51
|
De Petrocellis L, Ligresti A, Schiano Moriello A, Iappelli M, Verde R, Stott CG, Cristino L, Orlando P, Di Marzo V. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. Br J Pharmacol 2014; 168:79-102. [PMID: 22594963 DOI: 10.1111/j.1476-5381.2012.02027.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid receptor activation induces prostate carcinoma cell (PCC) apoptosis, but cannabinoids other than Δ(9) -tetrahydrocannabinol (THC), which lack potency at cannabinoid receptors, have not been investigated. Some of these compounds antagonize transient receptor potential melastatin type-8 (TRPM8) channels, the expression of which is necessary for androgen receptor (AR)-dependent PCC survival. EXPERIMENTAL APPROACH We tested pure cannabinoids and extracts from Cannabis strains enriched in particular cannabinoids (BDS), on AR-positive (LNCaP and 22RV1) and -negative (DU-145 and PC-3) cells, by evaluating cell viability (MTT test), cell cycle arrest and apoptosis induction, by FACS scans, caspase 3/7 assays, DNA fragmentation and TUNEL, and size of xenograft tumours induced by LNCaP and DU-145 cells. KEY RESULTS Cannabidiol (CBD) significantly inhibited cell viability. Other compounds became effective in cells deprived of serum for 24 h. Several BDS were more potent than the pure compounds in the presence of serum. CBD-BDS (i.p.) potentiated the effects of bicalutamide and docetaxel against LNCaP and DU-145 xenograft tumours and, given alone, reduced LNCaP xenograft size. CBD (1-10 µM) induced apoptosis and induced markers of intrinsic apoptotic pathways (PUMA and CHOP expression and intracellular Ca(2+)). In LNCaP cells, the pro-apoptotic effect of CBD was only partly due to TRPM8 antagonism and was accompanied by down-regulation of AR, p53 activation and elevation of reactive oxygen species. LNCaP cells differentiated to androgen-insensitive neuroendocrine-like cells were more sensitive to CBD-induced apoptosis. CONCLUSIONS AND IMPLICATIONS These data support the clinical testing of CBD against prostate carcinoma.
Collapse
Affiliation(s)
- Luciano De Petrocellis
- Istituto di Cibernetica, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ko JH, Gu W, Lim I, Bang H, Ko EA, Zhou T. Ion channel gene expression in lung adenocarcinoma: potential role in prognosis and diagnosis. PLoS One 2014; 9:e86569. [PMID: 24466154 PMCID: PMC3900557 DOI: 10.1371/journal.pone.0086569] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/13/2013] [Indexed: 01/23/2023] Open
Abstract
Ion channels are known to regulate cancer processes at all stages. The roles of ion channels in cancer pathology are extremely diverse. We systematically analyzed the expression patterns of ion channel genes in lung adenocarcinoma. First, we compared the expression of ion channel genes between normal and tumor tissues in patients with lung adenocarcinoma. Thirty-seven ion channel genes were identified as being differentially expressed between the two groups. Next, we investigated the prognostic power of ion channel genes in lung adenocarcinoma. We assigned a risk score to each lung adenocarcinoma patient based on the expression of the differentially expressed ion channel genes. We demonstrated that the risk score effectively predicted overall survival and recurrence-free survival in lung adenocarcinoma. We also found that the risk scores for ever-smokers were higher than those for never-smokers. Multivariate analysis indicated that the risk score was a significant prognostic factor for survival, which is independent of patient age, gender, stage, smoking history, Myc level, and EGFR/KRAS/ALK gene mutation status. Finally, we investigated the difference in ion channel gene expression between the two major subtypes of non-small cell lung cancer: adenocarcinoma and squamous-cell carcinoma. Thirty ion channel genes were identified as being differentially expressed between the two groups. We suggest that ion channel gene expression can be used to improve the subtype classification in non-small cell lung cancer at the molecular level. The findings in this study have been validated in several independent lung cancer cohorts.
Collapse
Affiliation(s)
- Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Wanjun Gu
- Research Center for Learning Sciences, Southeast University, Nanjing, Jiangsu, China
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Eun A. Ko
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (TZ); (EAK)
| | - Tong Zhou
- Department of Medicine, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (TZ); (EAK)
| |
Collapse
|
53
|
Díaz-Laviada I, Rodríguez-Henche N. The potential antitumor effects of capsaicin. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:181-208. [PMID: 24941670 DOI: 10.1007/978-3-0348-0828-6_8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capsaicin, one of the major pungent ingredients found in red peppers, has been recently demonstrated to induce apoptosis in many types of malignant cell lines including colon adenocarcinoma, pancreatic cancer, hepatocellular carcinoma, prostate cancer, breast cancer, and many others. The mechanism whereby capsaicin induces apoptosis in cancer cells is not completely elucidated but involves intracellular calcium increase, reactive oxygen species generation, disruption of mitochondrial membrane transition potential, and activation of transcription factors such as NFkappaB and STATS. Recently, a role for the AMP-dependent kinase (AMPK) and autophagy pathways in capsaicin-triggered cell death has been proposed. In addition, capsaicin shows antitumor activity in vivo by reducing the growth of many tumors induced in mice. In this chapter, we report the last advances performed in the antitumor activity of capsaicin and review the main signaling pathways involved.
