51
|
Hussain SM, Urquhart DM, Wang Y, Shaw JE, Magliano DJ, Wluka AE, Cicuttini FM. Fat mass and fat distribution are associated with low back pain intensity and disability: results from a cohort study. Arthritis Res Ther 2017; 19:26. [PMID: 28183360 PMCID: PMC5301404 DOI: 10.1186/s13075-017-1242-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 02/08/2023] Open
Abstract
Background Determining the association between body composition and low back pain (LBP) will improve our understanding of the mechanisms by which obesity affects LBP, and inform novel approaches to managing LBP. The aim of this study was to examine the relationship between body composition and LBP intensity and disability. Methods A total of 5058 participants (44% men) of the Australian Diabetes, Obesity and Lifestyle Study were assessed for LBP intensity and disability using the Chronic Pain Grade Questionnaire (2013–2014). Body mass index (BMI) and waist circumference were directly obtained. Fat mass and percentage fat were estimated from bioelectrical impedance analysis at study inception (1999–2000). Results Eighty-two percent of participants reported LBP, of whom 27% also reported LBP disability. BMI, waist circumference, percent fat, and fat mass were each positively associated with LBP intensity and disability at 12 years after adjustment for potential confounders. LBP intensity and disability showed significant dose-responses to sex-specific quartiles of BMI, waist circumference, percent fat and fat mass. For example, the adjusted OR for LBP intensity in women increased with increasing fat mass quartiles [Q1: 1, Q2: 1.05 (95%CI 0.84–1.32); Q3: 1.25 (1.00–1.57); and Q4: 1.78 (1.42–2.24); p < 0.001]. Conclusions Fat mass and distribution are associated with LBP intensity and disability, suggesting systemic metabolic factors associated with adiposity play a major role in the pathogenesis of LBP. Clarifying the mechanisms will facilitate developing novel preventive and therapeutic approaches for LBP. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1242-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sultana Monira Hussain
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Donna M Urquhart
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yuanyuan Wang
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Jonathan E Shaw
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Dianna J Magliano
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Anita E Wluka
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Flavia M Cicuttini
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
52
|
Schmidt H, Reitmaier S, Graichen F, Shirazi-Adl A. Review of the fluid flow within intervertebral discs - How could in vitro measurements replicate in vivo? J Biomech 2016; 49:3133-3146. [PMID: 27651134 DOI: 10.1016/j.jbiomech.2016.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/09/2016] [Accepted: 09/07/2016] [Indexed: 11/18/2022]
Abstract
By maintaining a balance between external mechanical loads and internal osmotic pressure, fluid content of intervertebral discs constantly alters causing fluctuations in disc hydration, height, diameter and pressure that govern disc temporal response. This paper reviews and discusses the relevant findings of earlier studies on the disc fluid flow with the aim to understand and remedy discrepancies between in vivo and in vitro observations. New results of finite element model studies are also exploited in order to help identify the likely causes for such differences and underlying mechanisms observed in vitro. In vivo measurements of changes in spinal height and disc fluid content/pressure via stadiometry, magnetic resonance imaging and intradiscal pressure measurements have been carried out. They have demonstrated that the disc volume, fluid content, height and nucleus pressure alter depending to a large extent on prior-current external load conditions. Although the diurnal loading lasts on average nearly twice longer than the subsequent resting (16 vs. 8h), the disc completely recovers its height and volume during the latter period through fluid inflow. In view of much longer periods required to recover disc height and pressure in vitro in ovine, porcine, caprine, bovine and rat discs, concerns have been raised on the fluid inflow through the endplates that might be hampered by clogged blood vessels post mortem. Analyses of discrepancies in the flow-dependent recoveries in vivo and in vitro highlight an excessive fluid content in the latter as a likely cause. To replicate in vivo conditions as closely as possible in vitro, preparation and preconditioning of specimens and/or pressure and osmolarity of the culture media in which specimens are immersed should hence be designed in a manner as to diminish disc hydration level and/or fluid transport.
