Thermomonospora curvata. ACS Catal 2016; 6:8036-8047. [PMID: 29308294 DOI: 10.1021/acscatal.6b01952] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dye-decolorizing peroxidases (DyPs) are a family of heme peroxidases, in which a catalytic distal aspartate is involved in H2O2 activation to catalyze oxidations in acidic conditions. They have received much attention due to their potential applications in lignin compound degradation and biofuel production from biomass. However, the mode of oxidation in bacterial DyPs remains unknown. We have recently reported that the bacterial TcDyP from Thermomonospora curvata is among the most active DyPs and shows activity toward phenolic lignin model compounds (J. Biol. Chem.2015, 290, 23447). Based on the X-ray crystal structure solved at 1.75 Å, sigmoidal steady-state kinetics with Reactive Blue 19 (RB19), and formation of compound II-like product in the absence of reducing substrates observed with stopped-flow spectroscopy and electron paramagnetic resonance (EPR), we hypothesized that the TcDyP catalyzes oxidation of large-size substrates via multiple surface-exposed protein radicals. Among 7 tryptophans and 3 tyrosines in TcDyP consisting of 376 residues for the matured protein, W263, W376, and Y332 were identified as surface-exposed protein radicals. Only the W263 was also characterized as one of surface-exposed oxidation sites. SDS-PAGE and size-exclusion chromatography demonstrated that W376 represents an off-pathway destination for electron transfer, resulting in the crosslinking of proteins in the absence of substrates. Mutation of W376 improved compound I stability and overall catalytic efficiency toward RB19. While Y332 is highly conserved across all four classes of DyPs, its catalytic function in A-class TcDyP is minimal possibly due to its extremely small solvent accessible areas. Identification of surface-exposed protein radicals and substrate oxidation sites is important for understanding DyP mechanism and modulating its catalytic functions for improved activity on phenolic lignin.
Collapse
Affiliation(s)
| | | | | | - Zahra Hayati
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | | | | | - Likai Song
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | | | | |
Collapse
|
70
|
|
71
|
Colpa DI, Fraaije MW. High overexpression of dye decolorizing peroxidase TfuDyP leads to the incorporation of heme precursor protoporphyrin IX. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
72
|
Lončar N, Colpa DI, Fraaije MW. Exploring the biocatalytic potential of a DyP-type peroxidase by profiling the substrate acceptance of Thermobifida fusca DyP peroxidase. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
73
|
Chen CY, Lee CC, Chen HS, Yang CH, Wang SP, Wu JH, Meng M. Modification of lignin in sugarcane bagasse by a monocopper hydrogen peroxide-generating oxidase from Thermobifida fusca. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
74
|
de Gonzalo G, Colpa DI, Habib MH, Fraaije MW. Bacterial enzymes involved in lignin degradation. J Biotechnol 2016; 236:110-9. [DOI: 10.1016/j.jbiotec.2016.08.011] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
|
75
|
Chen C, Li T. Bacterial dye-decolorizing peroxidases: Biochemical properties and biotechnological opportunities. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
76
|
Suriya J, Bharathiraja S, Manivasagan P, Kim SK. Enzymes From Rare Actinobacterial Strains. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:67-98. [PMID: 27770864 DOI: 10.1016/bs.afnr.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Actinobacteria constitute rich sources of novel biocatalysts and novel natural products for medical and industrial utilization. Although actinobacteria are potential source of economically important enzymes, the isolation and culturing are somewhat tough because of its extreme habitats. But now-a-days, the rate of discovery of novel compounds producing actinomycetes from soil, freshwater, and marine ecosystem has increased much through the developed culturing and genetic engineering techniques. Actinobacteria are well-known source of their bioactive compounds and they are the promising source of broad range of industrially important enzymes. The bacteria have the capability to degrade a range of pesticides, hydrocarbons, aromatic, and aliphatic compounds (Sambasiva Rao, Tripathy, Mahalaxmi, & Prakasham, 2012). Most of the enzymes are mainly derived from microorganisms because of their easy of growth, minimal nutritional requirements, and low-cost for downstream processing. The focus of this review is about the new, commercially useful enzymes from rare actinobacterial strains. Industrial requirements are now fulfilled by the novel actinobacterial enzymes which assist the effective production. Oxidative enzymes, lignocellulolytic enzymes, extremozymes, and clinically useful enzymes are often utilized in many industrial processes because of their ability to catalyze numerous reactions. Novel, extremophilic, oxidative, lignocellulolytic, and industrially important enzymes from rare Actinobacterial population are discussed in this chapter.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea.