Collapse
|
54
|
Mergler S, Derckx R, Reinach PS, Garreis F, Böhm A, Schmelzer L, Skosyrski S, Ramesh N, Abdelmessih S, Polat OK, Khajavi N, Riechardt AI. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. Cell Signal 2013; 26:56-69. [PMID: 24084605 DOI: 10.1016/j.cellsig.2013.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 11/16/2022]
Abstract
Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca(2+) channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca(2+) permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca(2+) transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca(2+) transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La(3+), capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca(2+) transients, which were suppressed by La(3+) and CPZ whereas CAP-induced Ca(2+) transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease.
Collapse
Affiliation(s)
- Stefan Mergler
- Charité - Universitätsmedizin Berlin, Campus Virchow-Clinic, Department of Ophthalmology, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Skrzypski M, Sassek M, Abdelmessih S, Mergler S, Grötzinger C, Metzke D, Wojciechowicz T, Nowak KW, Strowski MZ. Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action. Cell Signal 2013; 26:41-8. [PMID: 24075930 DOI: 10.1016/j.cellsig.2013.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022]
Abstract
Capsaicin (CAP), the pungent ingredient of chili peppers, inhibits growth of various solid cancers via TRPV1 as well as TRPV1-independent mechanisms. Recently, we showed that TRPV1 regulates intracellular calcium level and chromogranin A secretion in pancreatic neuroendocrine tumor (NET) cells. In the present study, we characterize the role of the TRPV1 agonist - CAP - in controlling proliferation and apoptosis of pancreatic BON and QGP-1 NET cells. We demonstrate that CAP reduces viability and proliferation, and stimulates apoptotic death of NET cells. CAP causes mitochondrial membrane potential loss, inhibits ATP synthesis and reduces mitochondrial Bcl-2 protein production. In addition, CAP increases cytochrome c and cleaved caspase 3 levels in cytoplasm. CAP reduces reactive oxygen species (ROS) generation. The antioxidant N-acetyl-l-cysteine (NAC) acts synergistically with CAP to reduce ROS generation, without affecting CAP-induced toxicity. TRPV1 protein reduction by 75% reduction fails to attenuate CAP-induced cytotoxicity. In summary, these results suggest that CAP induces cytotoxicity by disturbing mitochondrial potential, and inhibits ATP synthesis in NET cells. Stimulation of ROS generation by CAP appears to be a secondary effect, not related to CAP-induced cytotoxicity. These results justify further evaluation of CAP in modulating pancreatic NETs in vivo.
Collapse
Affiliation(s)
- M Skrzypski
- Department of Hepatology and Gastroenterology & the Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, 13353 Berlin, Germany; Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Emonds KM, Koole M, Casteels C, Van den Bergh L, Bormans GM, Claus F, De Wever L, Lerut E, Van Poppel H, Joniau S, Dumez H, Haustermans K, Mortelmans L, Goffin K, Van Laere K, Deroose CM, Mottaghy FM. 18F-MK-9470 PET imaging of the type 1 cannabinoid receptor in prostate carcinoma: a pilot study. EJNMMI Res 2013; 3:59. [PMID: 23915639 PMCID: PMC3750838 DOI: 10.1186/2191-219x-3-59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/19/2013] [Indexed: 11/30/2022] Open
Abstract
Background Preclinical and histological data show overexpression of the type 1 cannabinoid receptor (CB1R) in prostate carcinoma (PCa). In a prospective study, the feasibility of 18F-MK-9470 positron emission tomography (PET) imaging in patients with primary and metastatic PCa was evaluated. Methods Eight patients were included and underwent 18F-MK-9470 PET/CT imaging. For five patients with primary PCa, dynamic PET/CT imaging was performed over three acquisition intervals (0 to 30, 60 to 90 and 120 to 150 min post-injection). In malignant and benign prostate tissue regions, time activity curves of the mean standardized uptake value (SUVmean) were determined as well as the corresponding area under the curve to compare 18F-MK-9470 uptake over time. Muscle uptake of 18F-MK-9470 was used as reference for non-specific binding. Magnetic resonance imaging (MRI) was used as anatomical reference and for delineating intraprostatic tumours. Histological and immunohistochemical (IHC) examination was performed on the whole-mount histopathology sections of four patients who underwent radical prostatectomy to assess the MRI-based tumour versus benign tissue classification. For three patients with proven advanced metastatic disease, two static PET/CTs were performed 1 and 3 h post-injection. 18F-MK-9470 uptake was evaluated in bone lesions of metastatic PCa by comparing SUVmean values of metastases with these of the contralateral bone tissue. Results 18F-MK-9470 uptake was significantly higher in benign and malignant prostate tissue compared to muscle, but it did not differ between both prostate tissue compartments. IHC findings of corresponding prostatic histopathological sections indicated weak CB1R expression in locally confined PCa, which was not visualized with 18F-MK-9470 PET. Metastases in the axial skeleton could not be detected while some metastases in the appendicular skeleton showed higher 18F-MK-9470 uptake as compared to the uptake in contralateral normal bone. Conclusions 18F-MK-9470 PET could not detect local PCa or bone metastases in the axial skeleton but was able to visualize metastases in the appendicular skeleton. Based on these pilot observations, it seems unlikely that CB1R PET will play a significant role in the evaluation of PCa.