Collapse
Affiliation(s)
- Hendrik Schmidt
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sandra Reitmaier
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Friedmar Graichen
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
53
|
Dao TT. Enhanced Musculoskeletal Modeling for Prediction of Intervertebral Disc Stress Within Annulus Fibrosus and Nucleus Pulposus Regions During Flexion Movement. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0156-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Schmidt H, Shirazi-Adl A, Schilling C, Dreischarf M. Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression. J Biomech 2016; 49:1926-1932. [PMID: 27209550 DOI: 10.1016/j.jbiomech.2016.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Disc hydration is controlled by fluid imbibition and exudation and hence by applied load magnitude and history, internal osmotic pressure and disc conditions. It affects both the internal load distribution and external load-bearing of a disc while variations therein give rise to the disc time-dependent characteristics. This study aimed to evaluate the effect of changes in compression preload magnitude on the disc axial cyclic compression stiffness under physiological loading. After 20h of free hydration, effects of various preload magnitudes (no preload, 0.06 and 0.28MPa, applied for eight hours) and disc-bone preparation conditions on disc height and axial stiffness were investigated using 36 disc-bone and 24 isolated disc (without bony endplates) bovine specimens. After preloading, specimens were subjected to ten loading/unloading cycles each of 7.5min compression at 0.5MPa followed by 7.5min at 0.06MPa. Under 0.06MPa preload, the specimen height losses during high loading periods of cyclic loading were greater than corresponding height recoveries during low loading phases. This resulted in a progressive reduction in the specimen height and increase in its stiffness. Differences between disc height losses in high cyclic loads and between stiffness in both load increase and release phases were significant for 0 and 0.06MPa vs. 0.28MPa preload. Results highlight the significant role of disc preload magnitude/history and hence disc height and hydration on disc stiffness in loading/unloading and disc height loss in loading periods. Proper preconditioning and hence hydration level should be achieved if recovery in height loss similar to in vivo conditions is expected.
Collapse
Affiliation(s)
- Hendrik Schmidt
- Julius Wolff Institute Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | - Christoph Schilling
- Research and Development, Biomechanical Research, Aesculap AG, Tuttlingen, Germany
| | - Marcel Dreischarf
- Julius Wolff Institute Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
55
|
Noguchi M, Gooyers CE, Karakolis T, Noguchi K, Callaghan JP. Is intervertebral disc pressure linked to herniation?: An in-vitro study using a porcine model. J Biomech 2016; 49:1824-1830. [PMID: 27157242 DOI: 10.1016/j.jbiomech.2016.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
Approximately 40% of low back pain cases have been attributed to internal disc disruption. This disruption mechanism may be linked to intradiscal pressure changes, since mechanical loading directly affects the pressure and the stresses that the inner annulus fibrosus experiences. The objective of this study was to characterize cycle-varying changes in four dependent measures (intradiscal pressure, flexion-extension moments, specimen height loss, and specimen rotation angle) using a cyclic flexion-extension (CFE) loading protocol known to induce internal disc disruption. A novel bore-screw pressure sensor system was used to instrument 14 porcine functional spinal units. The CFE loading protocol consisted of 3600 cycles of flexion-extension range of motion (average 18.30 (SD 3.76) degrees) at 1Hz with 1500N of compressive load. On average, intradiscal pressure and specimen height decreased by 47% and 62%, respectively, and peak moments increased by 102%. From 900 to 2100 cycles, all variables exhibited significant changes between successive time points, except for the specimen posture at maximum pressure, which demonstrated a significant shift towards flexion limit after 2700 cycles. There were no further changes in pressure range after 2100 cycles, whereas peak moments and height loss were significantly different from prior time points throughout the CFE protocol. Twelve of the 14 specimens showed partial herniation; however, injury type was not significantly correlated to any of the dependent measures. Although change in pressure was not predictive of damage type, the increase in pressure range seen during this protocol supports the premise that repetitive combined loading (i.e., radial compression, tension and shear) imposes damage to the inner annulus fibrosus, and its failure mechanism may be linked to fatigue.
