51
|
Oraiopoulou ME, Tzamali E, Tzedakis G, Liapis E, Zacharakis G, Vakis A, Papamatheakis J, Sakkalis V. Integrating in vitro experiments with in silico approaches for Glioblastoma invasion: the role of cell-to-cell adhesion heterogeneity. Sci Rep 2018; 8:16200. [PMID: 30385804 PMCID: PMC6212459 DOI: 10.1038/s41598-018-34521-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma cells adopt migration strategies to invade into the brain parenchyma ranging from individual to collective mechanisms, whose role and dynamics are not yet fully understood. In this work, we explore Glioblastoma heterogeneity and recapitulate its invasive patterns both in vitro, by utilizing primary cells along with the U87MG cell line, and in silico, by adopting discrete, individual cell-based mathematics. Glioblastoma cells are cultured three-dimensionally in an ECM-like substrate. The primary Glioblastoma spheroids adopt a novel cohesive pattern, mimicking perivascular invasion in the brain, while the U87MG adopt a typical, starburst invasive pattern under the same experimental setup. Mathematically, we focus on the role of the intrinsic heterogeneity with respect to cell-to-cell adhesion. Our proposed mathematical approach mimics the invasive morphologies observed in vitro and predicts the dynamics of tumour expansion. The role of the proliferation and migration is also explored showing that their effect on tumour morphology is different per cell type. The proposed model suggests that allowing cell-to-cell adhesive heterogeneity within the tumour population is sufficient for variable invasive morphologies to emerge which remain originally undetectable by conventional imaging, indicating that exploration in pathological samples is needed to improve our understanding and reveal potential patient-specific therapeutic targets.
Collapse
Affiliation(s)
- M-E Oraiopoulou
- Department of Medicine, University of Crete, Heraklion, Crete, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - E Tzamali
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - G Tzedakis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - E Liapis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - G Zacharakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - A Vakis
- Department of Medicine, University of Crete, Heraklion, Crete, Greece
- Neurosurgery Clinic, University General Hospital of Heraklion, Crete, Greece
| | - J Papamatheakis
- Gene Expression Laboratory, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - V Sakkalis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
52
|
Mair DB, Ames HM, Li R. Mechanisms of invasion and motility of high-grade gliomas in the brain. Mol Biol Cell 2018; 29:2509-2515. [PMID: 30325290 PMCID: PMC6254577 DOI: 10.1091/mbc.e18-02-0123] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022] Open
Abstract
High-grade gliomas are especially difficult tumors to treat due to their invasive behavior. This has led to extensive research focusing on arresting glioma cell migration. Cell migration involves the sensing of a migratory cue, followed by polarization in the direction of the cue, and reorganization of the actin cytoskeleton to allow for a protrusive leading edge and a contractile trailing edge. Transmission of these forces to produce motility also requires adhesive interactions of the cell with the extracellular microenvironment. In glioma cells, transmembrane receptors such as CD44 and integrins bind the cell to the surrounding extracellular matrix that provides a substrate on which the cell can exert the requisite forces for cell motility. These various essential parts of the migratory machinery are potential targets to halt glioma cell invasion. In this review, we discuss the mechanisms of glioma cell migration and how they may be targeted in anti-invasion therapies.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Heather M. Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
53
|
Barnhill R, Vermeulen P, Daelemans S, van Dam P, Roman‐Roman S, Servois V, Hurbain I, Gardrat S, Raposa G, Nicolas A, Dendale R, Pierron G, Desjardins L, Cassoux N, Piperno‐Neumann S, Mariani P, Lugassy C. Replacement and desmoplastic histopathological growth patterns: A pilot study of prediction of outcome in patients with uveal melanoma liver metastases. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018; 4:227-240. [PMID: 29917326 PMCID: PMC6174621 DOI: 10.1002/cjp2.105] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
Abstract