Collapse
Affiliation(s)
- Kimy M Emonds
- Department of Nuclear Medicine, University Hospitals Leuven, Leuven 3000, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Cipriano M, Häggström J, Hammarsten P, Fowler CJ. Association between cannabinoid CB₁ receptor expression and Akt signalling in prostate cancer. PLoS One 2013; 8:e65798. [PMID: 23755281 PMCID: PMC3673925 DOI: 10.1371/journal.pone.0065798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/02/2013] [Indexed: 12/29/2022] Open
Abstract
Background In prostate cancer, tumour expression of cannabinoid CB1 receptors is associated with a poor prognosis. One explanation for this association comes from experiments with transfected astrocytoma cells, where a high CB receptor expression recruits the Akt signalling survival pathway. In the present study, we have investigated the association between CB1 receptor expression and the Akt pathway in a well-characterised prostate cancer tissue microarray. Methodology/Principal Findings Phosphorylated Akt immunoreactivity (pAkt-IR) scores were available in the database. CB1 receptor immunoreactivity (CB1IR) was rescored from previously published data using the same scale as pAkt-IR. There was a highly significant correlation between CB1IR and pAkt-IR. Further, cases with high expression levels of both biomarkers were much more likely to have a more severe form of the disease at diagnosis than those with low expression levels. The two biomarkers had additive effects, rather than an interaction, upon disease-specific survival. Conclusions/Significance The present study provides data that is consistent with the hypothesis that at a high CB1 receptor expression, the Akt signalling pathway becomes operative.
Collapse
Affiliation(s)
- Mariateresa Cipriano
- Pharmacology, Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Jenny Häggström
- Umeå School of Business and Economics, Department of Statistics, Umeå University, Umeå, Sweden
| | - Peter Hammarsten
- Pathology, Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Christopher J. Fowler
- Pharmacology, Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
58
|
Di Marzo V, De Petrocellis L. Why do cannabinoid receptors have more than one endogenous ligand? Philos Trans R Soc Lond B Biol Sci 2013; 367:3216-28. [PMID: 23108541 DOI: 10.1098/rstb.2011.0382] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The endocannabinoid system was revealed following the understanding of the mechanism of action of marijuana's major psychotropic principle, Δ(9)-tetrahydrocannabinol, and includes two G-protein-coupled receptors (GPCRs; the cannabinoid CB1 and CB2 receptors), their endogenous ligands (the endocannabinoids, the best studied of which are anandamide and 2-arachidonoylglycerol (2-AG)), and the proteins that regulate the levels and activity of these receptors and ligands. However, other minor lipid metabolites different from, but chemically similar to, anandamide and 2-AG have also been suggested to act as endocannabinoids. Thus, unlike most other GPCRs, cannabinoid receptors appear to have more than one endogenous agonist, and it has been often wondered what could be the physiological meaning of this peculiarity. In 1999, it was proposed that anandamide might also activate other targets, and in particular the transient receptor potential of vanilloid type-1 (TRPV1) channels. Over the last decade, this interaction has been shown to occur both in peripheral tissues and brain, during both physiological and pathological conditions. TRPV1 channels can be activated also by another less abundant endocannabinoid, N-arachidonoyldopamine, but not by 2-AG, and have been proposed by some authors to act as ionotropic endocannabinoid receptors. This article will discuss the latest discoveries on this subject, and discuss, among others, how anandamide and 2-AG differential actions at TRPV1 and cannabinoid receptors contribute to making this signalling system a versatile tool available to organisms to fine-tune homeostasis.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto Chimica Biomolecolare, CNR, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, NA, Italy.
| | | |
Collapse
|
59
|
Vercelli C, Barbero R, Cuniberti B, Odore R, Re G. Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells. Vet Comp Oncol 2013; 13:133-42. [DOI: 10.1111/vco.12028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/23/2013] [Accepted: 02/04/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. Vercelli
- Department of Veterinary Sciences, Division of Veterinary Pharmacology and Toxicology; University of Turin; Grugliasco Turin Italy
| | - R. Barbero
- Department of Veterinary Sciences, Division of Veterinary Pharmacology and Toxicology; University of Turin; Grugliasco Turin Italy
| | - B. Cuniberti
- Department of Veterinary Sciences, Division of Veterinary Pharmacology and Toxicology; University of Turin; Grugliasco Turin Italy
| | - R. Odore
- Department of Veterinary Sciences, Division of Veterinary Pharmacology and Toxicology; University of Turin; Grugliasco Turin Italy
| | - G. Re
- Department of Veterinary Sciences, Division of Veterinary Pharmacology and Toxicology; University of Turin; Grugliasco Turin Italy
| |
Collapse
|
60
|
Bromberg Z, Goloubinoff P, Saidi Y, Weiss YG. The membrane-associated transient receptor potential vanilloid channel is the central heat shock receptor controlling the cellular heat shock response in epithelial cells. PLoS One 2013; 8:e57149. [PMID: 23468922 PMCID: PMC3584136 DOI: 10.1371/journal.pone.0057149] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/22/2013] [Indexed: 12/31/2022] Open
Abstract
The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging.
