51
|
Kurtz-Nelson EC, Beighley JS, Hudac CM, Gerdts J, Wallace AS, Hoekzema K, Eichler EE, Bernier RA. Co-occurring medical conditions among individuals with ASD-associated disruptive mutations. CHILDRENS HEALTH CARE 2020; 49:361-384. [PMID: 33727758 PMCID: PMC7958308 DOI: 10.1080/02739615.2020.1741361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Children with autism spectrum disorder (ASD) are at risk for co-occurring medical conditions, many of which have also been reported among individuals with mutations in ASD-associated genes. This study examined rates of co-occurring medical conditions across 301 individuals with disruptive mutations to 1 of 18 ASD-risk genes in comparison to rates of conditions in an idiopathic ASD sample. Rates of gastrointestinal problems, seizures, physical anomalies, and immune problems were generally elevated, with significant differences in rates observed between groups. Results may inform medical care of individuals with ASD-associated mutations and research into mechanisms of co-occurring medical conditions in ASD.
Collapse
Affiliation(s)
| | - Jennifer S. Beighley
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Caitlin M. Hudac
- Center for Youth Development and Interventions, Department of Psychology, University of Alabama, Tuscaloosa, AL 35401
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Arianne S. Wallace
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
52
|
Biswas D, Cary W, Nolta JA. PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. Int J Mol Sci 2020; 21:ijms21041286. [PMID: 32074998 PMCID: PMC7072873 DOI: 10.3390/ijms21041286] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein Phosphatase 2 Regulatory Subunit B′ Delta (PPP2R5D)-related intellectual disability (ID) and neurodevelopmental delay results from germline de novo mutations in the PPP2R5D gene. This gene encodes the protein PPP2R5D (also known as the B56 delta subunit), which is an isoform of the subunit family B56 of the enzyme serine/threonine-protein phosphatase 2A (PP2A). Clinical signs include intellectual disability (ID); autism spectrum disorder (ASD); epilepsy; speech problems; behavioral challenges; and ophthalmologic, skeletal, endocrine, cardiac, and genital malformations. The association of defective PP2A activity in the brain with a wide range of severity of ID, along with its role in ASD, Alzheimer’s disease, and Parkinson’s-like symptoms, have recently generated the impetus for further research into mutations within this gene. PP2A, together with protein phosphatase 1 (PP1), accounts for more than 90% of all phospho-serine/threonine dephosphorylations in different tissues. The specificity for a wide variety of substrates is determined through nearly 100 different PP2A holoenzymes that are formed by at least 23 types of regulatory B subunits, and two isoforms each of the catalytic subunit C and the structural subunit A. In the mammalian brain, PP2A-mediated protein dephosphorylation plays an important role in learning and memory. The PPP2R5D subunit is highly expressed in the brain and the PPP2A–PPP2R5D holoenzyme plays an important role in maintaining neurons and regulating neuronal signaling. From 2015 to 2017, 25 individuals with PPP2R5D-related developmental disorder were diagnosed. Since then, Whole-Exome Sequencing (WES) has helped to identify more unrelated individuals clinically diagnosed with a neurodevelopmental disorder with pathological variants of PPP2R5D. In this review, we discuss the current understanding of the clinical and genetic aspects of the disorder in the context of the known functions of the PP2A–PPP2R5D holoenzyme in the brain, as well as the pathogenic mutations in PPP2R5D that lead to deficient PP2A–PPP2R5D dephosphorylation and their implications during development and in the etiology of autism, Parkinson’s disease, Alzheimer’s disease, and so forth. In the future, tools such as transgenic animals carrying pathogenic PPP2R5D mutations, and patient-derived induced pluripotent stem cell lines need to be developed in order to fully understand the effects of these mutations on different neural cell types.