Up to 50% of uveal melanomas (UM) metastasise to the liver within 10 years of diagnosis, and these almost always prove rapidly fatal. As histopathological growth patterns (HGPs) of liver metastases of the replacement and desmoplastic type, particularly from colon and breast carcinoma, may import valuable biological and prognostic information, we have studied HGP in a series of 41 UM liver metastases originating from 41 patients from the period 2006–2017. Twenty patients underwent enucleation while 21 had radiation therapy. Analysis of UM by array comparative genomic hybridisation revealed: 25 (64%) patients with high risk (monosomy3/8q gain); 13 (33%) intermediate risk (M3/8normal or disomy3/8q gain); and 1 low risk (disomy3/8normal). The principal HGP was replacement in 30 (73%) cases and desmoplastic in 11 (27%) cases. Cases with replacement demonstrated striking vascular co‐option/angiotropism. With the development of liver metastasis, only the replacement pattern, largest primary tumour diameter, and R2 (incomplete resection) status predicted diminished overall survival (OS; p < 0.041, p < 0.017, p < 0.047, respectively). On multivariate analysis, only HGP (hazard ratio; HR = 6.51, p = 0.008) and resection status remained significant. The genomic high‐risk variable had no prognostic value at this stage of liver metastasis. Chi‐square test showed no association of HGP with monosomy 3 or 8q gain. Eighteen of 41 (44%) patients are alive with disease and 23 (56%) patients died with follow‐up ranging from 12 to 318 months (mean: 70 months, median: 47 months). In conclusion, we report for the first time the frequency of the replacement and desmoplastic HGPs in liver UM metastases resected from living patients, and their potential important prognostic value for UM patients, as in other solid cancers. These results may potentially be utilised to develop radiological correlates and therapeutic targets for following and treating patients with UM metastases.
Collapse
Affiliation(s)
- Raymond Barnhill
- Department of PathologyInstitut CurieParisFrance
- University of Paris Réné Descartes Faculty of MedicineParisFrance
| | - Peter Vermeulen
- HistoGeneXAntwerpenBelgium
- Faculty of Medicine and Health SciencesUniversity of Antwerp – MIPRO Center for Oncological Research (CORE) ‐ TCRU, GZA Sint‐AugustinusAntwerpenBelgium
| | - Sofie Daelemans
- HistoGeneXAntwerpenBelgium
- Faculty of Medicine and Health SciencesUniversity of Antwerp – MIPRO Center for Oncological Research (CORE) ‐ TCRU, GZA Sint‐AugustinusAntwerpenBelgium
| | - Pieter‐Jan van Dam
- HistoGeneXAntwerpenBelgium
- Faculty of Medicine and Health SciencesUniversity of Antwerp – MIPRO Center for Oncological Research (CORE) ‐ TCRU, GZA Sint‐AugustinusAntwerpenBelgium
| | | | | | - Ilse Hurbain
- Institut CuriePSL Research University, CNRSParisFrance
- Sorbonne UniversitésUPMC Univ Paris 06, CNRSParisFrance
- Cell and Tissue Imaging Core Facility PICT‐IBiSAInstitut CurieParisFrance
| | | | - Graça Raposa
- Institut CuriePSL Research University, CNRSParisFrance
- Sorbonne UniversitésUPMC Univ Paris 06, CNRSParisFrance
- Cell and Tissue Imaging Core Facility PICT‐IBiSAInstitut CurieParisFrance
| | | | - Rémi Dendale
- Department of RadiotherapyInstitut Curie OrsayParisFrance
| | | | | | - Nathalie Cassoux
- University of Paris Réné Descartes Faculty of MedicineParisFrance
- Department of OphthalmologyInstitut CurieParisFrance
| | | | | | - Claire Lugassy
- Department of Translational ResearchInstitut CurieParisFrance
| |
Collapse
|
54
|
Gritsenko PG, Friedl P. Adaptive adhesion systems mediate glioma cell invasion in complex environments. J Cell Sci 2018; 131:jcs216382. [PMID: 29991514 PMCID: PMC6104823 DOI: 10.1242/jcs.216382] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022] Open
Abstract
Diffuse brain invasion by glioma cells prevents effective surgical or molecular-targeted therapy and underlies a detrimental outcome. Migrating glioma cells are guided by complex anatomical brain structures but the exact mechanisms remain poorly defined. To identify adhesion receptor systems and matrix structures supporting glioma cell invasion into brain-like environments we used 2D and 3D organotypic invasion assays in combination with antibody-, peptide- and RNA-based interference. Combined interference with β1 and αV integrins abolished the migration of U-251 and E-98 glioma cells on reconstituted basement membrane; however, invasion into primary brain slices or 3D astrocyte-based scaffolds and migration on astrocyte-deposited matrix was only partly inhibited. Any residual invasion was supported by vascular structures, as well as laminin 511, a central constituent of basement membrane of brain blood vessels. Multi-targeted interference against β1, αV and α6 integrins expressed by U-251 and E-98 cells proved insufficient to achieve complete migration arrest. These data suggest that mechanocoupling by integrins is relatively resistant to antibody- or peptide-based targeting, and cooperates with additional, as yet unidentified adhesion systems in mediating glioma cell invasion in complex brain stroma.