Collapse
Affiliation(s)
- Zohar Bromberg
- Dept. of Anesthesiology and Critical Care Medicine and the Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Pierre Goloubinoff
- Dept. of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Younousse Saidi
- Dept. of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Yoram George Weiss
- Dept. of Anesthesiology and Critical Care Medicine and the Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
- Dept. of Anesthesiology and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
61
|
Brown I, Cascio MG, Rotondo D, Pertwee RG, Heys SD, Wahle KW. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Prog Lipid Res 2013; 52:80-109. [DOI: 10.1016/j.plipres.2012.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 01/18/2023]
|
62
|
Nilius B, Appendino G. Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 2013; 164:1-76. [PMID: 23605179 DOI: 10.1007/112_2013_11] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spicy food does not only provide an important hedonic input in daily life, but has also been anedoctically associated to beneficial effects on our health. In this context, the discovery of chemesthetic trigeminal receptors and their spicy ligands has provided the mechanistic basis and the pharmacological means to investigate this enticing possibility. This review discusses in molecular terms the connection between the neurophysiology of pungent spices and the "systemic" effects associated to their trigeminality. It commences with a cultural and historical overview on the Western fascination for spices, and, after analysing in detail the mechanisms underlying the trigeminality of food, the main dietary players from the transient receptor potential (TRP) family of cation channels are introduced, also discussing the "alien" distribution of taste receptors outside the oro-pharingeal cavity. The modulation of TRPV1 and TRPA1 by spices is next described, discussing how spicy sensations can be turned into hedonic pungency, and analyzing the mechanistic bases for the health benefits that have been associated to the consumption of spices. These include, in addition to a beneficial modulation of gastro-intestinal and cardio-vascular function, slimming, the optimization of skeletal muscle performance, the reduction of chronic inflammation, and the prevention of metabolic syndrome and diabetes. We conclude by reviewing the role of electrophilic spice constituents on cancer prevention in the light of their action on pro-inflammatory and pro-cancerogenic nuclear factors like NFκB, and on their interaction with the electrophile sensor protein Keap1 and the ensuing Nrf2-mediated transcriptional activity. Spicy compounds have a complex polypharmacology, and just like any other bioactive agent, show a balance of beneficial and bad actions. However, at least for moderate consumption, the balance seems definitely in favour of the positive side, suggesting that a spicy diet, a caveman-era technology, could be seriously considered in addition to caloric control and exercise as a measurement to prevent and control many chronic diseases associate to malnutrition from a Western diet.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Leuven, Belgium,
| | | |
Collapse
|
63
|
Ayakannu T, Taylor AH, Marczylo TH, Willets JM, Konje JC. The endocannabinoid system and sex steroid hormone-dependent cancers. Int J Endocrinol 2013; 2013:259676. [PMID: 24369462 PMCID: PMC3863507 DOI: 10.1155/2013/259676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/09/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022] Open
Abstract
The "endocannabinoid system (ECS)" comprises the endocannabinoids, the enzymes that regulate their synthesis and degradation, the prototypical cannabinoid receptors (CB1 and CB2), some noncannabinoid receptors, and an, as yet, uncharacterised transport system. Recent evidence suggests that both cannabinoid receptors are present in sex steroid hormone-dependent cancer tissues and potentially play an important role in those malignancies. Sex steroid hormones regulate the endocannabinoid system and the endocannabinoids prevent tumour development through putative protective mechanisms that prevent cell growth and migration, suggesting an important role for endocannabinoids in the regulation of sex hormone-dependent tumours and metastasis. Here, the role of the endocannabinoid system in sex steroid hormone-dependent cancers is described and the potential for novel therapies assessed.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
| | - Anthony H. Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
- *Anthony H. Taylor:
| | - Timothy H. Marczylo
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
| | - Jonathon M. Willets
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
| | - Justin C. Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester Royal Infirmary, P.O. Box 65, Leicester, Leicestershire LE2 7LX, UK
| |
Collapse
|
64
|
Fowler CJ, Josefsson A, Thors L, Chung SC, Hammarsten P, Wikström P, Bergh A. Tumour epithelial expression levels of endocannabinoid markers modulate the value of endoglin-positive vascular density as a prognostic marker in prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:1579-87. [PMID: 23262399 DOI: 10.1016/j.bbalip.2012.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/29/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of the endogenous cannabinoid (CB) receptor ligand anandamide. Here we have investigated whether the expression levels of FAAH and CB1 receptors influence the prognostic value of markers of angiogenesis in prostate cancer. Data from a cohort of 419 patients who were diagnosed with prostate cancer at transurethral resection for lower urinary tract symptoms, of whom approximately 2/3 had been followed by expectancy, were used. Scores for the angiogenesis markers endoglin and von Willebrand factor (vWf), the endocannabinoid markers fatty acid amide hydrolase (FAAH) and cannabinoid CB1 receptors and the cell proliferation marker Ki-67 were available in the database. For the cases followed by expectancy, the prognostic value of endoglin was dependent upon the tumour epithelial FAAH immunoreactivity (FAAH-IR) and CB1IR scores, and the non-malignant epithelial FAAH-IR scores, but not the non-malignant CB1IR scores or the tumour blood vessel FAAH-IR scores. This dependency upon the tumour epithelial FAAH-IR or CB1IR scores was less apparent for vWf, and was not seen for Ki-67. Using an endoglin cut-off value of 10 positively stained vessels per core and a median split of tumour FAAH-IR, four groups could be generated, with 15year of disease-specific survival (%) of 68±7 (low endoglin, low FAAH), 45±11 (high endoglin, low FAAH), 77±6 (low endoglin, high FAAH) and 21±10 (high endoglin, high FAAH). Thus, the cases with high endoglin and high FAAH scores have the poorest rate of disease-specific survival. At diagnosis, the number of cases with tumour stages 1a-1b relative to stages 2-4 was sensitive to the endoglin score in a manner dependent upon the tumour FAAH-IR. It is concluded that the prognostic value of endoglin as a marker of neovascularisation in prostate cancer can be influenced by the expression level of markers of the endocannabinoid system. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.