Collapse
Affiliation(s)
- Dayita Biswas
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
| | - Whitney Cary
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| | - Jan A. Nolta
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| |
Collapse
|
53
|
Kumar P, Tathe P, Chaudhary N, Maddika S. PPM1G forms a PPP-type phosphatase holoenzyme with B56δ that maintains adherens junction integrity. EMBO Rep 2019; 20:e46965. [PMID: 31432583 PMCID: PMC6776900 DOI: 10.15252/embr.201846965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Serine/threonine phosphatases achieve substrate diversity by forming distinct holoenzyme complexes in cells. Although the PPP family of serine/threonine phosphatase family members such as PP1 and PP2A are well known to assemble and function as holoenzymes, none of the PPM family members were so far shown to act as holoenzymes. Here, we provide evidence that PPM1G, a member of PPM family of serine/threonine phosphatases, forms a distinct holoenzyme complex with the PP2A regulatory subunit B56δ. B56δ promotes the re-localization of PPM1G to the cytoplasm where the phosphatase can access a discrete set of substrates. Further, we unveil α-catenin, a component of adherens junction, as a new substrate for the PPM1G-B56 phosphatase complex in the cytoplasm. B56δ-PPM1G dephosphorylates α-catenin at serine 641, which is necessary for the appropriate assembly of adherens junctions and the prevention of aberrant cell migration. Collectively, we reveal a new holoenzyme with PPM1G-B56δ as integral components, in which the regulatory subunit provides accessibility to distinct substrates for the phosphatase by defining its cellular localization.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
- Graduate StudiesManipal Academy of Higher EducationManipalIndia
| | - Prajakta Tathe
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
- Graduate StudiesManipal Academy of Higher EducationManipalIndia
| | - Neelam Chaudhary
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)Uppal, HyderabadIndia
| |
Collapse
|
54
|
Pirozzi F, Nelson B, Mirzaa G. From microcephaly to megalencephaly: determinants of brain size. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936767 PMCID: PMC6436952 DOI: 10.31887/dcns.2018.20.4/gmirzaa] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Expansion of the human brain, and specifically the neocortex, is among the most remarkable evolutionary processes that correlates with cognitive, emotional, and social abilities. Cortical expansion is determined through a tightly orchestrated process of neural stem cell proliferation, migration, and ongoing organization, synaptogenesis, and apoptosis. Perturbations of each of these intricate steps can lead to abnormalities of brain size in humans, whether small (microcephaly) or large (megalencephaly). Abnormalities of brain growth can be clinically isolated or occur as part of complex syndromes associated with other neurodevelopmental problems (eg, epilepsy, autism, intellectual disability), brain malformations, and body growth abnormalities. Thorough review of the genetic literature reveals that human microcephaly and megalencephaly are caused by mutations of a rapidly growing number of genes linked within critical cellular pathways that impact early brain development, with important pathomechanistic links to cancer, body growth, and epilepsy. Given the rapid rate of causal gene identification for microcephaly and megalencephaly understanding the roles and interplay of these important signaling pathways is crucial to further unravel the mechanisms underlying brain growth disorders and, more fundamentally, normal brain growth and development in humans. In this review, we will (a) overview the definitions of microcephaly and megalencephaly, highlighting their classifications in clinical practice; (b) overview the most common genes and pathways underlying microcephaly and megalencephaly based on the fundamental cellular processes that are perturbed during cortical development; and (c) outline general clinical molecular diagnostic workflows for children and adults presenting with microcephaly and megalencephaly.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Branden Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
55
|
Lecoquierre F, Duffourd Y, Vitobello A, Bruel AL, Urteaga B, Coubes C, Garret P, Nambot S, Chevarin M, Jouan T, Moutton S, Tran-Mau-Them F, Philippe C, Sorlin A, Faivre L, Thauvin-Robinet C. Variant recurrence in neurodevelopmental disorders: the use of publicly available genomic data identifies clinically relevant pathogenic missense variants. Genet Med 2019; 21:2504-2511. [DOI: 10.1038/s41436-019-0518-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
|
56
|
Reynhout S, Jansen S, Haesen D, van Belle S, de Munnik SA, Bongers EM, Schieving JH, Marcelis C, Amiel J, Rio M, Mclaughlin H, Ladda R, Sell S, Kriek M, Peeters-Scholte CM, Terhal PA, van Gassen KL, Verbeek N, Henry S, Scott Schwoerer J, Malik S, Revencu N, Ferreira CR, Macnamara E, Braakman HM, Brimble E, Ruzhnikov MR, Wagner M, Harrer P, Wieczorek D, Kuechler A, Tziperman B, Barel O, de Vries BB, Gordon CT, Janssens V, Vissers LE. De Novo Mutations Affecting the Catalytic Cα Subunit of PP2A, PPP2CA, Cause Syndromic Intellectual Disability Resembling Other PP2A-Related Neurodevelopmental Disorders. Am J Hum Genet 2019; 104:139-156. [PMID: 30595372 DOI: 10.1016/j.ajhg.2018.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.
