51
|
Role of positron emission tomography computed tomography in screening metastasis of renal cell carcinoma. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2017. [DOI: 10.1016/j.ejrnm.2017.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
52
|
Alongi P, Evangelista L, Caobelli F, Spallino M, Gianolli L, Midiri M, Picchio M. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma. Eur J Nucl Med Mol Imaging 2017; 45:85-94. [PMID: 28828589 DOI: 10.1007/s00259-017-3811-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/11/2017] [Indexed: 11/30/2022]
|
53
|
PET-MRI of the Pancreas and Kidneys. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
54
|
In vitro selection of DNA aptamers against renal cell carcinoma using living cell-SELEX. Talanta 2017; 175:235-242. [PMID: 28841985 DOI: 10.1016/j.talanta.2017.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 11/21/2022]
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer with poor prognosis. Early diagnosis of RCC would significantly improve patient prognosis and quality of life. In this work, we developed new aptamer probes for RCC by using cell-SELEX (systematic evolution of ligands by exponential enrichment) only after 12 rounds of selection, in which a clear cell renal cell carcinoma (ccRCC) cell line 786-O was used as target cell, and embryonic kidney cell line 293T as negative control cell. The selected aptamers were subjected to flow cytometry and laser confocal fluorescence microscopy to evaluate their binding affinity and selectivity. The dissociation constant Kd values of four selected aptamers are all in the nanomolar range. Aptamer W786-1 with the best binding affinity and a Kd value of 9.4 ± 2.0nM was further optimized and its truncated sequence W786-1S showed considerable affinity to 786-O cells. The proteinase and temperature treatment experiment indicated that W786-1 could recognize the target 786-O cells through surface proteins, and remain good binding affinity and excellent selectivity under physiological conditions. Therefore, on the basis of its excellent targeting properties and functional versatility, W786-1 holds great potential to be used as a molecular probe for identifying and targeting RCC.
Collapse
|
55
|
Bagheri MH, Ahlman MA, Lindenberg L, Turkbey B, Lin J, Cahid Civelek A, Malayeri AA, Agarwal PK, Choyke PL, Folio LR, Apolo AB. Advances in medical imaging for the diagnosis and management of common genitourinary cancers. Urol Oncol 2017; 35:473-491. [PMID: 28506596 PMCID: PMC5931389 DOI: 10.1016/j.urolonc.2017.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/05/2017] [Accepted: 04/15/2017] [Indexed: 01/01/2023]
Abstract
Medical imaging of the 3 most common genitourinary (GU) cancers-prostate adenocarcinoma, renal cell carcinoma, and urothelial carcinoma of the bladder-has evolved significantly during the last decades. The most commonly used imaging modalities for the diagnosis, staging, and follow-up of GU cancers are computed tomography, magnetic resonance imaging (MRI), and positron emission tomography (PET). Multiplanar multidetector computed tomography and multiparametric MRI with diffusion-weighted imaging are the main imaging modalities for renal cell carcinoma and urothelial carcinoma, and although multiparametric MRI is rapidly becoming the main imaging tool in the evaluation of prostate adenocarcinoma, biopsy is still required for diagnosis. Functional and molecular imaging using 18-fluorodeoxyglucose-PET and sodium fluoride-PET are essential for the diagnosis, and especially follow-up, of metastatic GU tumors. This review provides an overview of the latest advances in the imaging of these 3 major GU cancers.