Collapse
Affiliation(s)
- Christopher J Fowler
- Pharmacology Unit, Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|
65
|
[TRP calcium channel and breast cancer: expression, role and correlation with clinical parameters]. Bull Cancer 2012; 99:655-64. [PMID: 22640890 DOI: 10.1684/bdc.2012.1595] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Breast cancer (BC) has the highest incidence rate in women in industrialized countries. Statistically, it is estimated that one out of 10 women will develop BC during her life. Evidence is accumulating for the role of ion channels in the development of cancer. Most studied ion channels in BC are K(+) channels, which are involved in cell proliferation, cell cycle progression and cell migration, and Na(+) channels, which correlate with invasiveness. Emerging studies demonstrated the role of Ca(2+) signaling in cancer cell proliferation, survival and migration. Recent findings demonstrated that the expression and/or activity of the transient receptor potential (TRP) channels are altered in several cancers. Among the TRP families, TRPC (canonical or classical), TRPM (melastatin) and TRPV (vanilloid) are related to malignant growth and cancer progression. Although these channels are frequently and abundantly expressed in many tumors, their specific expression, activity and roles in BC are still poorly understood. The expression of TRP channels has also been proposed as a tool for diagnosis, prognosis and/or therapeutic issues of several diseases. In cancer, TRPV6 and TRPM8 have been proposed as tumor progression markers of prostate cancer outcome and TRPC6 as a novel therapeutic target for esophageal carcinoma. Interestingly high levels of TRPC3 expression correlate with a favorable prognosis in patients with lung adenocarcinoma. Our team has recently reported the expression and role of TRPC1, TRPC6, TRPM7, TRPM8 and TRPV6 in BC cell lines and primary cultures. We have also investigated TRP expression and their clinical significance in human breast adenocarcinoma and we suggest that TRP channels are new potential BC markers. Indeed TRPC1 and TRPM8 may be considered as good prognosis markers of well-differentiated tumors, TRPM7 as a proliferative marker of poorly differentiated tumors and TRPV6 as a prognosis marker of aggressive cancers. In this review, we summarize the data reported to date regarding the changes in TRP expression associated with BC. We also discuss the importance of TRP channels in BC cells proliferation and migration and their interest as new BC markers.
Collapse
|
66
|
Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012; 287:31666-73. [PMID: 22822055 DOI: 10.1074/jbc.r112.343061] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increases in intracellular free Ca(2+) play a major role in many cellular processes. The deregulation of Ca(2+) signaling is a feature of a variety of diseases, and modulators of Ca(2+) signaling are used to treat conditions as diverse as hypertension to pain. The Ca(2+) signal also plays a role in processes important in cancer, such as proliferation and migration. Many studies in cancer have identified alterations in the expression of proteins involved in the movement of Ca(2+) across the plasma membrane and subcellular organelles. In some cases, these Ca(2+) channels or pumps are potential therapeutic targets for specific cancer subtypes or correlate with prognosis.
Collapse
Affiliation(s)
- Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane 4075, Australia.
| | | | | |
Collapse
|
67
|
Abstract
The endocannabinoid system consists of an array of endogenously produced bioactive lipids that activate cannabinoid receptors. Although the primary focus of endocannabinoid biology has been on neurological and psychiatric effects, recent work has revealed several important interactions between the endocannabinoid system and cancer. Several different types of cancer have abnormal regulation of the endocannabinoid system that contributes to cancer progression and correlates to clinical outcomes. Modulation of the endocannabinoid system by pharmacological agents in various cancer types reveals that it can mediate antiproliferative and apoptotic effects by both cannabinoid receptor-dependent and -independent pathways. Selective agonists and antagonists of the cannabinoid receptors, inhibitors of endocannabinoid hydrolysis, and cannabinoid analogs have been utilized to probe the pathways involved in the effects of the endocannabinoid system on cancer cell apoptosis, proliferation, migration, adhesion, and invasion. The antiproliferative and apoptotic effects produced by some of these pharmacological probes reveal that the endocannabinoid system is a promising new target for the development of novel chemotherapeutics to treat cancer.
Collapse
|
68
|
Santoni G, Caprodossi S, Farfariello V, Liberati S, Gismondi A, Amantini C. Antioncogenic effects of transient receptor potential vanilloid 1 in the progression of transitional urothelial cancer of human bladder. ISRN UROLOGY 2012; 2012:458238. [PMID: 22523714 PMCID: PMC3302024 DOI: 10.5402/2012/458238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/24/2011] [Indexed: 11/23/2022]
Abstract
The progression of normal cells to a tumorigenic and metastatic state involves the accumulation of mutations in multiple key signaling proteins, encoded by oncogenes and tumor suppressor genes. Recently, members of the TRP channel family have been included in the oncogenic and tumor suppressor protein family. TRPM1, TRPM8, and TRPV6 are considered to be tumor suppressors and oncogenes in localized melanoma and prostate cancer, respectively. Herein, we focus our attention on the antioncogenic properties of TRPV1. Changes in TRPV1 expression occur during the development of transitional cell carcinoma (TCC) of human bladder. A progressive decrease in TRPV1 expression as the TCC stage increases triggers the development of a more aggressive gene phenotype and invasiveness. Finally, downregulation of TRPV1 represents a negative prognostic factor in TCC patients. The knowledge of the mechanism controlling TRPV1 expression might improve the diagnosis and new therapeutic strategies in bladder cancer.