Collapse
|
57
|
Burkardt DD, Graham JM. Abnormal Body Size and Proportion. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS AND GENOMICS 2019:81-143. [DOI: 10.1016/b978-0-12-812536-6.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
58
|
Leslie SN, Nairn AC. cAMP regulation of protein phosphatases PP1 and PP2A in brain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:64-73. [PMID: 30401536 DOI: 10.1016/j.bbamcr.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Normal functioning of the brain is dependent upon a complex web of communication between numerous cell types. Within neuronal networks, the faithful transmission of information between neurons relies on an equally complex organization of inter- and intra-cellular signaling systems that act to modulate protein activity. In particular, post-translational modifications (PTMs) are responsible for regulating protein activity in response to neurochemical signaling. The key second messenger, cyclic adenosine 3',5'-monophosphate (cAMP), regulates one of the most ubiquitous and influential PTMs, phosphorylation. While cAMP is canonically viewed as regulating the addition of phosphate groups through its activation of cAMP-dependent protein kinases, it plays an equally critical role in regulating removal of phosphate through indirect control of protein phosphatase activity. This dichotomy of regulation by cAMP places it as one of the key regulators of protein activity in response to neuronal signal transduction throughout the brain. In this review we focus on the role of cAMP in regulation of the serine/threonine phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) and the relevance of control of PP1 and PP2A to regulation of brain function and behavior.
Collapse
Affiliation(s)
- Shannon N Leslie
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States of America
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| |
Collapse
|
59
|
Huckins LM, Hatzikotoulas K, Southam L, Thornton LM, Steinberg J, Aguilera-McKay F, Treasure J, Schmidt U, Gunasinghe C, Romero A, Curtis C, Rhodes D, Moens J, Kalsi G, Dempster D, Leung R, Keohane A, Burghardt R, Ehrlich S, Hebebrand J, Hinney A, Ludolph A, Walton E, Deloukas P, Hofman A, Palotie A, Palta P, van Rooij FJA, Stirrups K, Adan R, Boni C, Cone R, Dedoussis G, van Furth E, Gonidakis F, Gorwood P, Hudson J, Kaprio J, Kas M, Keski-Rahonen A, Kiezebrink K, Knudsen GP, Slof-Op 't Landt MCT, Maj M, Monteleone AM, Monteleone P, Raevuori AH, Reichborn-Kjennerud T, Tozzi F, Tsitsika A, van Elburg A, Eating Disorder Working Group of the Psychiatric Genomics Consortium AdanR A H3738AlfredssonL39AndoT40AndreassenO A4142AschauerH43BakerJ H44BarrettJ C45BenckoV46BergenA W47BerrettiniW H48BirgegardA4950BoniC51Boraska PericaV4552BrandtH53BreenG5455BulikC M5657CarlbergL58CassinaM59CichonS606162ClementiM59Cohen-WoodsS6364ColemanJ65ConeR D66CourtetP67CrawfordS53CrowS68CrowleyJ5769DannerU N38DavisO S P70de ZwaanM71DedoussisG72DegortesD73DeSocioJ E74DickD M75DikeosD76DinaC77DingB78Dmitrzak-WeglarzM79DocampoE8081DuncanL8283EgbertsK84EhrlichS8586EscaramísG87EskoT888990EspesethT91EstivillX92FavaroA73Fernández-ArandaF9394FichterM M95FinanC96FischerK97FloydJ A B45ForetovaL98ForzanM99FranklinC S45GallingerS100101GambaroG102GasparH A54GieglingI103GonidakisF104GorwoodP105GratacosM87GuillaumeS67GuoY106HakonarsonH107108HalmiK A109HatzikotoulasK45HauserJ110HebebrandJ111HelderS112113HermsS114Herpertz-DahlmannB115HerzogW116HilliardC E117HinneyA111HübelC118HuckinsL M45119HudsonJ I120HuemerJ121InokoH121JanoutV122Jiménez-MurciaS123124JohnsonC125JuliàA126JuréusA127KalsiG128KaminskaD129KaplanA S130KaprioJ131132KarhunenL133KarwautzA119KasM J H134135KayeW136KennedyJ L137Keski-RahkonenA138KiezebrinkK139KlareskogL140KlumpK L141KnudsenG P S142KoelemanB P C143KoubekD119La ViaM C44LandénM127144Le HellardS145146LevitanR D147LiD127LichtensteinP127LilenfeldL148LissowskaJ149LundervoldA150151MagistrettiP152153MajM154MannikK155156MarsalS126MartinN157MattingsdalM158159McDevittS160McGuffinP161MerlE121MetspaluA88MeulenbeltI162MicaliN163MitchellJ164MitchellK165166MonteleoneP167168MonteleoneA M154MortensenP169Munn-ChernoffM A44NavratilovaM98NilssonI170171NorringC4950NtallaI172OphoffR A37173O'TooleJ K174PalotieA83175PanteJ66176PapezovaH177PintoD178RabionetR92RaevuoriA179180RajewskiA181RamozN51RaynerN W45182183Reichborn-KjennerudT184RipattiS185RobertsM186RotondoA187RujescuD103188RybakowskiF189SantonastasoP73ScheragA190SchererS W191228SchmidtU186SchorkN J229SchosserA230SlachtovaL195SladekR196SlagboomP E197Slof-Op 't LandtM C T198SlopienA199SoranzoN200201202SouthamL45SteenV M203204StrengmanE205StroberM206207SullivanP F57208SzatkiewiczJ P69Szeszenia-DabrowskaN209TachmazidouI45TenconiE210ThorntonL M44TortorellaA154211TozziF212TreasureJ186TsitsikaA213TziouvasK214van ElburgA A134215van FurthE F216217WagnerG121WaltonE8586218219WatsonH220221WichmannH-E222WidenE175WoodsideD B223224YanovskiJ225YaoS127YilmazZ44ZegginiE45ZerwasS44ZipfelS226, Collier DA, Sullivan PF, Breen G, Bulik CM, Zeggini E. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa. Mol Psychiatry 2018; 23:1169-1180. [PMID: 29155802 PMCID: PMC5828108 DOI: 10.1038/mp.2017.88] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10-6), and rs7700147, an intergenic variant (P=2.93 × 10-5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes.
Collapse
Affiliation(s)
- L M Huckins
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK,Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Psychiatric Genomics, Icahn School of Medicine Mount Sinai, 1 Gustave Levy Place, New York City, NY10029, USA. E-mail:
| | - K Hatzikotoulas
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - L Southam
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - L M Thornton
- Department of Psychiatry and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Steinberg
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - F Aguilera-McKay
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - J Treasure
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - U Schmidt
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C Gunasinghe
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,NIHR BRC SLaM BioResource for Mental Health, SGDP Centre & Centre for Neuroimaging Sciences, Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Romero
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,NIHR BRC SLaM BioResource for Mental Health, SGDP Centre & Centre for Neuroimaging Sciences, Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C Curtis
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,NIHR BRC SLaM BioResource for Mental Health, SGDP Centre & Centre for Neuroimaging Sciences, Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - D Rhodes
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,NIHR BRC SLaM BioResource for Mental Health, SGDP Centre & Centre for Neuroimaging Sciences, Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - J Moens
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,NIHR BRC SLaM BioResource for Mental Health, SGDP Centre & Centre for Neuroimaging Sciences, Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - G Kalsi
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,NIHR BRC SLaM BioResource for Mental Health, SGDP Centre & Centre for Neuroimaging Sciences, Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - D Dempster
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,NIHR BRC SLaM BioResource for Mental Health, SGDP Centre & Centre for Neuroimaging Sciences, Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R Leung
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,NIHR BRC SLaM BioResource for Mental Health, SGDP Centre & Centre for Neuroimaging Sciences, Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Keohane
- Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,NIHR BRC SLaM BioResource for Mental Health, SGDP Centre & Centre for Neuroimaging Sciences, Section of Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R Burghardt
- Klinik für Kinder- und Jugendpsychiatrie, Psychotherapie und Psychosomatik Klinikum Frankfurt, Frankfurt, Germany
| | - S Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany,Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - J Hebebrand
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - A Hinney
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - A Ludolph
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - E Walton
- Division of Psychological & Social Medicine and Developmental Neurosciences, Technische Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden, Germany,Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - P Deloukas
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - A Hofman
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A Palotie
- Center for Human Genome Research at the Massachusetts General Hospital, Boston, MA, USA,Department of Public Health & Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - P Palta
