51
|
Tang L, Zheng S, Wang Y, Li F, Bao M, Zeng J, Xiang J, Luo H, Li J. Rs4265085 in GPER1 gene increases the risk for unexplained recurrent spontaneous abortion in Dai and Bai ethnic groups in China. Reprod Biomed Online 2017; 34:399-405. [PMID: 28126236 DOI: 10.1016/j.rbmo.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 11/24/2022]
Abstract
Oestrogen receptors are implicated in the pathogenesis of recurrent spontaneous abortion (RSA). Non-genomic oestrogen responses can be mediated by GPER. The prevalence of polymorphisms in GPER1 gene in RSA was assessed in 747 Chinese women from Yunnan province (171 Bai, 258 Chinese Han, 234 Dai, 33 Achang and 51 Jingpo patients). Snapshot technology was used for genotyping the polymorphisms of the GPER1 gene. The rs4265085G was significantly increased in the Dai and Bai groups versus controls (Dai: P < 0.0001, Padj < 0.0001, OR 95% CI 2.34 [1.79 to 3.05]; Bai: P = 0.0004, Padj = 0.0012, OR 95% CI 1.71 [1.27 to 2.31]); recessive model of rs4265085 in the Dai (P = 0.003, Padj = 0.009, OR 95% CI 2.71 [1.38 to 5.30]); Bai (P < 0.0001, Padj < 0.0001, OR 95% CI 3.37 [1.93 to 5.91]). Haplotype frequencies containing rs10269151G-rs4265085G-rs11544331C were separately significantly different in Dai and Bai ethnic groups (Dai: P = 0.0002, Padj = 0.001, OR 95% CI = 2.12 [1.43 to 3.17]; Bai: P = 0.005, Padj = 0.025, OR 95% CI = 1.82 [1.18 to 2.78]) compared with controls. The intron variant rs4265085 may confer risk for RSA in Dai and Bai ethnic groups.
Collapse
Affiliation(s)
- Liang Tang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China.
| | - Shui Zheng
- Key Laboratory for Fertility Regulation and Berth Heath of Minority Nationalities of Yunnan Province, Judicial Expertise Center, Yunnan Population and Family Planning Research Institute, Kunming, China
| | - Yan Wang
- School of Basic Medical Science, Changsha Medical University, Changsha, China; Experiment Center for Function, Changsha Medical University, Changsha, China
| | - Fang Li
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Jie Zeng
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Ju Xiang
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; School of Basic Medical Science, Changsha Medical University, Changsha, China
| | - Huaiqing Luo
- School of Basic Medical Science, Changsha Medical University, Changsha, China; Experiment Center for Function, Changsha Medical University, Changsha, China
| | - Jianming Li
- Department of Human Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha, China; Department of Neurology, Xiang-ya Hospital, Central South University, Changsha, China
| |
Collapse
|
52
|
Weissenborn C, Ignatov T, Nass N, Kalinski T, Dan Costa S, Zenclussen AC, Ignatov A. GPER Promoter Methylation Controls GPER Expression in Breast Cancer Patients. Cancer Invest 2017; 35:100-107. [PMID: 28118074 DOI: 10.1080/07357907.2016.1271886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, we found that G-protein-coupled estrogen receptor (GPER) protein expression decreased during breast carcinogenesis, and that GPER promoter is methylated. Here we analyzed GPER promoter methylation in 260 primary breast cancer specimens by methylation-specific polymerized chain reaction. The results demonstrated that GPER protein down-regulation significantly correlated with GPER promoter hypermethylation (p < .001). Comparison of 108 tumors and matched normal breast tissues indicated a significant GPER down-regulation in cancer tissues correlating with GPER promoter hypermethylation (p < .001). The latter was an unfavorable factor for overall survival of patients with triple-negative breast cancer (p = .025). Thus GPER promoter hypermethylation might be used as a prognostic factor.