Collapse
Affiliation(s)
- Giorgio Santoni
- Section of Experimental Medicine, School of Pharmacy, University of Camerino, Madonna delle Carceri Street 9, 62032 Camerino, Italy
| | | | | | | | | | | |
Collapse
|
69
|
Abstract
Ion channels and G-protein-coupled receptors (GPCRs) play a fundamental role in cancer progression by influencing Ca(2+) influx and signaling pathways in transformed cells. Transformed cells thrive in a hostile environment that is characterized by extracellular acidosis that promotes the pathological phenotype. The pathway(s) by which extracellular protons achieve this remain unclear. Here, a role for proton-sensing ion channels and GPCRs as mediators of the effects of extracellular protons in cancer cells is discussed.
Collapse
Affiliation(s)
- Maike Glitsch
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom.
| |
Collapse
|
70
|
Mergler S, Cheng Y, Skosyrski S, Garreis F, Pietrzak P, Kociok N, Dwarakanath A, Reinach PS, Kakkassery V. Altered calcium regulation by thermosensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells. Exp Eye Res 2012; 94:157-73. [DOI: 10.1016/j.exer.2011.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/04/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
|
71
|
Thermo-sensitive transient receptor potential vanilloid channel-1 regulates intracellular calcium and triggers chromogranin A secretion in pancreatic neuroendocrine BON-1 tumor cells. Cell Signal 2012; 24:233-46. [DOI: 10.1016/j.cellsig.2011.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022]
|
72
|
Chatzakos V, Slätis K, Djureinovic T, Helleday T, Hunt MC. N-Acyl Taurines are Anti-Proliferative in Prostate Cancer Cells. Lipids 2011; 47:355-61. [DOI: 10.1007/s11745-011-3639-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/17/2011] [Indexed: 11/24/2022]
|
73
|
Abstract
Cannabinoids, their receptors and their metabolizing enzymes are emerging as a new regulatory system, which is involved in multiple physiological functions. Normal prostate tissue expresses several constituents of the endocannabinoid system including the CB(1) receptor, receptors belonging to the transient receptor potential family and fatty acid amide hydrolase, a hydrolyzing enzyme, all of which have been localized in the glandular epithelia. Accumulating evidence indicate that the endocannabinoid system is dysregulated in prostate cancer, suggesting that it has a role in prostate homeostasis. Overexpression of several components of the endocannabinoid system correlate with prostate cancer grade and progression, potentially providing a new therapeutic target for prostate cancer. Moreover, several cannabinoids exert antitumoral properties against prostate cancer, reducing xenograft prostate tumor growth, prostate cancer cell proliferation and cell migration. Although the therapeutic potential of cannabinoids against prostate cancer is very promising, future research using animal models is needed to evaluate the influence of systemic networks in their antitumoral action.
Collapse
Affiliation(s)
- Inés Díaz-Laviada
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
74
|
Guindon J, Hohmann AG. The endocannabinoid system and cancer: therapeutic implication. Br J Pharmacol 2011; 163:1447-63. [PMID: 21410463 PMCID: PMC3165955 DOI: 10.1111/j.1476-5381.2011.01327.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 12/17/2022] Open
Abstract
The endocannabinoid system is implicated in a variety of physiological and pathological conditions (inflammation, immunomodulation, analgesia, cancer and others). The main active ingredient of cannabis, Δ(9) -tetrahydrocannabinol (Δ(9) -THC), produces its effects through activation of CB(1) and CB(2) receptors. CB(1) receptors are expressed at high levels in the central nervous system (CNS), whereas CB(2) receptors are concentrated predominantly, although not exclusively, in cells of the immune system. Endocannabinoids are endogenous lipid-signalling molecules that are generated in the cell membrane from phospholipid precursors. The two best characterized endocannabinoids identified to date are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Here we review the relationship between the endocannabinoid system and anti-tumour actions (inhibition of cell proliferation and migration, induction of apoptosis, reduction of tumour growth) of the cannabinoids in different types of cancer. This review will focus on examining how activation of the endocannabinoid system impacts breast, prostate and bone cancers in both in vitro and in vivo systems. The therapeutic potential of cannabinoids for cancer, as identified in clinical trials, is also discussed. Identification of safe and effective treatments to manage and improve cancer therapy is critical to improve quality of life and reduce unnecessary suffering in cancer patients. In this regard, cannabis-like compounds offer therapeutic potential for the treatment of breast, prostate and bone cancer in patients. Further basic research on anti-cancer properties of cannabinoids as well as clinical trials of cannabinoid therapeutic efficacy in breast, prostate and bone cancer is therefore warranted.