| | - S-K Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
77
|
Lambertz C, Ece S, Fischer R, Commandeur U. Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases. Bioengineered 2016; 7:145-54. [PMID: 27295524 DOI: 10.1080/21655979.2016.1191705] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Lignin is 1 of the 3 major components of lignocellulose. Its polymeric structure includes aromatic subunits that can be converted into high-value-added products, but this potential cannot yet been fully exploited because lignin is highly recalcitrant to degradation. Different approaches for the depolymerization of lignin have been tested, including pyrolysis, chemical oxidation, and hydrolysis under supercritical conditions. An additional strategy is the use of lignin-degrading enzymes, which imitates the natural degradation process. A versatile set of enzymes for lignin degradation has been identified, and research has focused on the production of recombinant enzymes in sufficient amounts to characterize their structure and reaction mechanisms. Enzymes have been analyzed individually and in combinations using artificial substrates, lignin model compounds, lignin and lignocellulose. Here we consider progress in the production of recombinant lignin-degrading peroxidases, the advantages and disadvantages of different expression hosts, and obstacles that must be overcome before such enzymes can be characterized and used for the industrial processing of lignin.
Collapse
Affiliation(s)
- Camilla Lambertz
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Selin Ece
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Rainer Fischer
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany.,b Fraunhofer Institute for Molecular Biology and Applied Ecology , Aachen , Germany
| | - Ulrich Commandeur
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
78
|
Abdel-Hamid AM, Solbiati JO, Cann IKO. Insights into lignin degradation and its potential industrial applications. ADVANCES IN APPLIED MICROBIOLOGY 2016; 82:1-28. [PMID: 23415151 DOI: 10.1016/b978-0-12-407679-2.00001-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non-phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides.
Collapse
Affiliation(s)
- Ahmed M Abdel-Hamid
- Energy Biosciences Institute, University of Illinois, IL, USA; Institute for Genomic Biology, University of Illinois, IL, USA
| | | | | |
Collapse
|
79
|
Todorovic S, Hildebrandt P, Martins LO. Surface enhanced resonance Raman detection of a catalytic intermediate of DyP-type peroxidase. Phys Chem Chem Phys 2016; 17:11954-7. [PMID: 25877022 DOI: 10.1039/c5cp01283j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the vibrational spectroscopic characterisation of a catalytic intermediate formed by the reaction of H2O2 with DyP-type peroxidase immobilised on a biocompatible coated metal support. The SERR spectroscopic approach is of general applicability to other peroxidases which form relatively stable catalytic intermediates.
Collapse
Affiliation(s)
- Smilja Todorovic
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | | | | |
Collapse
|
80
|
Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Arch Biochem Biophys 2016; 594:54-60. [DOI: 10.1016/j.abb.2016.02.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 11/20/2022]
|
81
|
Linde D, Cañellas M, Coscolín C, Davó-Siguero I, Romero A, Lucas F, Ruiz-Dueñas FJ, Guallar V, Martínez AT. Asymmetric sulfoxidation by engineering the heme pocket of a dye-decolorizing peroxidase. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00539j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By enlarging the active site of DyP, F359G stereoselectively converting methyl-phenyl sulfide (MPS) into S methyl-phenyl sulfoxide (MPSO) was obtained, while the parent DyP has no activity, and L357G yields racemic mixtures.
