51
|
Vicinus B, Rubie C, Faust SK, Frick VO, Ghadjar P, Wagner M, Graeber S, Schilling MK. miR-21 functionally interacts with the 3'UTR of chemokine CCL20 and down-regulates CCL20 expression in miR-21 transfected colorectal cancer cells. Cancer Lett 2011; 316:105-12. [PMID: 22099878 DOI: 10.1016/j.canlet.2011.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
As deregulation of miRNAs and chemokine CCL20 was shown to play a role in colorectal cancer (CRC) pathogenesis, we analyzed the functional interactions of candidate miRNAs with CCL20 mRNA. After target prediction software programs indicated a role for miR-21 in CCL20 regulation, we applied the luciferase reporter assay system to demonstrate that miR-21 functionally interacts with the 3'UTR of CCL20 mRNA and down-regulates CCL20 in miR-21 mimic transfected CRC cell lines (Caco-2, SW480 and SW620). Thus, regulation of CCL20 expression by miR-21 might be a regulatory mechanism involved in progression of CRC.
Collapse
Affiliation(s)
- Benjamin Vicinus
- Department of General, Visceral, Vascular and Paediatric Surgery, University of the Saarland, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Hua Y, Duan S, Murmann AE, Larsen N, Kjems J, Lund AH, Peter ME. miRConnect: identifying effector genes of miRNAs and miRNA families in cancer cells. PLoS One 2011; 6:e26521. [PMID: 22046300 PMCID: PMC3202536 DOI: 10.1371/journal.pone.0026521] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/28/2011] [Indexed: 12/14/2022] Open
Abstract
micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information on the biological state of the cell and, hence, of the function of the expressed miRNAs. We have compared the large amount of available gene array data on the steady state system of the NCI60 cell lines to two different data sets containing information on the expression of 583 individual miRNAs. In addition, we have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment. By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT) in addition to the known EMT regulators of the miR-200 miRNA family. In addition, an analysis of gene signatures associated with EMT, c-MYC activity, and ribosomal protein gene expression allowed us to assign different activities to each of the functional clusters of miRNAs. All correlation data are available via a web interface that allows investigators to identify genes whose expression correlates with the expression of single miRNAs or entire miRNA families. miRConnect.org will aid in identifying pathways regulated by miRNAs without requiring specific knowledge of miRNA targets.
Collapse
Affiliation(s)
- Youjia Hua
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, Illinois, United States of America
| | - Shiwei Duan
- Department of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Andrea E. Murmann
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, Illinois, United States of America
| | - Niels Larsen
- Department of Molecular Biology, Aarhus University, Århus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology, Aarhus University, Århus, Denmark
| | - Anders H. Lund
- Biotech Research and Innovation Centre and Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Marcus E. Peter
- Feinberg School of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
53
|
Gatti DM, Lu L, Williams RW, Sun W, Wright FA, Threadgill DW, Rusyn I. MicroRNA expression in the livers of inbred mice. Mutat Res 2011; 714:126-33. [PMID: 21616085 PMCID: PMC3166582 DOI: 10.1016/j.mrfmmm.2011.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 05/05/2011] [Accepted: 05/08/2011] [Indexed: 01/07/2023]
Abstract
MicroRNAs are short, non-coding RNA sequences that regulate genes at the post-transcriptional level and have been shown to be important in development, tissue differentiation, and disease. Limited attention has been given to the natural variation in miRNA expression across genetically diverse populations even though it is well established that genetic polymorphisms can have a profound effect on mRNA levels. Expression level of 577 miRNAs in the livers of 70 strains of inbred mice was assessed, and we found that miRNA expression is highly stable across different strains. Globally, the expression of miRNA target transcripts does not correlate with miRNA expression, primarily due to the low variance of miRNA but high variance of mRNA expression across strains. Our results show that there is little genetic effect on the baseline miRNA levels in murine liver. The stability of mouse liver miRNA expression in a genetically diverse population suggests that treatment-induced disruptions in liver miRNA expression, a phenomenon established for a large number of toxicants, may indicate an important mechanism for the disturbance of normal liver function, and may prove to be a useful genetic background-independent biomarker of toxicant effect.