- Department of Public Health & Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - F J A van Rooij
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - K Stirrups
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - R Adan
- Brain Center Rudolf Magnus, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Boni
- INSERM U984, Centre of Psychiatry and Neuroscience, Paris, France
| | - R Cone
- Mary Sue Coleman Director, Life Sciences Institute, Professor of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - G Dedoussis
- Department of Dietetics-Nutrition, Harokopio University, Athens, Greece
| | - E van Furth
- Rivierduinen Eating Disorders Ursula, Leiden, Zuid-Holland, The Netherlands
| | - F Gonidakis
- Eating Disorders Unit, 1st Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - P Gorwood
- INSERM U984, Centre of Psychiatry and Neuroscience, Paris, France
| | - J Hudson
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - J Kaprio
- Department of Public Health & Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - M Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - A Keski-Rahonen
- Department of Public Health, Clinicum, University of Helsinki, Helsinki, Finland
| | - K Kiezebrink
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - G-P Knudsen
- Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | | | - M Maj
- Department of Psychiatry, University of Naples SUN, Naples, Italy
| | - A M Monteleone
- Department of Psychiatry, University of Naples SUN, Naples, Italy
| | - P Monteleone
- Department of Medicine and Surgery, Section of Neurosciences, University of Salerno, Salerno, Italy
| | - A H Raevuori
- Department of Public Health, Clinicum, University of Helsinki, Helsinki, Finland
| | - T Reichborn-Kjennerud
- Department of Genetics, Environment and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - F Tozzi
- eHealth Lab-Computer Science Department, University of Cyprus, Nicosia, Cyprus
| | - A Tsitsika
- Adolescent Health Unit (A.H.U.), 2nd Department of Pediatrics – Medical School, University of Athens "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - A van Elburg
- Center for Eating Disorders Rintveld, University of Utrecht, Utrecht, The Netherlands
| | | | - D A Collier
- Eli Lilly and Company, Erl Wood Manor, Windlesham, UK
| | - P F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Medical Epidemiology and Biostatistics, Karolinksa Institutet, Stockholm, Sweden
| | - G Breen
- Social Genetic and Developmental Psychiatry, King's College London, London, UK
| | - C M Bulik
- Department of Psychiatry and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Medical Epidemiology and Biostatistics, Karolinksa Institutet, Stockholm, Sweden,Departments of Psychiatry and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
27514, USA. E-mail:
| | - E Zeggini
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK,Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge
CB10 1SA, UK. E-mail:
| |
Collapse
|
60
|
Methylation-regulated decommissioning of multimeric PP2A complexes. Nat Commun 2017; 8:2272. [PMID: 29273778 PMCID: PMC5741625 DOI: 10.1038/s41467-017-02405-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/28/2017] [Indexed: 11/09/2022] Open
Abstract
Dynamic assembly/disassembly of signaling complexes are crucial for cellular functions. Specialized latency and activation chaperones control the biogenesis of protein phosphatase 2A (PP2A) holoenzymes that contain a common scaffold and catalytic subunits and a variable regulatory subunit. Here we show that the butterfly-shaped TIPRL (TOR signaling pathway regulator) makes highly integrative multibranching contacts with the PP2A catalytic subunit, selective for the unmethylated tail and perturbing/inactivating the phosphatase active site. TIPRL also makes unusual wobble contacts with the scaffold subunit, allowing TIPRL, but not the overlapping regulatory subunits, to tolerate disease-associated PP2A mutations, resulting in reduced holoenzyme assembly and enhanced inactivation of mutant PP2A. Strikingly, TIPRL and the latency chaperone, α4, coordinate to disassemble active holoenzymes into latent PP2A, strictly controlled by methylation. Our study reveals a mechanism for methylation-responsive inactivation and holoenzyme disassembly, illustrating the complexity of regulation/signaling, dynamic complex disassembly, and disease mutations in cancer and intellectual disability.