Collapse
Affiliation(s)
- Dolores Linde
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | - Marina Cañellas
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
- Anaxomics Biotech
| | | | | | - Antonio Romero
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | - Fátima Lucas
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
- Anaxomics Biotech
| | | | - Victor Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
- ICREA
| | | |
Collapse
|
82
|
Potential of White-Rot Fungi to Treat Xenobiotic-Containing Wastewater. FUNGAL APPLICATIONS IN SUSTAINABLE ENVIRONMENTAL BIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42852-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
83
|
Uchida T, Sasaki M, Tanaka Y, Ishimori K. A Dye-Decolorizing Peroxidase from Vibrio cholerae. Biochemistry 2015; 54:6610-21. [PMID: 26431465 DOI: 10.1021/acs.biochem.5b00952] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dye-decolorizing peroxidase (DyP) protein from Vibrio cholerae (VcDyP) was expressed in Escherichia coli, and its DyP activity was assayed by monitoring degradation of a typical anthraquinone dye, reactive blue 19 (RB19). Its kinetic activity was obtained by fitting the data to the Michaelis-Menten equation, giving kcat and Km values of 1.3 ± 0.3 s(-1) and 50 ± 20 μM, respectively, which are comparable to those of other DyP enzymes. The enzymatic activity of VcDyP was highest at pH 4. A mutational study showed that two distal residues, Asp144 and Arg230, which are conserved in a DyP family, are essential for the DyP reaction. The crystal structure and resonance Raman spectra of VcDyP indicate the transfer of a radical from heme to the protein surface, which was supported by the formation of the intermolecular covalent bond in the reaction with H2O2. To identify the radical site, each of nine tyrosine or two tryptophan residues was substituted. It was clarified that Tyr129 and Tyr235 are in the active site of the dye degradation reaction at lower pH, while Tyr109 and Tyr133 are the sites of an intermolecular covalent bond at higher pH. VcDyP degrades RB19 at lower pH, while it loses activity under neutral or alkaline conditions because of a change in the radical transfer pathway. This finding suggests the presence of a pH-dependent switch of the radical transfer pathway, probably including His178. Although the physiological function of the DyP reaction is unclear, our findings suggest that VcDyP enhances the DyP activity to survive only when it is placed under a severe condition such as being in gastric acid.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University , Sapporo 060-0810, Japan
| | - Miho Sasaki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University , Sapporo 060-0810, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University , Sapporo 060-0808, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University , Sapporo 060-0810, Japan
| |
Collapse
|
84
|
Cheepudom J, Lee CC, Cai B, Meng M. Isolation, characterization, and complete genome analysis of P1312, a thermostable bacteriophage that infects Thermobifida fusca. Front Microbiol 2015; 6:959. [PMID: 26441893 PMCID: PMC4569894 DOI: 10.3389/fmicb.2015.00959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Thermobifida fusca is a moderately thermophilic and cellulolytic actinobacterium. It is of particular interest due to its ability to not only produce a variety of biotechnologically relevant enzymes but also serve as an alternative host for metabolic engineering for the production of valuable chemicals from lignocellulosic agricultural wastes. No bacteriophage that infects T. fusca has been reported, despite its potential impacts on the utilization of T. fusca. In this study, an extremely thermostable bacteriophage P1312 that infects T. fusca was isolated from manure compost. Electron microscopy showed that P1312 has an icosahedral head and a long flexible non-contractile tail, a characteristic of the family Siphoviridae. P1312 has a double-stranded DNA genome of 60,284 bp with 93 potential ORFs. Thirty-one ORFs encode proteins having putative biological functions. The genes involved in phage particle formation cluster together in a region of approximately 16 kb, followed by a segment containing genes presumably for DNA degradation/modification and cell wall disruption. The genes required for DNA replication and transcriptional control are dispersed within the rest of the genome. Phylogenetic analysis of large terminase subunit suggests that P1312 is a headful packaging phage containing a chromosome with circularly permuted direct terminal repeats.
Collapse
Affiliation(s)
- Jatuporn Cheepudom
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Bingfu Cai
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University Taichung, Taiwan
| |
Collapse
|
85
|
Ramzi AB, Hyeon JE, Han SO. Improved catalytic activities of a dye-decolorizing peroxidase (DyP) by overexpression of ALA and heme biosynthesis genes in Escherichia coli. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
86
|
Chen C, Shrestha R, Jia K, Gao PF, Geisbrecht BV, Bossmann SH, Shi J, Li P. Characterization of Dye-decolorizing Peroxidase (DyP) from Thermomonospora curvata Reveals Unique Catalytic Properties of A-type DyPs. J Biol Chem 2015. [PMID: 26205819 DOI: 10.1074/jbc.m115.658807] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dye-decolorizing peroxidases (DyPs) comprise a new family of heme peroxidases, which has received much attention due to their potential applications in lignin degradation. A new DyP from Thermomonospora curvata (TcDyP) was identified and characterized. Unlike other A-type enzymes, TcDyP is highly active toward a wide range of substrates including model lignin compounds, in which the catalytic efficiency with ABTS (kcat(app)/Km(app) = (1.7 × 10(7)) m(-1) s(-1)) is close to that of fungal DyPs. Stopped-flow spectroscopy was employed to elucidate the transient intermediates as well as the catalytic cycle involving wild-type (wt) and mutant TcDyPs. Although residues Asp(220) and Arg(327) are found necessary for compound I formation, His(312) is proposed to play roles in compound II reduction. Transient kinetics of hydroquinone (HQ) oxidation by wt-TcDyP showed that conversion of the compound II to resting state is a rate-limiting step, which will explain the contradictory observation made with the aspartate mutants of A-type DyPs. Moreover, replacement of His(312) and Arg(327) has significant effects on the oligomerization and redox potential (E°') of the enzyme. Both mutants were found to promote the formation of dimeric state and to shift E°' to a more negative potential. Not only do these results reveal the unique catalytic property of the A-type DyPs, but they will also facilitate the development of these enzymes as lignin degraders.