Collapse
Affiliation(s)
- Daniel M. Gatti
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599 USA
- Carolina Center for Computational Toxicology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Key Laboratory of Nerve Regeneration, Nantong University, Nantong 226001, PR China
| | - Robert W. Williams
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Sun
- Carolina Center for Computational Toxicology, University of North Carolina, Chapel Hill, NC 27599 USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Fred A. Wright
- Carolina Center for Computational Toxicology, University of North Carolina, Chapel Hill, NC 27599 USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - David W. Threadgill
- Department of Genetics, North Carolina State University, Raleigh, NC, 27695 USA
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599 USA
- Carolina Center for Computational Toxicology, University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
54
|
Evidence for the complexity of microRNA-mediated regulation in ovarian cancer: a systems approach. PLoS One 2011; 6:e22508. [PMID: 21811625 PMCID: PMC3141058 DOI: 10.1371/journal.pone.0022508] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/27/2011] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are short (∼22 nucleotides) regulatory RNAs that can modulate gene expression and are aberrantly expressed in many diseases including cancer. Previous studies have shown that miRNAs inhibit the translation and facilitate the degradation of their targeted messenger RNAs (mRNAs) making them attractive candidates for use in cancer therapy. However, the potential clinical utility of miRNAs in cancer therapy rests heavily upon our ability to understand and accurately predict the consequences of fluctuations in levels of miRNAs within the context of complex tumor cells. To evaluate the predictive power of current models, levels of miRNAs and their targeted mRNAs were measured in laser captured micro-dissected (LCM) ovarian cancer epithelial cells (CEPI) and compared with levels present in ovarian surface epithelial cells (OSE). We found that the predicted inverse correlation between changes in levels of miRNAs and levels of their mRNA targets held for only ∼11% of predicted target mRNAs. We demonstrate that this low inverse correlation between changes in levels of miRNAs and their target mRNAs in vivo is not merely an artifact of inaccurate miRNA target predictions but the likely consequence of indirect cellular processes that modulate the regulatory effects of miRNAs in vivo. Our findings underscore the complexities of miRNA-mediated regulation in vivo and the necessity of understanding the basis of these complexities in cancer cells before the therapeutic potential of miRNAs can be fully realized.
Collapse
|
55
|
Radfar MH, Wong W, Morris Q. Computational prediction of intronic microRNA targets using host gene expression reveals novel regulatory mechanisms. PLoS One 2011; 6:e19312. [PMID: 21694770 PMCID: PMC3111417 DOI: 10.1371/journal.pone.0019312] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/30/2011] [Indexed: 11/21/2022] Open
Abstract
Approximately half of known human miRNAs are located in the introns of protein coding genes. Some of these intronic miRNAs are only expressed when their host gene is and, as such, their steady state expression levels are highly correlated with those of the host gene's mRNA. Recently host gene expression levels have been used to predict the targets of intronic miRNAs by identifying other mRNAs that they have consistent negative correlation with. This is a potentially powerful approach because it allows a large number of expression profiling studies to be used but needs refinement because mRNAs can be targeted by multiple miRNAs and not all intronic miRNAs are co-expressed with their host genes. Here we introduce InMiR, a new computational method that uses a linear-Gaussian model to predict the targets of intronic miRNAs based on the expression profiles of their host genes across a large number of datasets. Our method recovers nearly twice as many true positives at the same fixed false positive rate as a comparable method that only considers correlations. Through an analysis of 140 Affymetrix datasets from Gene Expression Omnibus, we build a network of 19,926 interactions among 57 intronic miRNAs and 3,864 targets. InMiR can also predict which host genes have expression profiles that are good surrogates for those of their intronic miRNAs. Host genes that InMiR predicts are bad surrogates contain significantly more miRNA target sites in their 3′ UTRs and are significantly more likely to have predicted Pol II and Pol III promoters in their introns. We provide a dataset of 1,935 predicted mRNA targets for 22 intronic miRNAs. These prediction are supported both by sequence features and expression. By combining our results with previous reports, we distinguish three classes of intronic miRNAs: Those that are tightly regulated with their host gene; those that are likely to be expressed from the same promoter but whose host gene is highly regulated by miRNAs; and those likely to have independent promoters.