Collapse
Affiliation(s)
- Josée Guindon
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
75
|
TRPV channels in tumor growth and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:947-67. [PMID: 21290335 DOI: 10.1007/978-94-007-0265-3_49] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential (TRP) channels affect several physiological and pathological processes. In particular, TRP channels have been recently involved in the triggering of enhanced proliferation, aberrant differentiation, and resistance to apoptotic cell death leading to the uncontrolled tumor invasion. About thirty TRPs have been identified to date, and are classified in seven different families: TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin), TRPP (Polycystin), and TRPA (Ankyrin transmembrane protein) and TRPN (NomPC-like). Among these channel families, the TRPC, TRPM, and TRPV families have been mainly correlated with malignant growth and progression. The aim of this review is to summarize data reported so far on the expression and the functional role of TRPV channels during cancer growth and progression. TRPV channels have been found to regulate cancer cell proliferation, apoptosis, angiogenesis, migration and invasion during tumor progression, and depending on the stage of the cancer, up- and down-regulation of TRPV mRNA and protein expression have been reported. These changes may have cancer promoting effects by increasing the expression of constitutively active TRPV channels in the plasma membrane of cancer cells by enhancing Ca(2+)-dependent proliferative response; in addition, an altered expression of TRPV channels may also offer a survival advantage, such as resistance of cancer cells to apoptotic-induced cell death. However, recently, a role of TRPV gene mutations in cancer development, and a relationship between the expression of specific TRPV gene single nucleotide polymorphisms and increased cancer risk have been reported. We are only at the beginning, a more deep studies on the physiopathology role of TRPV channels are required to understand the functional activity of these channels in cancer, to assess which TRPV proteins are associated with the development and progression of cancer and to develop further knowledge of TRPV proteins as valuable diagnostic and/or prognostic markers, as well as targets for pharmaceutical intervention and targeting in cancer.
Collapse
|
76
|
Kalogris C, Caprodossi S, Amantini C, Lambertucci F, Nabissi M, Morelli MB, Farfariello V, Filosa A, Emiliozzi MC, Mammana G, Santoni G. Expression of transient receptor potential vanilloid-1 (TRPV1) in urothelial cancers of human bladder: relation to clinicopathological and molecular parameters. Histopathology 2011; 57:744-52. [PMID: 21083604 DOI: 10.1111/j.1365-2559.2010.03683.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS To evaluate the expression of transient receptor potential vanilloid type-1 channel protein (TRPV1) in normal and neoplastic urothelial tissues and to correlate TRPV1 expression with clinicopathological parameters and disease-specific survival. METHODS AND RESULTS TRPV1 expression was analysed in normal and neoplastic urothelial samples at both mRNA and protein levels by quantitative real time polymerase chain reaction (qPCR) and immunohistochemistry, respectively. TRPV1 downregulation was found in urothelial cancer (UC) specimens, which correlated with tumour progression. Moreover, TRPV1 mRNA levels were associated with clinicopathological parameters to assess the role of TRPV1 downregulation as a negative prognostic factor for survival. Kaplan-Meier survival analysis demonstrated a significantly shorter survival in patients showing TRPV1 mRNA downregulation. Multivariate Cox regression analysis indicated further that TRPV1 mRNA expression retained its significance as an independent risk factor. CONCLUSIONS The progression of UC of human bladder is associated with a marked decrease in TRPV1 expression, with a progressive loss in high-grade muscle invasive UC. Downregulation of TRPV1 mRNA expression may represent an independent negative prognostic factor for bladder cancer patients.
Collapse
|
77
|
Li S, Bode AM, Zhu F, Liu K, Zhang J, Kim MO, Reddy K, Zykova T, Ma WY, Carper AL, Langfald AK, Dong Z. TRPV1-antagonist AMG9810 promotes mouse skin tumorigenesis through EGFR/Akt signaling. Carcinogenesis 2011; 32:779-85. [PMID: 21349818 DOI: 10.1093/carcin/bgr037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In addition to capsaicin, a transient receptor potential channel vanilloid subfamily 1 (TRPV1) agonist, two kinds of antagonists against this receptor are used as therapeutic drugs for pain relief. Indeed, a number of small molecule TRPV1 antagonists are currently undergoing Phase I/II clinical trials to determine their effect on relieving chronic inflammatory pain and migraine headache pain. However, we previously reported that the absence of TRPV1 in mice results in a striking increase in skin carcinogenesis, suggesting that chronic blockade of TRPV1 might increase the risk of tumor development. In this study, we found that a typical TRPV1 antagonist, AMG9810, promotes mouse skin tumor development. The topical application of AMG9810 resulted in a significant increase in the expression level of the epidermal growth factor receptor (EGFR) and its downstream Akt/mammalian target of rapamycin (mTOR)-signaling pathway. This increase was not only observed in AMG9810-treated tumor tissue but was also found in skin tissue treated with AMG9810. In telomerase-immortalized primary human keratinocytes, AMG9810 promoted proliferation that was mediated through the EGFR/Akt/mTOR-signaling pathway. In summary, our data suggest that the TRPV1 antagonist, AMG9810, promotes mouse skin tumorigenesis mediated through EGFR/Akt/mTOR signaling. Thus, the application of this compound for pain relief might increase the risk of skin cancer.
Collapse
Affiliation(s)
- Shengqing Li
- The Hormel Institute, University of Minnesota, 801 16th Avenue North East, Austin, MN 55912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
In recent years, natural products have emerged as modulators of many cellular responses, with potential applications as therapeutic drugs in many disorders. Among them, capsaicin, the pungent agent in chili peppers, has been demonstrated to have a role as a tumor suppressor for prostate cancer. Capsaicin potently suppresses the growth of human prostate carcinoma cells in vitro and in vivo. The antiproliferative activity of capsaicin correlates with oxidative stress induction and apoptosis. Capsaicin also induces ceramide accumulation and endoplasmic reticulum stress in androgen-resistant prostate cells. In androgen-sensitive prostate cancer cells, capsaicin exerts a biphasic effect, promoting growth at low doses and inducing apoptosis at doses over 200 µM. This article will draw upon multiple lines of evidence to provide a comprehensive description on the current state of knowledge that implicates the effect of capsaicin on prostate cancer cells.