Collapse
Affiliation(s)
| | | | | | - Philip F Gao
- the Protein Production Group, University of Kansas, Lawrence, Kansas 66045
| | | | | | - Jishu Shi
- Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506 and
| | - Ping Li
- From the Departments of Chemistry,
| |
Collapse
|
87
|
Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C. Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 2015; 574:108-19. [PMID: 25575902 PMCID: PMC4420034 DOI: 10.1016/j.abb.2014.12.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/19/2023]
Abstract
Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.
Collapse
Affiliation(s)
- Marcel Zámocký
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia.
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Irene Schaffner
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Bernhard Gasselhuber
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrea Nicolussi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Monika Soudi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
88
|
Mendes S, Brissos V, Gabriel A, Catarino T, Turner DL, Todorovic S, Martins LO. An integrated view of redox and catalytic properties of B-type PpDyP from Pseudomonas putida MET94 and its distal variants. Arch Biochem Biophys 2015; 574:99-107. [PMID: 25797439 DOI: 10.1016/j.abb.2015.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
PpDyP from Pseudomonas putida MET94 is an extremely versatile B-type dye-decolourising peroxidase (DyP) capable of efficient oxidation of a wide range of anthraquinonic and azo dyes, phenolic substrates, the non-phenolic veratryl alcohol and even manganese and ferrous ions. In reaction with H2O2 it forms a stable Compound I at a rate of (1.4±0.3)×10(6)M(-1)s(-1), comparable to those of classical peroxidases and other DyPs. We provide the first report of standard redox potential (E(0')) of the Compound I/Native redox couple in a DyP-type peroxidase. The value of E(0')Cpd I/N=1.10±0.04 (V) is similar to those found in peroxidases from the mammalian superfamily but higher than in peroxidases from the plant superfamily. Site-directed mutagenesis has been used to investigate the role of conserved distal residues, i.e. to replace aspartate 132 by asparagine, and arginine 214 and asparagine 136 by leucine. The structural, redox and catalytic properties of variants are addressed by spectroscopic, electrochemical and kinetic measurements. Our data point to the importance of the distal arginine in the catalytic mechanism of PpDyP, as also observed in DyPB from Rhodococcus jostii RHA1 but not in DyPs from the A and D subfamilies. This work reinforces the idea of existence of mechanistic variations among members of the different sub-families of DyPs with direct implications for their enzymatic properties and potential for biotechnological applications.
Collapse
Affiliation(s)
- Sónia Mendes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Antonieta Gabriel
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - David L Turner
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
89
|
Lončar N, Fraaije MW. Catalases as biocatalysts in technical applications: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:3351-7. [DOI: 10.1007/s00253-015-6512-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
|
90
|
The multihued palette of dye-decolorizing peroxidases. Arch Biochem Biophys 2015; 574:56-65. [PMID: 25743546 DOI: 10.1016/j.abb.2015.01.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/11/2015] [Accepted: 01/16/2015] [Indexed: 12/31/2022]
Abstract
Dye-decolorizing peroxidases (DyPs; EC 1.11.1.19) are heme enzymes that comprise a family of the dimeric α+β barrel structural superfamily of proteins. The first DyP, identified relatively recently in the fungus Bjerkandera adusta, was characterized for its ability to catalyze the decolorization of anthraquinone-based industrial dyes. These enzymes are now known to be present in all three domains of life, but do not appear to occur in plants or animals. They are involved in a range of physiological processes, although in many cases their roles remain unknown. This has not prevented the development of their biocatalytic potential, which includes the transformation of lignin. This review highlights the functional diversity of DyPs in the light of phylogenetic, structural and biochemical data. The phylogenetic analysis reveals the existence of at least five classes of DyPs. Their potential physiological roles are discussed based in part on synteny analyses. Finally, the considerable biotechnological potential of DyPs is summarized.