Collapse
Affiliation(s)
- M. Hossein Radfar
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (MHR); (QM)
| | - Willy Wong
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Quaid Morris
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (MHR); (QM)
| |
Collapse
|
56
|
Cho JH, Gelinas R, Wang K, Etheridge A, Piper MG, Batte K, Dakhallah D, Price J, Bornman D, Zhang S, Marsh C, Galas D. Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics 2011; 4:8. [PMID: 21241464 PMCID: PMC3035594 DOI: 10.1186/1755-8794-4-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 01/17/2011] [Indexed: 11/17/2022] Open
Abstract
Background The molecular pathways involved in the interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches, with global expression data sets, were used to identify perturbed gene networks, to gain some understanding of the underlying mechanisms, and to develop specific hypotheses relevant to these chronic lung diseases. Methods Lung tissue samples from patients with different types of ILD were obtained from the Lung Tissue Research Consortium and total cell RNA was isolated. Global mRNA and microRNA were profiled by hybridization and amplification-based methods. Differentially expressed genes were compiled and used to identify critical signaling pathways and potential biomarkers. Modules of genes were identified that formed a regulatory network, and studies were performed on cultured cells in vitro for comparison with the in vivo results. Results By profiling mRNA and microRNA (miRNA) expression levels, we found subsets of differentially expressed genes that distinguished patients with ILDs from controls and that correlated with different disease stages and subtypes of ILDs. Network analysis, based on pathway databases, revealed several disease-associated gene modules, involving genes from the TGF-β, Wnt, focal adhesion, and smooth muscle actin pathways that are implicated in advancing fibrosis, a critical pathological process in ILDs. A more comprehensive approach was also adapted to construct a putative global gene regulatory network based on the perturbation of key regulatory elements, transcription factors and microRNAs. Our data underscores the importance of TGF-β signaling and the persistence of smooth muscle actin-containing fibroblasts in these diseases. We present evidence that, downstream of TGF-β signaling, microRNAs of the miR-23a cluster and the transcription factor Zeb1 could have roles in mediating an epithelial to mesenchymal transition (EMT) and the resultant persistence of mesenchymal cells in these diseases. Conclusions We present a comprehensive overview of the molecular networks perturbed in ILDs, discuss several potential key molecular regulatory circuits, and identify microRNA species that may play central roles in facilitating the progression of ILDs. These findings advance our understanding of these diseases at the molecular level, provide new molecular signatures in defining the specific characteristics of the diseases, suggest new hypotheses, and reveal new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ji-Hoon Cho
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Giraud-Triboult K, Rochon-Beaucourt C, Nissan X, Champon B, Aubert S, Piétu G. Combined mRNA and microRNA profiling reveals that miR-148a and miR-20b control human mesenchymal stem cell phenotype via EPAS1. Physiol Genomics 2010; 43:77-86. [PMID: 21081659 DOI: 10.1152/physiolgenomics.00077.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are present in a wide variety of tissues during development of the human embryo starting as early as the first trimester. Gene expression profiling of these cells has focused primarily on the molecular signs characterizing their potential heterogeneity and their differentiation potential. In contrast, molecular mechanisms participating in the emergence of MSC identity in embryo are still poorly understood. In this study, human embryonic stem cells (hESs) were differentiated toward MSCs (ES-MSCs) to compare the genetic patterns between pluripotent hESs and multipotent MSCs by a large genomewide expression profiling of mRNAs and microRNAs (miRNAs). After whole genome differential transcriptomic analysis, a stringent protocol was used to search for genes differentially expressed between hESs and ES-MSCs, followed by several validation steps to identify the genes most specifically linked to the MSC phenotype. A network was obtained that encompassed 74 genes in 13 interconnected transcriptional systems that are likely to contribute to MSC identity. Pairs of negatively correlated miRNAs and mRNAs, which suggest miRNA-target relationships, were then extracted and validation was sought with the use of Pre-miRs. We report here that underexpression of miR-148a and miR-20b in ES-MSCs, compared with ESs, allows an increase in expression of the EPAS1 (Endothelial PAS domain 1) transcription factor that results in the expression of markers of the MSC phenotype specification.
Collapse
|
58
|
Yang X, Lee Y, Fan H, Sun X, Lussier YA. Identification of common microRNA-mRNA regulatory biomodules in human epithelial cancers. CHINESE SCIENCE BULLETIN-CHINESE 2010; 55:3576-3589. [PMID: 21340045 PMCID: PMC3039912 DOI: 10.1007/s11434-010-4051-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The complex regulatory network between microRNAs and gene expression remains unclear domain of active research. We proposed to address in part this complex regulation with a novel approach for the genome-wide identification of biomodules derived from paired microRNA and mRNA profiles, which could reveal correlations associated with a complex network of de-regulation in human cancer. Two published expression datasets for 68 samples with 11 distinct types of epithelial cancers and 21 samples of normal tissues were used, containing microRNA expression (Lu et al. Nature Letters 2005) and gene expression (Ramaswarmy et al. PNAS 2001) profiles, respectively. As results, the microRNA expression used jointly with mRNA expression can provide better classifiers of epithelial cancers against normal epithelial tissue than either dataset alone (p=1×10(-10), F-Test). We identified a combination of six microRNA-mRNA biomodules that optimally classified epithelial cancers from normal epithelial tissue (total accuracy = 93.3%; 95% confidence intervals: 86% - 97%), using penalized logistic regression (PLR) algorithm and three-fold cross-validation. Three of these biomodules are individually sufficient to cluster epithelial cancers from normal tissue using mutual information distance. The biomodules contain 10 distinct microRNAs and 98 distinct genes, including well known tumor markers such as miR-15a, miR-30e, IRAK1, TGFBR2, DUSP16, CDC25B and PDCD2. In addition, there is a significant enrichment (Fisher's exact test p=3×10(-10)) between putative microRNA-target gene pairs reported in five microRNA target databases and the inversely correlated micro-RNA-mRNA pairs in the biomodules. Further, microRNAs and genes in the biomodules were found in abstracts mentioning epithelial cancers (Fisher Exact Test, unadjusted p<0.05). Taken together, these results strongly suggest that the discovered microRNA-mRNA biomodules correspond to regulatory mechanisms common to human epithelial cancer samples. In conclusion, we developed and evaluated a novel comprehensive method to systematically identify, on a genome scale, microRNA-mRNA expression biomodules common to distinct cancers of the same tissue. These biomodules also comprise novel microRNA and genes as well as an imputed regulatory network, which may accelerate the work of cancer biologists as large regulatory maps of cancers can be drawn efficiently for hypothesis generation.