Collapse
Affiliation(s)
- Christine Weissenborn
- a Department of Obstetrics and Gynecology , Otto-von-Guericke University , Magdeburg , Germany.,b Department of Experimental Obstetrics and Gynaecology , Otto-von-Guericke University , Magdeburg , Germany
| | - Tanja Ignatov
- a Department of Obstetrics and Gynecology , Otto-von-Guericke University , Magdeburg , Germany
| | - Norbert Nass
- c Department of Pathology , Otto-von-Guericke University , Magdeburg , Germany
| | - Thomas Kalinski
- c Department of Pathology , Otto-von-Guericke University , Magdeburg , Germany
| | - Serban Dan Costa
- a Department of Obstetrics and Gynecology , Otto-von-Guericke University , Magdeburg , Germany
| | - Ana Claudia Zenclussen
- b Department of Experimental Obstetrics and Gynaecology , Otto-von-Guericke University , Magdeburg , Germany
| | - Atanas Ignatov
- a Department of Obstetrics and Gynecology , Otto-von-Guericke University , Magdeburg , Germany
| |
Collapse
|
53
|
Yang F, Shao ZM. Double-edged role of G protein-coupled estrogen receptor 1 in breast cancer prognosis: an analysis of 167 breast cancer samples and online data sets. Onco Targets Ther 2016; 9:6407-6415. [PMID: 27822058 PMCID: PMC5087701 DOI: 10.2147/ott.s111846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1) is widely expressed in breast cancer; however, its prognostic significance in breast cancer patients remains controversial. In this study, expression levels of GPER1 were analyzed by using real-time polymerase chain reaction in 167 primary breast cancer samples, and overall survival (OS), recurrence-free survival (RFS), distant metastasis-free survival (DMFS), and disease-free survival (DFS) were analyzed by using Kaplan-Meier curves and multivariable Cox regression. In addition, a meta-analysis was conducted with all available online data sets found in the Web sites kmplot.com and www.prognoscan.org. The results showed that there was no significant correlation between GPER1 expression and OS, RFS, DMFS, and DFS in the total breast cancer patient population. In contrast, the meta-analysis of online data sets found that expression levels of GPER1 were slightly associated with better RFS in the total breast cancer population (P=0.021). Interestingly, higher expression of GPER1 was associated with poorer DFS in HER2-positive subtype of breast cancer (P=0.047) but with better DMFS (P=0.040) and DFS (P=0.035) in HER2-negative subtype of breast cancer. In addition, it was found that HER2 overexpression in MDA-MB-231 cell increased GPER1, which may help explain protumor effect of GPER1 in HER2-overexpressed patients. The overall results suggested that the expression of GPER1 has distinct prognostic values in HER2-positive and HER2-negative breast cancer patients.
Collapse
Affiliation(s)
- Fan Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
54
|
Lappano R, Rigiracciolo D, De Marco P, Avino S, Cappello AR, Rosano C, Maggiolini M, De Francesco EM. Recent Advances on the Role of G Protein-Coupled Receptors in Hypoxia-Mediated Signaling. AAPS JOURNAL 2016; 18:305-10. [PMID: 26865461 DOI: 10.1208/s12248-016-9881-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are cell surface proteins mainly involved in signal transmission; however, they play a role also in several pathophysiological conditions. Chemically heterogeneous molecules like peptides, hormones, lipids, and neurotransmitters activate second messengers and induce several biological responses by binding to these seven transmembrane receptors, which are coupled to heterotrimeric G proteins. Recently, additional molecular mechanisms have been involved in GPCR-mediated signaling, leading to an intricate network of transduction pathways. In this regard, it should be mentioned that diverse GPCR family members contribute to the adaptive cell responses to low oxygen tension, which is a distinguishing feature of several illnesses like neoplastic and cardiovascular diseases. For instance, the G protein estrogen receptor, namely G protein estrogen receptor (GPER)/GPR30, has been shown to contribute to relevant biological effects induced by hypoxia via the hypoxia-inducible factor (HIF)-1α in diverse cell contexts, including cancer. Likewise, GPER has been found to modulate the biological outcome of hypoxic/ischemic stress in both cardiovascular and central nervous systems. Here, we describe the role exerted by GPCR-mediated signaling in low oxygen conditions, discussing, in particular, the involvement of GPER by a hypoxic microenvironment.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Damiano Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Paola De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Silvia Avino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy
| | - Camillo Rosano
- UOS Proteomics IRCCS AOU San Martino-IST National Institute for Cancer Research, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Bucci, 87036, Rende, CS, Italy.