Collapse
|
61
|
Yeung KS, Tso WWY, Ip JJK, Mak CCY, Leung GKC, Tsang MHY, Ying D, Pei SLC, Lee SL, Yang W, Chung BHY. Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism. Mol Autism 2017; 8:66. [PMID: 29296277 PMCID: PMC5738835 DOI: 10.1186/s13229-017-0182-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/11/2017] [Indexed: 01/12/2023] Open
Abstract
Background Macrocephaly, which is defined as a head circumference greater than or equal to + 2 standard deviations, is a feature commonly observed in children with developmental delay and/or autism spectrum disorder. Although PTEN is a well-known gene identified in patients with this syndromic presentation, other genes in the PI3K-AKT-mTOR signalling pathway have also recently been suggested to have important roles. The aim of this study is to characterise the mutation spectrum of this group of patients. Methods We performed whole-exome sequencing of 21 patients with macrocephaly and developmental delay/autism spectrum disorder. Sources of genomic DNA included blood, buccal mucosa and saliva. Germline mutations were validated by Sanger sequencing, whereas somatic mutations were validated by droplet digital PCR. Results We identified ten pathogenic/likely pathogenic mutations in PTEN (n = 4), PIK3CA (n = 3), MTOR (n = 1) and PPP2R5D (n = 2) in ten patients. An additional PTEN mutation, which was classified as variant of unknown significance, was identified in a patient with a pathogenic PTEN mutation, making him harbour bi-allelic germline PTEN mutations. Two patients harboured somatic PIK3CA mutations, and the level of somatic mosaicism in blood DNA was low. Patients who tested positive for mutations in the PI3K-AKT-mTOR pathway had a lower developmental quotient than the rest of the cohort (DQ = 62.8 vs. 76.1, p = 0.021). Their dysmorphic features were non-specific, except for macrocephaly. Among the ten patients with identified mutations, brain magnetic resonance imaging was performed in nine, all of whom showed megalencephaly. Conclusion We identified mutations in the PI3K-AKT-mTOR signalling pathway in nearly half of our patients with macrocephaly and developmental delay/autism spectrum disorder. These patients have subtle dysmorphic features and mild developmental issues. Clinically, patients with germline mutations are difficult to distinguish from patients with somatic mutations, and therefore, sequencing of buccal or saliva DNA is important to identify somatic mosaicism. Given the high diagnostic yield and the management implications, we suggest implementing comprehensive genetic testing in the PI3K-AKT-mTOR pathway in the clinical evaluation of patients with macrocephaly and developmental delay and/or autism spectrum disorder. Electronic supplementary material The online version of this article (10.1186/s13229-017-0182-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Winnie Wan Yee Tso
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.,Department of Paediatrics and Adolescent Medicine, The Duchess of Kent Children's Hospital, Pok Fu Lam, Hong Kong, China
| | - Janice Jing Kun Ip
- Department of Radiology, Queen Mary Hospital, Room 103, New Clinical Building, 102 Pokfulam Road, Pok Fu Lam, Hong Kong, China
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Gordon Ka Chun Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Mandy Ho Yin Tsang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Dingge Ying
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Steven Lim Cho Pei
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - So Lun Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.,Department of Paediatrics and Adolescent Medicine, The Duchess of Kent Children's Hospital, Pok Fu Lam, Hong Kong, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.,Department of Paediatrics and Adolescent Medicine, The Duchess of Kent Children's Hospital, Pok Fu Lam, Hong Kong, China.,Department of Radiology, Queen Mary Hospital, Room 103, New Clinical Building, 102 Pokfulam Road, Pok Fu Lam, Hong Kong, China
| |
Collapse
|
62
|
Vulto-van Silfhout AT, Gilissen C, Goeman JJ, Jansen S, van Amen-Hellebrekers CJM, van Bon BWM, Koolen DA, Sistermans EA, Brunner HG, de Brouwer APM, de Vries BBA. Quantification of Phenotype Information Aids the Identification of Novel Disease Genes. Hum Mutat 2017; 38:594-599. [PMID: 28074630 DOI: 10.1002/humu.23176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/09/2017] [Indexed: 01/10/2023]
Abstract
Next-generation sequencing led to the identification of many potential novel disease genes. The presence of mutations in the same gene in multiple unrelated patients is, however, a priori insufficient to establish that these genes are truly involved in the respective disease. Here, we show how phenotype information can be incorporated within statistical approaches to provide additional evidence for the causality of mutations. We developed a broadly applicable statistical model that integrates gene-specific mutation rates, cohort size, mutation type, and phenotype frequency information to assess the chance of identifying de novo mutations affecting the same gene in multiple patients with shared phenotype features. We demonstrate our approach based on the frequency of phenotype features present in a unique cohort of 6,149 patients with intellectual disability. We show that our combined approach can decrease the number of patients required to identify novel disease genes, especially for patients with combinations of rare phenotypes. In conclusion, we show how integrating genotype-phenotype information can aid significantly in the interpretation of de novo mutations in potential novel disease genes.