Collapse
Affiliation(s)
- Xinan Yang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096,China
| | | | | | | | | |
Collapse
|
59
|
Ragusa M, Majorana A, Statello L, Maugeri M, Salito L, Barbagallo D, Guglielmino MR, Duro LR, Angelica R, Caltabiano R, Biondi A, Di Vita M, Privitera G, Scalia M, Cappellani A, Vasquez E, Lanzafame S, Basile F, Di Pietro C, Purrello M. Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther 2010; 9:3396-409. [PMID: 20881268 DOI: 10.1158/1535-7163.mct-10-0137] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The relationship between therapeutic response and modifications of microRNA (miRNA) transcriptome in colorectal cancer (CRC) remains unknown. We investigated this issue by profiling the expression of 667 miRNAs in 2 human CRC cell lines, one sensitive and the other resistant to cetuximab (Caco-2 and HCT-116, respectively), through TaqMan real-time PCR. Caco-2 and HCT-116 expressed different sets of miRNAs after treatment. Specifically, 21 and 22 miRNAs were differentially expressed in Caco-2 or HCT-116, respectively (t test, P < 0.01). By testing the expression of differentially expressed miRNAs in CRC patients, we found that miR-146b-3p and miR-486-5p are more abundant in K-ras-mutated samples with respect to wild-type ones (Wilcoxon test, P < 0.05). Sixty-seven percent of differentially expressed miRNAs were involved in cancer, including CRC, whereas 19 miRNA targets had been previously reported to be involved in the cetuximab pathway and CRC. We identified 25 transcription factors putatively controlling these miRNAs, 11 of which have been already reported to be involved in CRC. On the basis of these data, we suggest that the downregulation of let-7b and let-7e (targeting K-ras) and the upregulation of miR-17* (a CRC marker) could be considered as candidate molecular markers of cetuximab resistance. Global network functional analysis (based on miRNA targets) showed a significant overrepresentation of cancer-related biological processes and networks centered on critical nodes involved in epidermal growth factor receptor internalization and ubiquitin-mediated degradation. The identification of miRNAs, whose expression is linked to the efficacy of therapy, should allow the ability to predict the response of patients to treatment and possibly lead to a better understanding of the molecular mechanisms of drug response.
Collapse
Affiliation(s)
- Marco Ragusa
- Dipartimento di Scienze BioMediche, Sezione di Biologia Generale, Biologia Cellulare, Genetica Molecolare, Unità di BioMedicina Molecolare Genomica e dei Sistemi Complessi, Genetica, Biologia Computazionale G Sichel, 95123 Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Ichimura A, Ruike Y, Terasawa K, Shimizu K, Tsujimoto G. MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells. Mol Pharmacol 2010; 77:1016-24. [PMID: 20299489 DOI: 10.1124/mol.109.063321] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phorbol 12-myristate 13-acetate (PMA) induces megakaryocytic differentiation of the human chronic myelocytic leukemia cell line K562. We examined the potential regulatory role of microRNAs (miRNAs) in this process. Genome-wide expression profiling identified 21 miRNAs (miRs) that were induced by the treatment of K562 cells with PMA. Among them, the expression of miR-34a, miR-221, and miR-222 was induced in the early stages and maintained throughout the late stages of differentiation. Cell signaling analysis showed that the activation of extracellular signal-regulated protein kinase (ERK) in response to PMA strongly induced miR-34a expression by transactivation via the activator protein-1 binding site in the upstream region of the miR-34a gene. Reporter gene assays identified mitogen-activated protein kinase kinase 1 (MEK1) as a direct target of miR-34a and c-fos as a direct target of miR-221/222. Although overexpression of the three miRNAs had little effect on cell differentiation, overexpression of miR-34a significantly repressed the proliferation of K562 cells with a concomitant reduction in MEK1 protein expression. Conversely, a locked nucleic acid probe against miR-34a significantly enhanced the proliferation of PMA-treated K562 cells. Taken together, the results show that PMA activates the MEK-ERK pathway and strongly induces miRNA-34a expression, which in turn inhibits cell proliferation by repressing the expression of MEK1. Thus, the results highlight an important regulatory role for miR-34a in the process of megakaryocytic differentiation, especially in the arrest of cell growth, which is a prerequisite for cells to enter differentiation.