| | | |
Collapse
|
55
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
56
|
Zhang Q, Wu YZ, Zhang YM, Ji XH, Hao Q. Activation of G-protein coupled estrogen receptor inhibits the proliferation of cervical cancer cells via sustained activation of ERK1/2. Cell Biochem Funct 2015; 33:134-42. [PMID: 25753185 DOI: 10.1002/cbf.3097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Qiong Zhang
- Department of Obstetrics and Gynecology, Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu China
| | - Yuan-Zhe Wu
- Department of Obstetrics and Gynecology, Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu China
| | - Yan-Mei Zhang
- Department of Obstetrics and Gynecology, Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu China
| | - Xiao-Hong Ji
- Department of Obstetrics and Gynecology, Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu China
| | - Qun Hao
- Department of Obstetrics and Gynecology, Jinling Hospital; Nanjing University School of Medicine; Nanjing Jiangsu China
| |
Collapse
|
57
|
Tamoxifen resistance: From cell culture experiments towards novel biomarkers. Pathol Res Pract 2015; 211:189-97. [DOI: 10.1016/j.prp.2015.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
|
58
|
Wei W, Chen ZJ, Zhang KS, Yang XL, Wu YM, Chen XH, Huang HB, Liu HL, Cai SH, Du J, Wang HS. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative breast cancer cells in vitro and in vivo. Cell Death Dis 2014; 5:e1428. [PMID: 25275589 PMCID: PMC4649509 DOI: 10.1038/cddis.2014.398] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/20/2023]
Abstract
There is an urgent clinical need for safe and effective treatment agents and therapy targets for estrogen receptor negative (ER−) breast cancer. G protein-coupled receptor 30 (GPR30), which mediates non-genomic signaling of estrogen to regulate cell growth, is highly expressed in ER− breast cancer cells. We here showed that activation of GPR30 by the receptor-specific agonist G-1 inhibited the growth of ER− breast cancer cells in vitro. Treatment of ER− breast cancer cells with G-1 resulted in G2/M-phase arrest, downregulation of G2-checkpoint regulator cyclin B, and induction of mitochondrial-related apoptosis. The G-1 treatment increased expression of p53 and its phosphorylation levels at Serine 15, promoted its nuclear translocation, and inhibited its ubiquitylation, which mediated the growth arrest effects on cell proliferation. Further, the G-1 induced sustained activation and nuclear translocation of ERK1/2, which was mediated by GPR30/epidermal growth factor receptor (EGFR) signals, also mediated its inhibition effects of G-1. With extensive use of siRNA-knockdown experiments and inhibitors, we found that upregulation of p21 by the cross-talk of GPR30/EGFR and p53 was also involved in G-1-induced cell growth arrest. In vivo experiments showed that G-1 treatment significantly suppressed the growth of SkBr3 xenograft tumors and increased the survival rate, associated with proliferation suppression and upregulation of p53, p21 while downregulation of cyclin B. The discovery of multiple signal pathways mediated the suppression effects of G-1 makes it a promising candidate drug and lays the foundation for future development of GPR30-based therapies for ER− breast cancer treatment.
Collapse
Affiliation(s)
- W Wei
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Z-J Chen
- Department of Pharmacy, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - K-S Zhang
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - X-L Yang
- Key Laboratory of Tropical Disease Control (Ministry of Education), Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510655, China
| | - Y-M Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - X-H Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - H-B Huang
- Department of Pharmacy, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - H-L Liu
- Key Laboratory of Tropical Disease Control (Ministry of Education), Guangdong Institute of Gastroenterology and the Sixth Affiliated Hospital, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510655, China
| | - S-H Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, China
| | - J Du
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - H-S Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
59
|
Lappano R, Pisano A, Maggiolini M. GPER Function in Breast Cancer: An Overview. Front Endocrinol (Lausanne) 2014; 5:66. [PMID: 24834064 PMCID: PMC4018520 DOI: 10.3389/fendo.2014.00066] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
The G-protein-coupled estrogen receptor-1 (GPER, formerly known as GPR30) has attracted increasing interest, considering its ability to mediate estrogenic signaling in different cell types, including the hormone-sensitive tumors like breast cancer. As observed for other GPCR-mediated responses, the activation of the epidermal growth factor receptor is a fundamental integration point in the biological action triggered by GPER. A wide number of natural and synthetic compounds, including estrogens and anti-estrogens, elicit stimulatory effects in breast cancer through GPER up-regulation and activation, suggesting that GPER function is associated with breast tumor progression and tamoxifen resistance. GPER has also been proposed as a candidate biomarker in triple-negative breast cancer, opening a novel scenario for a more comprehensive assessment of breast tumor patients.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- *Correspondence: Rosamaria Lappano, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende 87036, Italy e-mail:
| | - Assunta Pisano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|