Collapse
Affiliation(s)
- Pavlo G Gritsenko
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, 77030 Texas, USA
- Cancer Genomics Centre (CGC.nl), 3584 Utrecht, The Netherlands
| |
Collapse
|
55
|
Chekhonin IV, Chistiakov DA, Grinenko NF, Gurina OI. Glioma Cell and Astrocyte Co-cultures As a Model to Study Tumor-Tissue Interactions: A Review of Methods. Cell Mol Neurobiol 2018; 38:1179-1195. [PMID: 29744691 PMCID: PMC11481938 DOI: 10.1007/s10571-018-0588-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023]
Abstract
Astrocytes are a dominant cell type that envelopes the glioma bed. Typically, that is followed by formation of contacts between astrocytes and glioma cells and accompanied by change in astrocyte phenotype, a phenomenon known as a 'reactive astrogliosis.' Generally considered glioma-promoting, astrocytes have many controversial peculiarities in communication with tumor cells, which need thorough examination in vitro. This review is devoted to in vitro co-culture studies of glioma cells and astrocytes. Firstly, we list several fundamental works which allow understanding the modalities of co-culturing. Cell-to-cell interactions between astrocytes and glioma cells, the roles of astrocytes in tumor metabolism, and glioma-related angiogenesis are reviewed. In the review, we also discuss communications between glioma stem cells and astrocytes. Co-cultures of glioma cells and astrocytes are used for studying anti-glioma treatment approaches. We also enumerate surgical, chemotherapeutic, and radiotherapeutic methods assessed in co-culture experiments. In conclusion, we underline collisions in the field and point out the role of the co-cultures for neurobiological studies.
Collapse
Affiliation(s)
- Ivan V Chekhonin
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Kropotkinskiy pereulok 23, Moscow, 119034, Russian Federation.
| | - Dimitry A Chistiakov
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Kropotkinskiy pereulok 23, Moscow, 119034, Russian Federation
| | - Nadezhda F Grinenko
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Kropotkinskiy pereulok 23, Moscow, 119034, Russian Federation
| | - Olga I Gurina
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Kropotkinskiy pereulok 23, Moscow, 119034, Russian Federation
| |
Collapse
|
56
|
A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions. Biomaterials 2018; 198:63-77. [PMID: 30098794 DOI: 10.1016/j.biomaterials.2018.07.048] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest forms of cancer. Despite many treatment options, prognosis of GBM remains dismal with a 5-year survival rate of 4.7%. Even then, tumors often recur after treatment. Tumor recurrence is hypothesized to be driven by glioma stem cell (GSC) populations which are highly tumorigenic, invasive, and resistant to several forms of therapy. GSCs are often concentrated around the tumor vasculature, referred to as the vascular niche, which are known to provide microenvironmental cues to maintain GSC stemness, promote invasion, and resistance to therapies. In this work, we developed a 3D organotypic microfluidic platform, integrated with hydrogel-based biomaterials, to mimic the GSC vascular niche and study the influence of endothelial cells (ECs) on patient-derived GSC behavior and identify signaling cues that mediate their invasion and phenotype. The established microvascular network enhanced GSC migration within a 3D hydrogel, promoted invasive morphology as well as maintained GSC proliferation rates and phenotype (Nestin, SOX2, CD44). Notably, we compared migration behavior to in vivo mice model and found similar invasive morphology suggesting that our microfluidic system could represent a physiologically relevant in vivo microenvironment. Moreover, we confirmed that CXCL12-CXCR4 signaling is involved in promoting GSC invasion in a 3D vascular microenvironment by utilizing a CXCR4 antagonist (AMD3100), while also demonstrating the effectiveness of the microfluidic as a drug screening assay. Our model presents a potential ex vivo platform for studying the interplay of GSCs with its surrounding microenvironment as well as development of future therapeutic strategies tailored toward disrupting key molecular pathways involved in GSC regulatory mechanisms.