Collapse
Affiliation(s)
- Atsuhiko Ichimura
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
61
|
Sales G, Coppe A, Bicciato S, Bortoluzzi S, Romualdi C. Impact of probe annotation on the integration of miRNA-mRNA expression profiles for miRNA target detection. Nucleic Acids Res 2010; 38:e97. [PMID: 20071740 PMCID: PMC2853140 DOI: 10.1093/nar/gkp1239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional and translational levels by an imperfect binding to target mRNA 3′UTR regions. While the ab-initio computational prediction of miRNA–mRNA interactions still poses significant challenges, it is possible to overcome some of its limitations by carefully integrating into the analysis the paired expression profiles of miRNAs and mRNAs. In this work, we show how the choice of a proper probe annotation for microarray platforms is an essential requirement to achieve good sensitivity in the identification of miRNA–mRNA interactions. We compare the results obtained from the analysis of the same expression profiles using both gene and transcript based custom CDFs that we have developed for a number of different annotations (ENSEMBL, RefSeq, AceView). In all cases, transcript-based annotations clearly improve the effectiveness of data integration and thus provide a more reliable confirmation of computationally predicted miRNA–mRNA interactions.
Collapse
Affiliation(s)
- Gabriele Sales
- Department of Biology, University of Padova, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
62
|
Kato Y, Sawata SY, Inoue A. A lentiviral vector encoding two fluorescent proteins enables imaging of adenoviral infection via adenovirus-encoded miRNAs in single living cells. ACTA ACUST UNITED AC 2009; 147:63-71. [DOI: 10.1093/jb/mvp144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
63
|
CREB: A Key Regulator of Normal and Neoplastic Hematopoiesis. Adv Hematol 2009; 2009:634292. [PMID: 19960054 PMCID: PMC2778441 DOI: 10.1155/2009/634292] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/30/2009] [Indexed: 11/17/2022] Open
Abstract
The cAMP response element-binding protein (CREB) is a nuclear transcription factor downstream of cell surface receptors and mitogens that is critical for normal and neoplastic hematopoiesis. Previous work from our laboratory demonstrated that a majority of patients with acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) overexpress CREB in the bone marrow. To understand the role of CREB in leukemogenesis, we examined the biological effect of CREB overexpression on primary leukemia cells, leukemia cell lines, and CREB overexpressing transgenic mice. Our results demonstrated that CREB overexpression leads to an increase in cellular proliferation and survival. Furthermore, CREB transgenic mice develop a myeloproliferative disorder with aberrant myelopoiesis in both the bone marrow and spleen. Additional research from other groups has shown that the expression of the cAMP early inducible repressor (ICER), a CREB repressor, is also deregulated in leukemias. And, miR-34b, a microRNA that negative regulates CREB expression, is expressed at lower levels in myeloid leukemia cell lines compared to that of healthy bone marrow. Taken together, these data suggest that CREB plays a role in cellular transformation. The data also suggest that CREB-specific signaling pathways could possibly serve as potential targets for therapeutic intervention.
Collapse
|
64
|
Peng X, Li Y, Walters KA, Rosenzweig ER, Lederer SL, Aicher LD, Proll S, Katze MG. Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics 2009; 10:373. [PMID: 19671175 PMCID: PMC2907698 DOI: 10.1186/1471-2164-10-373] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 08/11/2009] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) is a major cause of chronic liver disease by infecting over 170 million people worldwide. Recent studies have shown that microRNAs (miRNAs), a class of small non-coding regulatory RNAs, are involved in the regulation of HCV infection, but their functions have not been systematically studied. We propose an integrative strategy for identifying the miRNA-mRNA regulatory modules that are associated with HCV infection. This strategy combines paired expression profiles of miRNAs and mRNAs and computational target predictions. A miRNA-mRNA regulatory module consists of a set of miRNAs and their targets, in which the miRNAs are predicted to coordinately regulate the level of the target mRNA. RESULTS We simultaneously profiled the expression of cellular miRNAs and mRNAs across 30 HCV positive or negative human liver biopsy samples using microarray technology. We constructed a miRNA-mRNA regulatory network, and using a graph theoretical approach, identified 38 miRNA-mRNA regulatory modules in the network that were associated with HCV infection. We evaluated the direct miRNA regulation of the mRNA levels of targets in regulatory modules using previously published miRNA transfection data. We analyzed the functional roles of individual modules at the systems level by integrating a large-scale protein interaction network. We found that various biological processes, including some HCV infection related canonical pathways, were regulated at the miRNA level during HCV infection. CONCLUSION Our regulatory modules provide a framework for future experimental analyses. This report demonstrates the utility of our approach to obtain new insights into post-transcriptional gene regulation at the miRNA level in complex human diseases.