Collapse
Affiliation(s)
- Mohammad H Bagheri
- Clinical Image Processing Service, Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Mark A Ahlman
- Nuclear Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD; Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Liza Lindenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Baris Turkbey
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jeffrey Lin
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ali Cahid Civelek
- Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Ashkan A Malayeri
- Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Piyush K Agarwal
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Les R Folio
- Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
56
|
OZKAN E, ARAZ M, SOYDAL C, ARAS G. Comparison of 18F-FDG PET/CT and ceCT Results in the Assessment of RCC Recurrence. ACTA ACUST UNITED AC 2017. [DOI: 10.17352/sscrt.000010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
57
|
Diagnostic performance of 18F-FDG PET or PET/CT in restaging renal cell carcinoma. Nucl Med Commun 2017; 38:156-163. [DOI: 10.1097/mnm.0000000000000618] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
58
|
Mennitto A, Grassi P, Verzoni E, Ratta R, Procopio G. Does F-18 FDG-PET still play a role in metastatic renal cell carcinoma? J Med Imaging Radiat Oncol 2017; 61:250-251. [PMID: 28070961 DOI: 10.1111/1754-9485.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Alessia Mennitto
- Genitourinary Unit, Medical Oncology Department, National Cancer Institute, Milan, Italy
| | - Paolo Grassi
- Genitourinary Unit, Medical Oncology Department, National Cancer Institute, Milan, Italy
| | - Elena Verzoni
- Genitourinary Unit, Medical Oncology Department, National Cancer Institute, Milan, Italy
| | - Raffaele Ratta
- Genitourinary Unit, Medical Oncology Department, National Cancer Institute, Milan, Italy
| | - Giuseppe Procopio
- Genitourinary Unit, Medical Oncology Department, National Cancer Institute, Milan, Italy
| |
Collapse
|
59
|
Liu Y. The Place of FDG PET/CT in Renal Cell Carcinoma: Value and Limitations. Front Oncol 2016; 6:201. [PMID: 27656421 PMCID: PMC5012103 DOI: 10.3389/fonc.2016.00201] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022] Open
Abstract
Unlike for most other malignancies, application of FDG PET/CT is limited for renal cell carcinoma (RCC), mainly due to physiological excretion of 18F-fluoro-2-deoxy-2-d-glucose (FDG) from the kidneys, which decreases contrast between renal lesions and normal tissue, and may obscure or mask the lesions of the kidneys. Published clinical observations were discordant regarding the role of FDG PET/CT in diagnosing and staging RCC, and FDG PET/CT is not recommended for this purpose based on current national and international guidelines. However, quantitative FDG PET/CT imaging may facilitate the prediction of the degree of tumor differentiation and allows for prognosis of the disease. FDG PET/CT has potency as an imaging biomarker to provide useful information about patient’s survival. FDG PET/CT can be effectively used for postoperative surveillance and restaging with high sensitivity, specificity, and accuracy, as early diagnosis of recurrent/metastatic disease can drastically affect therapeutic decision and alter outcome of patients. FDG uptake is helpful for differentiating benign or bland emboli from tumor thrombosis in RCC patients. FDG PET/CT also has higher sensitivity and accuracy when compared with bone scan to detect RCC metastasis to the bone. FDG PET/CT can play a strong clinical role in the management of recurrent and metastatic RCC. In monitoring the efficacy of new target therapy such as tyrosine kinase inhibitors (TKIs) treatment for advanced RCC, FDG PET/CT has been increasingly used to assess the therapeutic efficacy, and change in FDG uptake is a strong indicator of biological response to TKI.