Collapse
|
57
|
Cornelison RC, Munson JM. Perspective on Translating Biomaterials Into Glioma Therapy: Lessons From in vitro Models. FRONTIERS IN MATERIALS 2018; 5:27. [PMID: 30911536 PMCID: PMC6430582 DOI: 10.3389/fmats.2018.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant form of brain cancer. Even with aggressive standard of care, GBM almost always recurs because its diffuse, infiltrative nature makes these tumors difficult to treat. The use of biomaterials is one strategy that has been, and is being, employed to study and overcome recurrence. Biomaterials have been used in GBM in two ways: in vitro as mediums in which to model the tumor microenvironment, and in vivo to sustain release of cytotoxic therapeutics. In vitro systems are a useful platform for studying the effects of drugs and tissue-level effectors on tumor cells in a physiologically relevant context. These systems have aided examination of how glioma cells respond to a variety of natural, synthetic, and semi-synthetic biomaterials with varying substrate properties, biochemical factor presentations, and non-malignant parenchymal cell compositions in both 2D and 3D environments. The current in vivo paradigm is completely different, however. Polymeric implants are simply used to line the post-surgical resection cavities and deliver secondary therapies, offering moderate impacts on survival. Instead, perhaps we can use the data generated from in vitro systems to design novel biomaterial-based treatments for GBM akin to a tissue engineering approach. Here we offer our perspective on the topic, summarizing how biomaterials have been used to identify facets of glioma biology in vitro and discussing the elements that show promise for translating these systems in vivo as new therapies for GBM.
Collapse
Affiliation(s)
- R. Chase Cornelison
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
58
|
Wolf KJ, Lee S, Kumar S. A 3D topographical model of parenchymal infiltration and perivascular invasion in glioblastoma. APL Bioeng 2018; 2. [PMID: 29855630 DOI: 10.1063/1.5021059] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common and invasive primary brain cancer. GBM tumors are characterized by diffuse infiltration, with tumor cells invading slowly through the hyaluronic acid (HA)-rich parenchyma toward vascular beds and then migrating rapidly along microvasculature. Progress in understanding local infiltration, vascular homing, and perivascular invasion is limited by the absence of culture models that recapitulate these hallmark processes. Here, we introduce a platform for GBM invasion consisting of a tumor-like cell reservoir and a parallel open channel "vessel" embedded in the 3D HA-RGD matrix. We show that this simple paradigm is sufficient to capture multi-step invasion and transitions in cell morphology and speed reminiscent of those seen in GBM. Specifically, seeded tumor cells grow into multicellular masses that expand and invade the surrounding HA-RGD matrices while extending long (10-100 μm), thin protrusions resembling those observed for GBM in vivo. Upon encountering the channel, cells orient along the channel wall, adopt a 2D-like morphology, and migrate rapidly along the channel. Structured illumination microscopy reveals distinct cytoskeletal architectures for cells invading through the HA matrix versus those migrating along the vascular channel. Substitution of collagen I in place of HA-RGD supports the same sequence of events but with faster local invasion and a more mesenchymal morphology. These results indicate that topographical effects are generalizable across matrix formulations, but the mechanisms underlying invasion are matrix-dependent. We anticipate that our reductionist paradigm should speed the development of mechanistic hypotheses that could be tested in more complex tumor models.
Collapse
Affiliation(s)
- Kayla J Wolf
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Stacey Lee
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Sanjay Kumar
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
59
|
|