Collapse
Affiliation(s)
- Xinxia Peng
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 2009; 28:3360-70. [PMID: 19597470 DOI: 10.1038/onc.2009.192] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) make up a novel class of gene regulators; they function as oncogenes or tumor suppressors by targeting tumor-suppressor genes or oncogenes. A recent study that analysed a large number of human cancer cell lines showed that miR-330 is a potential tumor-suppressor gene. However, the function and molecular mechanism of miR-330 in determining the aggressiveness of human prostate cancer has not been studied. Here, we show that miR-330 is significantly lower expressed in human prostate cancer cell lines than in nontumorigenic prostate epithelial cells. Bioinformatics analyses reveal a conserved target site for miR-330 in the 3'-untranslated region (UTR) of E2F1 at nucleotides 1018-1024. MiR-330 significantly suppressed the activity of a luciferase reporter containing the E2F1-3'-UTR in the cells. This activity could be abolished with the transfection of anti-miR-330 or mutated E2F1-3'-UTR. In addition, the expression level of miR-330 and E2F1 was inversely correlated in cell lines and prostate cancer specimens. After overexpressing of miR-330 in PC-3 cells, cell growth was suppressed by reducing E2F1-mediated Akt phosphorylation and thereby inducing apoptosis. Collectively, this is the first study to show that E2F1 is negatively regulated by miR-330 and also show that miR-330 induces apoptosis in prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation.
Collapse
|
66
|
Yao Y, Zhao Y, Smith LP, Lawrie CH, Saunders NJ, Watson M, Nair V. Differential expression of microRNAs in Marek's disease virus-transformed T-lymphoma cell lines. J Gen Virol 2009; 90:1551-1559. [PMID: 19297609 DOI: 10.1099/vir.0.009902-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are increasingly recognized to play crucial roles in regulation of gene expression in different biological events, including many sporadic forms of cancer. However, despite the involvement of several viruses in inducing cancer, only a limited number of studies have been carried out to examine the miRNA expression signatures in virus-induced neoplasia, particularly in herpesvirus-induced tumours where virus-encoded miRNAs also contribute significantly to the miRNome of the tumour cell. Marek's disease (MD) is a naturally occurring, rapid-onset CD4+ T-cell lymphoma of poultry, induced by the highly contagious Marek's disease virus (MDV). High levels of expression of virus-encoded miRNAs and altered expression of several host-encoded miRNAs were demonstrated in the MDV-transformed lymphoblastoid cell line MSB-1. In order to identify the miRNA expression signature specific to MDV-transformed cells, we examined the global miRNA expression profiles in seven distinct MDV-transformed cell lines by microarray analysis. This study revealed that, in addition to the high levels of MDV-encoded miRNAs, these MD tumour-derived lymphoblastoid cell lines showed altered expression of several host-encoded miRNAs. Comparison of the miRNA expression profiles of these cell lines with the MDV-negative, retrovirus-transformed AVOL-1 cell line showed that miR-150 and miR-223 are downregulated irrespective of the viral aetiology, whereas downregulation of miR-155 was specific for MDV-transformed tumour cells. Thus, increased expression of MDV-encoded miRNAs with specific downregulation of miR-155 can be considered as unique expression signatures for MD tumour cells. Analysis of the functional targets of these miRNAs would contribute to the understanding of the molecular pathways of MD oncogenicity.
Collapse
Affiliation(s)
- Yongxiu Yao
- Division of Microbiology, Institute for Animal Health, Compton RG20 7NN, UK
| | - Yuguang Zhao
- Division of Microbiology, Institute for Animal Health, Compton RG20 7NN, UK
| | - Lorraine P Smith
- Division of Microbiology, Institute for Animal Health, Compton RG20 7NN, UK
| | - Charles H Lawrie
- LRF Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Nigel J Saunders
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael Watson
- Division of Microbiology, Institute for Animal Health, Compton RG20 7NN, UK
| | - Venugopal Nair
- Division of Microbiology, Institute for Animal Health, Compton RG20 7NN, UK
| |
Collapse
|
67
|
Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, Seki N. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 2009; 125:345-52. [PMID: 19378336 DOI: 10.1002/ijc.24390] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate protein-coding genes. To identify miRNAs that have a tumor suppressive function in bladder cancer (BC), 156 miRNAs were screened in 14 BCs, 5 normal bladder epithelium (NBE) samples and 3 BC cell lines. We identified a subset of 7 miRNAs (miR-145, miR-30a-3p, miR-133a, miR-133b, miR-195, miR-125b and miR-199a*) that were significantly downregulated in BCs. To confirm these results, 104 BCs and 31 NBEs were subjected to real-time RT-PCR-based experiments, and the expression levels of each miRNA were significantly downregulated in BCs (p < 0.0001 in all). Receiver-operating characteristic curve analysis revealed that the expression levels of these miRNAs had good sensitivity (>70%) and specificity (>75%) to distinguish BC from NBE. Our target search algorithm and gene-expression profiling in BCs (Kawakami et al., Oncol Rep 2006;16:521-31) revealed that Keratin7 (KRT7) mRNA was a common target of the downregulated miRNAs, and the mRNA expression levels of KRT7 were significantly higher in BCs than in NBEs (p = 0.0004). Spearman rank correlation analysis revealed significant inverse correlations between KRT7 mRNA expression and each downregulated miRNA (p < 0.0001 in all). Gain-of-function analysis revealed that KRT7 mRNA was significantly reduced by transfection of 3 miRNAs (miR-30-3p, miR-133a and miR-199a*) in the BC cell line (KK47). In addition, significant decreases in cell growth were observed after transfection of 3 miRNAs and si-KRT7 in KK47, suggesting that miR-30-3p, miR-133a and miR-199a* may have a tumor suppressive function through the mechanism underlying transcriptional repression of KRT7.