Collapse
Affiliation(s)
- Yiyan Liu
- Nuclear Medicine Service, Department of Radiology, New Jersey Medical School, Rutgers University , Newark, NJ , USA
| |
Collapse
|
60
|
Wang W, Liu L, Zeng H, Sun C, Huang N, Zhang M. Utility of virtual unenhanced images and split-bolus injection using spectral multidetector CT for the assessment of renal cell carcinoma conspicuity and radiation dose. Int J Clin Pract 2016; 70 Suppl 9B:B56-63. [PMID: 27577516 DOI: 10.1111/ijcp.12859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/15/2016] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the radiation dose and renal cell carcinoma conspicuity with virtual unenhanced images and split-bolus injection from spectral multidetector CT (MDCT). MATERIAL AND METHODS This prospective study was approved by the Ethics Committee, and informed consent was obtained. Ninety suspected patients of renal cell carcinoma diagnosed by abdominal ultrasonography and CEUS were randomly divided into two groups by a radiographer. Patients of the first group underwent spectral MDCT with virtual unenhanced imaging and split-bolus injection, while patients in the second group underwent conventional unenhanced as well as tri-phasic enhanced CT. Group A (split-bolus spectral MDCT group): The contrast material was administered at a dose of 1.5 mL/kg body weight at a flow rate of 4 mL/s, with a ratio of 7 to 5 before the CT scan with an interval of 60 seconds. Virtual unenhanced images were generated using a standard three-material decomposition algorithm, and the best mono-energy (keV) was calculated to show the tumour, renal artery and renal vein. Group B (conventional tri-phasic enhanced CT group): the contrast agent was injected with a dose of 1.5 mL/kg body weight at a flow rate of 4 mL/s. The corticomedullary phase scanning was performed once the arterial CT value reached 100 HU; the nephrographic phase was scanned 60 seconds later. And the excretory phase was scanned 5 min after onset of contrast injection. The LKR (lesion kidney ratio), CNR, and CT value of the corticomedullary and nephrographic phase were measured. The opacification of the renal collection system (including calices, infundibula and renal pelvis) was scored. The radiation dose was recorded. Statistical analysis was performed using Student's t-test, Fisher's exact test, the Mann-Whitney U-test, and k statistics. RESULTS There were no statistically significant differences between the two groups in age, sex and body mass index (BMI), but there was significant difference in treatment methods. The best mono-energy was 58 keV for showing the tumour and renal artery and 67 keV for showing the renal vein. There were no differences in the mean attenuations of normal renal parenchyma, renal tumour, CNR, and imaging quality between true unenhanced images and virtual unenhanced images from the combined corticomedullary and nephrographic phase. The LKR of the mono-energy at 58 keV from the combined corticomedullary and nephrographic phase was significantly better than the corticomedullary phase of the conventional enhanced CT scan (0.74±0.18 vs 1.08±0.34, P<.01), but there was no difference in CNR (2.31±1.74 vs 2.79±1.83, P>.05). There were no differences in the CT values of the renal tumour, normal renal parenchyma and renal artery between the two groups (P>.05). The CT value of the renal vein at mono-energy (67 keV) (200.55±43.38) from the combined corticomedullary and nephrographic phase was higher than the conventional CT scan (140.90±42.64) in the nephrographic phase. The Kappa scores of the rate of the renal collection system for the conventional CT and spectral CT were 0.68 (95% confidence interval [CI]: 0.35-0.89) and 0.54 (95% CI: 0.30-0.88), respectively. The radiation dose (735±162 mGy·cm) of Group A was significantly less than that of Group B (1032±324 mGy·cm) (P<.01). CONCLUSION Conspicuity with virtual unenhanced imaging and split-bolus injection from spectral multidetector CT is better than or equal to the conventional three-phase enhanced CT scan in showing the RCC, renal artery and renal vein, while the radiation dose can be reduced by 28.78%.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Zeng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changjiang Sun
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ning Huang
- GE Healthcare, Life Science, Beijing, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
61
|
Recurrent bladder carcinoma: clinical and prognostic role of 18 F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2016; 44:224-233. [PMID: 27565154 DOI: 10.1007/s00259-016-3500-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