Collapse
Affiliation(s)
- Inés Díaz-Laviada
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Alcala, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
79
|
Malfitano AM, Ciaglia E, Gangemi G, Gazzerro P, Laezza C, Bifulco M. Update on the endocannabinoid system as an anticancer target. Expert Opin Ther Targets 2011; 15:297-308. [PMID: 21244344 DOI: 10.1517/14728222.2011.553606] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Recent studies have shown that the endocannabinoid system (ECS) could offer an attractive antitumor target. Numerous findings suggest the involvement of this system (constituted mainly by cannabinoid receptors, endogenous compounds and the enzymes for their synthesis and degradation) in cancer cell growth in vitro and in vivo. AREAS COVERED This review covers literature from the past decade which highlights the potential of targeting the ECS for cancer treatment. In particular, the levels of endocannabinoids and the expression of their receptors in several types of cancer are discussed, along with the signaling pathways involved in the endocannabinoid antitumor effects. Furthermore, the beneficial and adverse effects of old and novel compounds in clinical use are discussed. EXPERT OPINION One direction that should be pursued in antitumor therapy is to select compounds with reduced psychoactivity. This is known to be connected to the CB1 receptor; thus, targeting the CB2 receptor is a popular objective. CB1 receptors could be maintained as a target to design new compounds, and mixed CB1-CB2 ligands could be effective if they are able to not cross the BBB. Furthermore, targeting the ECS with agents that activate cannabinoid receptors or inhibitors of endogenous degrading systems such as fatty acid amide hydrolase inhibitors may have relevant therapeutic impact on tumor growth. Additional studies into the downstream consequences of endocannabinoid treatment are required and may illuminate other potential therapeutic targets.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- University of Salerno, Department of Pharmaceutical Sciences, Fisciano, Salerno, Italy
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
Ion channels and notably TRP channels play a crucial role in a variety of physiological functions and in addition these channels have been also shown associated with several diseases including cancer. The process of cancer initiation and progression involves the altered expression of one or more of TRP proteins, depending on the nature of the cancer. The most clearly described role in pathogenesis has been evidenced for TRPM8, TRPV6 and TRPM1 channels. The increased expression of some other channels, such as TRPV1, TRPC1, TRPC6, TRPM4, and TRPM5 has also been demonstrated in some cancers. Further investigations are required to precise the role of TRP channels in cancer development and/or progression and to specifically develop further knowledge of TRP proteins as discriminative markers and prospective targets for pharmaceutical intervention in treating cancer.
Collapse
|
81
|
Thors L, Bergh A, Persson E, Hammarsten P, Stattin P, Egevad L, Granfors T, Fowler CJ. Fatty acid amide hydrolase in prostate cancer: association with disease severity and outcome, CB1 receptor expression and regulation by IL-4. PLoS One 2010; 5:e12275. [PMID: 20808855 PMCID: PMC2924377 DOI: 10.1371/journal.pone.0012275] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 07/27/2010] [Indexed: 01/02/2023] Open
Abstract
Background Recent data have indicated that there may be a dysregulation of endocannabinoid metabolism in cancer. Here we have investigated the expression of the endocannabinoid metabolising enzyme fatty acid amide hydrolase (FAAH) in a well characterised tissue microarray from patients diagnosed with prostate cancer at transurethral resection for voiding problems. Methodology/Principal Findings FAAH immunoreactivity (FAAH-IR) was assessed in formalin-fixed paraffin-embedded non-malignant and tumour cores from 412 patients with prostate cancer. CB1 receptor immunoreactivity (CB1IR) scores were available for this dataset. FAAH-IR was seen in epithelial cells and blood vessel walls but not in the stroma. Tumour epithelial FAAH-IR was positively correlated with the disease severity at diagnosis (Gleason score, tumour stage, % of the specimen that contained tumour) for cases with mid-range CB1IR scores, but not for those with high CB1IR scores. For the 281 cases who only received palliative therapy at the end stages of the disease, a high tumour epithelial FAAH-IR was associated with a poor disease-specific survival. Multivariate Cox proportional-hazards regression analyses indicated that FAAH-IR gave additional prognostic information to that provided by CB1IR when a midrange, but not a high CB1IR cutoff value was used. Interleukin-4 (IL-4) receptor IR was found on tumour epithelial cells and incubation of prostate cancer PC-3 and R3327 AT1 cells with IL-4 increased their FAAH activity. Conclusions/Significance Tumour epithelial FAAH-IR is associated with prostate cancer severity and outcome at mid-range, but not high, CB1IR scores. The correlation with CB1IR in the tumour tissue may be related to a common local dysregulation by a component of the tumour microenvironment.
Collapse
Affiliation(s)
- Lina Thors
- Pharmacology Unit, Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Pathology Unit, Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Emma Persson
- Departments of Oncology and Radiation Sciences, Umeå University, Umeå, Sweden
| | - Peter Hammarsten
- Pathology Unit, Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Pär Stattin
- Urology and Andrology Unit, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Lars Egevad
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Christopher J. Fowler
- Pharmacology Unit, Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
82
|
Halász GJ, Sobolewski AL, Vibók Á. Radiationless decay of excited states of tetrahydrocannabinol through the S 1–S 0 (conical) intersection. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|