Collapse
Affiliation(s)
- Takahiro Ichimi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Tsuchiya S, Oku M, Imanaka Y, Kunimoto R, Okuno Y, Terasawa K, Sato F, Tsujimoto G, Shimizu K. MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells. Nucleic Acids Res 2009; 37:3821-7. [PMID: 19386621 PMCID: PMC2699527 DOI: 10.1093/nar/gkp255] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are small noncoding RNA species, some of which are playing important roles in cell differentiation. However, the level of participations of microRNAs in epithelial cell differentiation is largely unknown. Here, utilizing an epithelial differentiation model with T84 cells, we demonstrate that miR-338-3p and miR-451 contribute to the formation of epithelial basolateral polarity by facilitating translocalization of β1 integrin to the basolateral membrane. Among 250 microRNAs screened in this study, the expression levels of four microRNAs (miR-33a, 210, 338-3p and 451) were significantly elevated in the differentiated stage of T84 cells, when epithelial cell polarity was established. To investigate the involvement of these microRNAs in terms of epithelial cell polarity, we executed loss-of- and gain-of-function analyses of these microRNAs. The blockade of endogenous miR-338-3p or miR-451 via each microRNA-specific antisense oligonucleotides inhibited the translocalization of β1 integrin to the basolateral membrane, whereas inhibition of miR-210 or miR-33a had no effect on it. On the other hand, simultaneous transfection of synthetic miR-338-3p and miR-451 accelerated the translocalization of β1 integrin to the basolateral membrane, although the introduction of individual synthetic microRNAs exhibited no effect. Therefore, we concluded that both miR-338-3p and miR-451 are necessary for the development of epithelial cell polarity.
Collapse
Affiliation(s)
- Soken Tsuchiya
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Ren J, Jin P, Wang E, Marincola FM, Stroncek DF. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med 2009; 7:20. [PMID: 19309508 PMCID: PMC2669448 DOI: 10.1186/1479-5876-7-20] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 03/23/2009] [Indexed: 12/26/2022] Open
Abstract
Background The unique features of human embryonic stem (hES) cells make them the best candidate resource for both cell replacement therapy and development research. However, the molecular mechanisms responsible for the simultaneous maintenance of their self-renewal properties and undifferentiated state remain unclear. Non-coding microRNAs (miRNA) which regulate mRNA cleavage and inhibit encoded protein translation exhibit temporal or tissue-specific expression patterns and they play an important role in development timing. Results In this study, we analyzed miRNA and gene expression profiles among samples from 3 hES cell lines (H9, I6 and BG01v), differentiated embryoid bodies (EB) derived from H9 cells at different time points, and 5 adult cell types including Human Microvascular Endothelial Cells (HMVEC), Human Umbilical Vein Endothelial Cells (HUVEC), Umbilical Artery Smooth Muscle Cells (UASMC), Normal Human Astrocytes (NHA), and Lung Fibroblasts (LFB). This analysis rendered 104 miRNAs and 776 genes differentially expressed among the three cell types. Selected differentially expressed miRNAs and genes were further validated and confirmed by quantitative real-time-PCR (qRT-PCR). Especially, members of the miR-302 cluster on chromosome 4 and miR-520 cluster on chromosome 19 were highly expressed in undifferentiated hES cells. MiRNAs in these two clusters displayed similar expression levels. The members of these two clusters share a consensus 7-mer seed sequence and their targeted genes had overlapping functions. Among the targeted genes, genes with chromatin structure modification function are enriched suggesting a role in the maintenance of chromatin structure. We also found that the expression level of members of the two clusters, miR-520b and miR-302c, were negatively correlated with their targeted genes based on gene expression analysis Conclusion We identified the expression patterns of miRNAs and gene transcripts in the undifferentiation of human embryonic stem cells; among the miRNAs that are highly expressed in undifferentiated embryonic stem cells, the miR-520 cluster may be closely involved in hES cell function and its relevance to chromatin structure warrants further study.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Department of Transfusion Medicine, Clinical Center, National Institute of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
70
|
MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009; 4:e4699. [PMID: 19259271 PMCID: PMC2649537 DOI: 10.1371/journal.pone.0004699] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/14/2009] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, that play important regulatory roles in a variety of biological processes, including development, differentiation, apoptosis, and metabolism. In mammals, miRNAs have been shown to modulate adipocyte differentiation. Therefore, we performed a global miRNA gene expression assay in different fat depots of overweight and obese individuals to investigate whether miRNA expression in human adipose tissue is fat-depot specific and associated with parameters of obesity and glucose metabolism. Paired samples of abdominal subcutaneous (SC) and intraabdominal omental adipose tissue were obtained from fifteen individuals with either normal glucose tolerance (NGT, n = 9) or newly diagnosed type 2 diabetes (T2D, n = 6). Expression of 155 miRNAs was carried out using the TaqMan(R)MicroRNA Assays Human Panel Early Access Kit (Applied Biosystems, Darmstadt, Germany). We identified expression of 106 (68%) miRNAs in human omental and SC adipose tissue. There was no miRNA exclusively expressed in either fat depot, suggesting common developmental origin of both fat depots. Sixteen miRNAs (4 in NGT, 12 in T2D group) showed a significant fat depot specific expression pattern. We identified significant correlations between the expression of miRNA-17-5p, -132, -99a, -134, 181a, -145, -197 and both adipose tissue morphology and key metabolic parameters, including visceral fat area, HbA(1c), fasting plasma glucose, and circulating leptin, adiponectin, interleukin-6. In conclusion, microRNA expression differences may contribute to intrinsic differences between omental and subcutaneous adipose tissue. In addition, human adipose tissue miRNA expression correlates with adipocyte phenotype, parameters of obesity and glucose metabolism.
Collapse
|
71
|
Pigazzi M, Manara E, Baron E, Basso G. miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 2009; 69:2471-8. [PMID: 19258499 DOI: 10.1158/0008-5472.can-08-3404] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyclic AMP-responsive element binding protein (CREB) is documented to be overexpressed in leukemia, but the underlying mechanism remains unknown. Here, microRNAs (miRNA), which act as negative regulators of gene expression principally through translational repression, are investigated for the mediation of high CREB protein levels. A series of miRNAs that target CREB were identified. Real-time quantitative PCR revealed that miR-34b was expressed significantly less in myeloid cell lines, previously known for high CREB protein levels. Exogenous miR-34b expression was induced, and results revealed a direct interaction with the CREB 3'-untranslated region, with the consequent reduction of the CREB protein levels in vitro. miR-34b restored expression caused cell cycle abnormalities, reduced anchorage-independent growth, and altered CREB target gene expression, suggesting its suppressor potential. Using reverse-phase protein array, CREB target proteins (BCL-2, cyclin A1, cyclin B1, cyclin D, nuclear factor-kappaB, Janus-activated kinase 1, and signal transducer and activator of transcription 3), as well as many downstream protein kinases and cell survival signaling pathways (AKT/mammalian target of rapamycin and extracellular signal-regulated kinase) usually elicited by CREB, were observed to have decreased. The miR-34b/miR-34c promoter was shown to be methylated in the leukemia cell lines used. This epigenetic regulation should control the observed miR-34b expression levels to maintain the CREB protein overexpressed. In addition, the inverse correlation between miR-34b and CREB expression was found in a cohort of 78 pediatric patients at diagnosis of acute myeloid leukemia, supporting this relationship in vivo. Our results identify a direct miR-34b target gene, provide a possible mechanism for CREB overexpression, and provide new information about myeloid transformation and therapeutic strategies.
Collapse
Affiliation(s)
- Martina Pigazzi
- Laboratory of Hematology-Oncology, Department of Pediatrics, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
72
|
Abstract
microRNAs (miRNAs) are highly conserved, non-protein-coding RNAs that function to regulate gene expression. In mammals this regulation is primarily carried out by repression of translation. miRNAs play important roles in homeostatic processes such as development, cell proliferation and cell death. Recently the dysregulation of miRNAs has been linked to cancer initiation and progression, indicating that miRNAs may play roles as tumour suppressor genes or oncogenes. The role of miRNAs in apoptosis is not fully understood, however, evidence is mounting that miRNAs are important in this process. The dysregulation of miRNAs involved in apoptosis may provide a mechanism for cancer development and resistance to cancer therapy. This review examines the biosynthesis of miRNA, the mechanisms of miRNA target regulation and the involvement of miRNAs in the initiation and progression of human cancer. It will include miRNAs involved in apoptosis, specifically those miRNAs involved in the regulation of apoptotic pathways and tumour suppressor/oncogene networks. It will also consider emerging evidence supporting a role for miRNAs in modulating sensitivity to anti-cancer therapy.
Collapse
Affiliation(s)
- Niamh Lynam-Lennon
- Department of Surgery, Trinity College Dublin, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, Ireland
| | | | | |
Collapse
|