AIM A small number of studies evaluated the detection rate of lesions from bladder carcinoma (BC) of 18 F-FDG PET/CT in the restaging process. However, the prognostic role of FDG PET/CT still remains unclear. The aim of the present study was to evaluate the accuracy, the effect upon treatment decision, and the prognostic value of FDG PET/CT in patients with suspected recurrent BC. MATERIALS AND METHODS Forty-one patients affected by BC underwent FDG PET/CT for restaging purpose. The diagnostic accuracy of visually interpreted FDG PET/CT was assessed compared to histology (n = 8), other diagnostic imaging modalities (contrast-enhanced CT in 38/41 patients and MRI in 15/41) and clinical follow-up (n = 41). Semiquantitative PET values (SUVmax, SUVmean, SUL, MTV, TLG) were calculated using a graph-based method. Progression-free survival (PFS) and overall survival (OS) were assessed by using Kaplan-Meier curves. The risk of progression (hazard ratio, HR) was computed by Cox regression analysis by considering all the available variables. RESULTS PET was considered positive in 21 of 41 patients. Of these, recurrent BC was confirmed in 20 (95 %). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of FDG PET/CT were 87 %, 94 %, 95 %, 85 %, 90 %. AUC was 0.9 (95 %IC 0.8-1). Bayesian positive and negative likelihood ratios were 14.5 and 0.13, respectively. FDG PET/CT findings modified the therapeutic approach in 16 patients (modified therapy in 10 PET-positive patients, watch-and-wait in six PET-negative patients). PFS was significantly longer in patients with negative scan vs. those with pathological findings (85 % vs. 24 %, p < 0.05; HR = 12.4; p = 0.001). Moreover, an unremarkable study was associated with a longer OS (88 % vs. 47 % after 2 years and 87 % vs. 25 % after 3 years, respectively, p < 0.05). Standardized uptake value (SUV)max > 6 and total lesion glycolysis (TLG) > 8.5 were recognized as the most accurate thresholds to predict PFS (2-year PFS 62 % for SUVmax < 6 vs. 15 % for SUVmax > 6, p = 0.018; 2-year PFS 66 % for TLG < 8.5 vs. 18 % for TLG > 8.5, p = 0.09). CONCLUSION A very good diagnostic performance for FDG PET/CT was confirmed in patients with suspected recurrent BC. FDG PET/CT allowed for a change in treatment decision in about 40 % of cases and showed an important prognostic value in assessing PFS and OS.
Collapse
|
62
|
Low G, Huang G, Fu W, Moloo Z, Girgis S. Review of renal cell carcinoma and its common subtypes in radiology. World J Radiol 2016; 8:484-500. [PMID: 27247714 PMCID: PMC4882405 DOI: 10.4329/wjr.v8.i5.484] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/20/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Representing 2%-3% of adult cancers, renal cell carcinoma (RCC) accounts for 90% of renal malignancies and is the most lethal neoplasm of the urologic system. Over the last 65 years, the incidence of RCC has increased at a rate of 2% per year. The increased incidence is at least partly due to improved tumor detection secondary to greater availability of high-resolution cross-sectional imaging modalities over the last few decades. Most RCCs are asymptomatic at discovery and are detected as unexpected findings on imaging performed for unrelated clinical indications. The 2004 World Health Organization Classification of adult renal tumors stratifies RCC into several distinct histologic subtypes of which clear cell, papillary and chromophobe tumors account for 70%, 10%-15%, and 5%, respectively. Knowledge of the RCC subtype is important because the various subtypes are associated with different biologic behavior, prognosis and treatment options. Furthermore, the common RCC subtypes can often be discriminated non-invasively based on gross morphologic imaging appearances, signal intensity on T2-weighted magnetic resonance images, and the degree of tumor enhancement on dynamic contrast-enhanced computed tomography or magnetic resonance imaging examinations. In this article, we review the incidence and survival data, risk factors, clinical and biochemical findings, imaging findings, staging, differential diagnosis, management options and post-treatment follow-up of RCC, with attention focused on the common subtypes.
Collapse
|
63
|
Update on advances in molecular PET in urological oncology. Jpn J Radiol 2016; 34:470-85. [PMID: 27222021 DOI: 10.1007/s11604-016-0553-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/07/2016] [Indexed: 12/28/2022]
Abstract
Integrated positron emission tomography/computed tomography (PET/CT) with 2-[(18)F]fluoro-2-deoxy-D-glucose ((18)F-FDG) has emerged as a powerful tool for the combined metabolic and anatomic evaluation of many cancers. In urological oncology, however, the use of (18)F-FDG has been limited by a generally low tumor uptake, and physiological excretion of FDG through the urinary system. (18)F-FDG PET/CT is useful when applied to specific indications in selected patients with urological malignancy. New radiotracers and positron emission tomography/magnetic resonance imaging (PET/MRI) are expected to further improve the performance of PET in uro-oncology.
Collapse
|
64
|
Tagliabue L, Malaspina S. Time to reconsider FDG-PET/CT for local and distant staging of urological malignancies. Clin Transl Imaging 2016. [DOI: 10.1007/s40336-016-0179-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|