Collapse
Affiliation(s)
- Mamiko Noguchi
- Department of Kinesiology, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1
| | - Chad E Gooyers
- Department of Kinesiology, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1; Giffin Koerth Forensic Engineering & Science, 40 University Avenue Toronto, Ontario, Canada M5J 1T1
| | - Thomas Karakolis
- Defense Research and Development Canada, 1133 Sheppard Avenue West Toronto, Ontario, Canada M3K 2C9
| | - Kimihiro Noguchi
- Department of Mathematics, Western Washington University, 516 High Street Bellingham, Washington 98225, USA
| | - Jack P Callaghan
- Department of Kinesiology, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
56
|
Bashkuev M, Vergroesen PPA, Dreischarf M, Schilling C, van der Veen AJ, Schmidt H, Kingma I. Intradiscal pressure measurements: A challenge or a routine? J Biomech 2016; 49:864-868. [DOI: 10.1016/j.jbiomech.2015.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/21/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022]
|
57
|
Gantenbein B, Illien-Jünger S, Chan SCW, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther 2016; 10:339-52. [PMID: 25764196 DOI: 10.2174/1574888x10666150312102948] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Institute for Surgical Technology & Biomechanics, Medical Faculty, University, Stauffacherstrasse 78, CH-3014 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Vergroesen PPA, van der Veen AJ, Emanuel KS, van Dieën JH, Smit TH. The poro-elastic behaviour of the intervertebral disc: A new perspective on diurnal fluid flow. J Biomech 2015; 49:857-863. [PMID: 26684430 DOI: 10.1016/j.jbiomech.2015.11.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/04/2015] [Accepted: 11/20/2015] [Indexed: 02/02/2023]
Abstract
Diurnal disc height changes, due to fluid in- and outflow, are in equilibrium while daytime spinal loading is twice as long as night time rest. A direction-dependent permeability of the endplates, favouring inflow over outflow, reportedly explains this; however, fluid flow through the annulus fibrosus should be considered. This study investigates the fluid flow of entire intervertebral discs. Caprine discs were preloaded in saline for 24h under four levels of static load. Under sustained load, we modulated the disc׳s swelling pressure by exchanging saline for demineralised water (inflow) and back to saline (outflow), both for 24h. We measured disc height creep and used stretched exponential models to determine time-constants. During inflow disc height increased in relation to applied load, and during outflow disc height decreased to preload levels. When comparing in- and outflow phases, there was no difference in creep, and time-constants were similar indicating no direction-dependent resistance to fluid flow in the entire intervertebral disc. Results provoked a new hypothesis for diurnal fluid flow: in vitro time-constants for loading are shorter than for unloading and in vivo daytime loading is twice as long as night time unloading, i.e. in diurnal loading the intervertebral disc is closer to loading equilibrium than to unloading equilibrium. Per definition, fluid flow is slower close to equilibrium than far from equilibrium; therefore, as diurnal loading occurs closer to loading equilibrium, fluid inflow during night time unloading can balance fluid outflow during daytime loading, despite a longer time-constant.
Collapse
Affiliation(s)
- Pieter-Paul A Vergroesen
- Department of Orthopaedic Surgery, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands; MOVE Research Institute Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Albert J van der Veen
- Department of Physics and Medical Technology, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands; MOVE Research Institute Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Kaj S Emanuel
- Department of Orthopaedic Surgery, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands; MOVE Research Institute Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; MOVE Research Institute Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Theodoor H Smit
- Department of Orthopaedic Surgery, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam, The Netherlands; MOVE Research Institute Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| |
Collapse
|
59
|
Detiger SEL, de Bakker JY, Emanuel KS, Schmitz M, Vergroesen PPA, van der Veen AJ, Mazel C, Smit TH. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies. J Biomater Appl 2015; 30:983-94. [PMID: 26494611 DOI: 10.1177/0885328215611946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nucleus pulposus replacement therapy could offer a less invasive alternative to restore the function of moderately degenerated intervertebral discs than current potentially destructive surgical procedures. Numerous nucleus pulposus substitutes have already been investigated, to assess their applicability for intradiscal use. Still, the current choice of testing methods often does not lead to efficient translation into clinical application. In this paper, we present the evaluation of a novel nucleus pulposus substitute, consisting of a hydromed core and an electrospun envelope. We performed three mechanical evaluations and an in vivo pilot experiment. Initially, the swelling pressure of the implant was assessed in confined compression. Next, we incorporated the implant into mechanically damaged caprine lumbar intervertebral discs to determine biomechanical segment behaviour in bending and torsion. Subsequently, segments were serially tested in native, damaged and repaired conditions under dynamic axial compressive loading regimes in a loaded disc culture system. Finally, nucleus pulposus substitutes were implanted in a live goat spine using a transpedicular approach. In confined compression, nucleus pulposus samples as well as implants showed some load-bearing capacity, but the implant exhibited a much lower absolute pressure. In bending and torsion, we found that the nucleus pulposus substitute could partly restore the mechanical response of the disc. During dynamic axial compression in the loaded disc culture system, on the other hand, the implant was not able to recover axial compressive behaviour towards the healthy situation. Moreover, the nucleus pulposus substitutes did not remain in place in the in vivo situation but migrated out of the disc area. From these results, we conclude that implants may mimic native disc behaviour in simple mechanical tests, yet fail in other, more realistic set-ups. Therefore, we recommend that biomaterials for nucleus pulposus replacement be tested in testing modalities of increasing complexity and in their relevant anatomical surroundings, for a more reliable prediction of clinical potential.