Collapse
|
91
|
Mäkelä MR, Marinović M, Nousiainen P, Liwanag AJM, Benoit I, Sipilä J, Hatakka A, de Vries RP, Hildén KS. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:63-137. [PMID: 25911233 DOI: 10.1016/bs.aambs.2014.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mila Marinović
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Paula Nousiainen
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - April J M Liwanag
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Isabelle Benoit
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Jussi Sipilä
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, Helsinki, Finland
| | - Annele Hatakka
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Kristiina S Hildén
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
92
|
Mahmood S, Khalid A, Arshad M, Mahmood T, Crowley DE. Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit Rev Biotechnol 2015; 36:639-51. [DOI: 10.3109/07388551.2015.1004518] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shahid Mahmood
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan,
| | - Azeem Khalid
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan,
| | - Muhammad Arshad
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan, and
| | - Tariq Mahmood
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan,
| | - David E. Crowley
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
93
|
A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci Rep 2015; 5:8245. [PMID: 25650125 PMCID: PMC4316163 DOI: 10.1038/srep08245] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022] Open
Abstract
In the biorefinery using lignocellulosic biomass as feedstock, pretreatment to breakdown or loosen lignin is important step and various approaches have been conducted. For biological pretreatment, we screened Bacillus subtilis KCTC2023 as a potential lignin-degrading bacterium based on veratryl alcohol (VA) oxidation test and the putative heme-containing dye-decolorizing peroxidase was found in the genome of B. subtilis KCTC2023. The peroxidase from B. subtilis KCTC2023 (BsDyP) was capable of oxidizing various substrates and atypically exhibits substrate-dependent optimum temperature: 30°C for dyes (Reactive Blue19 and Reactive Black5) and 50°C for high redox potential substrates (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid [ABTS], VA, and veratryl glycerol-β-guaiacyl ether [VGE]) over +1.0 V vs. normal hydrogen electrode. At 50°C, optimum temperature for high redox potential substrates, BsDyP not only showed the highest VA oxidation activity (0.13 Umg−1) among the previously reported bacterial peroxidases but also successfully achieved VGE decomposition by cleaving Cα-Cβ bond in the absence of any oxidative mediator with a specific activity of 0.086 Umg−1 and a conversion rate of 53.5%. Based on our results, BsDyP was identified as the first bacterial peroxidase capable of oxidizing high redox potential lignin-related model compounds, especially VGE, revealing a previously unknown versatility of lignin degrading biocatalyst in nature.
Collapse
|
94
|
Yoshida T, Sugano Y. A structural and functional perspective of DyP-type peroxidase family. Arch Biochem Biophys 2015; 574:49-55. [PMID: 25655348 DOI: 10.1016/j.abb.2015.01.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 11/26/2022]
Abstract
Dye-decolorizing peroxidase from the basidiomycete Bjerkandera adusta Dec 1 (DyP) is a heme peroxidase. This name reflects its ability to degrade several anthraquinone dyes. The substrate specificity, the amino acid sequence, and the tertiary structure of DyP are different from those of the other heme peroxidase (super)families. Therefore, many proteins showing the similar amino acid sequences to that of DyP are called DyP-type peroxidase which is a new family of heme peroxidase identified in 2007. In fact, all structures of this family show a similar structure fold. However, this family includes many proteins whose amino acid sequence identity to DyP is lower than 15% and/or whose catalytic efficiency (kcat/Km) is a few orders of magnitude less than that of DyP. A protein showing an activity different from peroxidase activity (dechelatase activity) has been also reported. In addition, the precise physiological roles of DyP-type peroxidases are unknown. These facts raise a question of whether calling this family DyP-type peroxidase is suitable. Here, we review the differences and similarities of structure and function among this family and propose the reasonable new classification of DyP-type peroxidase family, that is, class P, I and V. In this contribution, we discuss the adequacy of this family name.
Collapse
Affiliation(s)
- Toru Yoshida
- Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Yasushi Sugano
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| |
Collapse
|
95
|
Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9. Int J Biol Macromol 2015; 73:253-63. [DOI: 10.1016/j.ijbiomac.2014.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022]
|
96
|
Linde D, Ruiz-Dueñas FJ, Fernández-Fueyo E, Guallar V, Hammel KE, Pogni R, Martínez AT. Basidiomycete DyPs: Genomic diversity, structural-functional aspects, reaction mechanism and environmental significance. Arch Biochem Biophys 2015; 574:66-74. [PMID: 25637654 DOI: 10.1016/j.abb.2015.01.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 11/26/2022]
Abstract
The first enzyme with dye-decolorizing peroxidase (DyP) activity was described in 1999 from an arthroconidial culture of the fungus Bjerkandera adusta. However, the first DyP sequence had been deposited three years before, as a peroxidase gene from a culture of an unidentified fungus of the family Polyporaceae (probably Irpex lacteus). Since the first description, fewer than ten basidiomycete DyPs have been purified and characterized, but a large number of sequences are available from genomes. DyPs share a general fold and heme location with chlorite dismutases and other DyP-type related proteins (such as Escherichia coli EfeB), forming the CDE superfamily. Taking into account the lack of an evolutionary relationship with the catalase-peroxidase superfamily, the observed heme pocket similarities must be considered as a convergent type of evolution to provide similar reactivity to the enzyme cofactor. Studies on the Auricularia auricula-judae DyP showed that high-turnover oxidation of anthraquinone type and other DyP substrates occurs via long-range electron transfer from an exposed tryptophan (Trp377, conserved in most basidiomycete DyPs), whose catalytic radical was identified in the H2O2-activated enzyme. The existence of accessory oxidation sites in DyP is suggested by the residual activity observed after site-directed mutagenesis of the above tryptophan. DyP degradation of substituted anthraquinone dyes (such as Reactive Blue 5) most probably proceeds via typical one-electron peroxidase oxidations and product breakdown without a DyP-catalyzed hydrolase reaction. Although various DyPs are able to break down phenolic lignin model dimers, and basidiomycete DyPs also present marginal activity on nonphenolic dimers, a significant contribution to lignin degradation is unlikely because of the low activity on high redox-potential substrates.
Collapse
Affiliation(s)
- Dolores Linde
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | - Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Victor Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Kenneth E Hammel
- US Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Rebecca Pogni
- Dept. Biotechnologies, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
97
|
Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B. Arch Biochem Biophys 2015; 574:93-8. [PMID: 25558792 DOI: 10.1016/j.abb.2014.12.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022]
Abstract
Members of the DyP family of peroxidases in Gram-positive bacteria have recently been shown to oxidise Mn(II) and lignin model compounds. Gram-negative pseudomonads, which also show activity for lignin oxidation, also contain dyp-type peroxidase genes. Pseudomonas fluorescens Pf-5 contains three dyp-type peroxidases (35, 40 and 55kDa), each of which has been overexpressed in Escherichia coli, purified, and characterised. Each of the three enzymes shows activity for oxidation of phenol substrates, but the 35kDa Dyp1B enzyme also shows activity for oxidation of Mn(II) and Kraft lignin. Treatment of powdered lignocellulose with Dyp1B in the presence of Mn(II) and hydrogen peroxide leads to the release of a low molecular weight lignin fragment, which has been identified by mass spectrometry as a β-aryl ether lignin dimer containing one G unit and one H unit bearing a benzylic ketone. A mechanism for release of this fragment from lignin oxidation is proposed.
Collapse
|
98
|
Bacterial Enzymes and Multi-enzymatic Systems for Cleaning-up Dyes from the Environment. MICROBIAL DEGRADATION OF SYNTHETIC DYES IN WASTEWATERS 2015. [DOI: 10.1007/978-3-319-10942-8_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
99
|
Bormann S, Gomez Baraibar A, Ni Y, Holtmann D, Hollmann F. Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01477d] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peroxygenases are promising oxyfunctionalisation catalysts for organic synthesis.
Collapse
Affiliation(s)
| | - Alvaro Gomez Baraibar
- Delft University of Technology
- Department of Biotechnology
- 2628 BL Delft
- The Netherlands
| | - Yan Ni
- Delft University of Technology
- Department of Biotechnology
- 2628 BL Delft
- The Netherlands
| | - Dirk Holtmann
- DECHEMA Research Institute
- 60486 Frankfurt am Main
- Germany
| | - Frank Hollmann
- Delft University of Technology
- Department of Biotechnology
- 2628 BL Delft
- The Netherlands
| |
Collapse
|
100
|
Mendes S, Catarino T, Silveira C, Todorovic S, Martins LO. The catalytic mechanism of A-type dye-decolourising peroxidase BsDyP: neither aspartate nor arginine is individually essential for peroxidase activity. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00478k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BsDyP from Bacillus subtilis belongs to the new dye-decolourising peroxidase (DyP) family. Here, we use transient kinetics to provide details on the catalytic cycle of BsDyP.
Collapse
Affiliation(s)
- S. Mendes
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| | - T. Catarino
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
- Departamento de Química
- Faculdade de Ciências e Tecnologia
| | - C. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| | - S. Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| | - L. O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Portugal
| |
Collapse
|