Collapse
Affiliation(s)
- S E L Detiger
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands Center for Translational Regenerative Medicine (CTRM) and MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - J Y de Bakker
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands Center for Translational Regenerative Medicine (CTRM) and MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - K S Emanuel
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands Center for Translational Regenerative Medicine (CTRM) and MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - M Schmitz
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands Center for Translational Regenerative Medicine (CTRM) and MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - P P A Vergroesen
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands Center for Translational Regenerative Medicine (CTRM) and MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - A J van der Veen
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - C Mazel
- Department of Orthopaedic and Spine Surgery, Institute Mutualiste Montsouris, Paris, France
| | - T H Smit
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands Center for Translational Regenerative Medicine (CTRM) and MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
60
|
Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis Cartilage 2015; 23:1057-70. [PMID: 25827971 DOI: 10.1016/j.joca.2015.03.028] [Citation(s) in RCA: 641] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/20/2015] [Accepted: 03/20/2015] [Indexed: 02/02/2023]
Abstract
Intervertebral disc degeneration is a major cause of low back pain. Despite its long history and large socio-economical impact in western societies, the initiation and progress of disc degeneration is not well understood and a generic disease model is lacking. In literature, mechanics and biology have both been implicated as the predominant inductive cause; here we argue that they are interconnected and amplify each other. This view is supported by the growing awareness that cellular physiology is strongly affected by mechanical loading. We propose a vicious circle of mechanical overloading, catabolic cell response, and degeneration of the water-binding extracellular matrix. Rather than simplifying the disease, the model illustrates the complexity of disc degeneration, because all factors are interrelated. It may however solve some of the controversy in the field, because the vicious circle can be entered at any point, eventually leading to the same pathology. The proposed disease model explains the comparable efficacy of very different animal models of disc degeneration, but also helps to consider the consequences of therapeutic interventions, either at the cellular, material or mechanical level.
Collapse
|
61
|
Abstract
STUDY DESIGN A biodegradable glue was biomechanically tested for annulus closure using nondegenerated goat intervertebral discs. Ultimate strength and endurance tests were performed using native and punctured discs as positive and negative controls, respectively. OBJECTIVE The aim of this study was to investigate the feasibility and biomechanical properties of a biodegradable glue for annulus closure. SUMMARY OF BACKGROUND DATA There is an unmet clinical need for annulus closure techniques. Isocyanate-terminated tissue glues show potential because they adhere to annulus tissue, have an elastic modulus similar to the annulus, and show limited cytotoxicity to human annulus fibrosus cells. METHODS Three biomechanical tests were performed divided in 2 parts: part 1: ultimate strength tests comparing native, punctured (2.4-mm needle), and glued caprine intervertebral discs (n = 11 per group); part 2: 10 discs per group were subjected to a 10-day ex vivo endurance test of 864,000 load cycles, followed by ultimate strength tests. Outcome parameters include the restoration of strength after puncture, reduction of herniation in the endurance test, and conservation of glue strength after endurance testing. RESULTS Part 1: The glue partially restored subsidence to failure and yield strength/ultimate strength ratio of intervertebral discs. Part 2: During endurance testing, 40% of punctured discs failed compared with none of the glued discs. Endurance testing did not affect glue strength, and pooling of ultimate strength tests showed that the glue restored ultimate strength, work to failure, and yield strength/ultimate strength to 79%, 75%, and 119% of native values, respectively. CONCLUSION A biodegradable isocyanate-terminated glue increases the force at which nucleus protrusion occurs, and it limits herniations during endurance or ultimate strength tests. Biomechanical tests in a bioreactor provide a low-cost assessment for annulus repair strategies; however, the clinical efficacy needs to be further addressed using long-term in vivo studies. LEVEL OF EVIDENCE N/A.
Collapse
|