Collapse
Affiliation(s)
| | - Christian Gilissen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Jelle J Goeman
- Department for Health Evidence, Radboud university medical center, Nijmegen, The Netherlands.,Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra Jansen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Bregje W M van Bon
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - David A Koolen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Erik A Sistermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
63
|
Kusano R, Fujita K, Shinoda Y, Nagaura Y, Kiyonari H, Abe T, Watanabe T, Matsui Y, Fukaya M, Sakagami H, Sato T, Funahashi JI, Ohnishi M, Tamura S, Kobayashi T. Targeted disruption of the mouse protein phosphataseppm1lgene leads to structural abnormalities in the brain. FEBS Lett 2016; 590:3606-3615. [DOI: 10.1002/1873-3468.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Rie Kusano
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Kousuke Fujita
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Yasuharu Shinoda
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Yuko Nagaura
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit; RIKEN Center for Life Science Technologies; Kobe Japan
- Genetic Engineering Team; RIKEN Center for Life Science Technologies; Kobe Japan
| | - Takaya Abe
- Genetic Engineering Team; RIKEN Center for Life Science Technologies; Kobe Japan
| | - Toshio Watanabe
- Department of Biological Science; Graduate School of Humanities and Sciences; Nara Women's University; Nara Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Masahiro Fukaya
- Department of Anatomy; Kitasato University School of Medicine; Sagamihara Japan
| | - Hiroyuki Sakagami
- Department of Anatomy; Kitasato University School of Medicine; Sagamihara Japan
| | - Tatsuya Sato
- Creative interdisciplinary Research Division; The Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; Sendai Japan
| | - Jun-ichi Funahashi
- Department of Thoracic Surgery; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Motoko Ohnishi
- Department of Biological Chemistry; College of Bioscience and Biotechnology; Chubu University; Kasugai Japan
| | - Shinri Tamura
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | - Takayasu Kobayashi
- Department of Biochemistry; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
- Center for Gene Research; Tohoku University; Sendai Japan
| |
Collapse
|
64
|
Ma L, Bayram Y, McLaughlin HM, Cho MT, Krokosky A, Turner CE, Lindstrom K, Bupp CP, Mayberry K, Mu W, Bodurtha J, Weinstein V, Zadeh N, Alcaraz W, Powis Z, Shao Y, Scott DA, Lewis AM, White JJ, Jhangiani SN, Gulec EY, Lalani SR, Lupski JR, Retterer K, Schnur RE, Wentzensen IM, Bale S, Chung WK. De novo missense variants in PPP1CB are associated with intellectual disability and congenital heart disease. Hum Genet 2016; 135:1399-1409. [PMID: 27681385 DOI: 10.1007/s00439-016-1731-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Intellectual disabilities are genetically heterogeneous and can be associated with congenital anomalies. Using whole-exome sequencing (WES), we identified five different de novo missense variants in the protein phosphatase-1 catalytic subunit beta (PPP1CB) gene in eight unrelated individuals who share an overlapping phenotype of dysmorphic features, macrocephaly, developmental delay or intellectual disability (ID), congenital heart disease, short stature, and skeletal and connective tissue abnormalities. Protein phosphatase-1 (PP1) is a serine/threonine-specific protein phosphatase involved in the dephosphorylation of a variety of proteins. The PPP1CB gene encodes a PP1 subunit that regulates the level of protein phosphorylation. All five altered amino acids we observed are highly conserved among the PP1 subunit family, and all are predicted to disrupt PP1 subunit binding and impair dephosphorylation. Our data suggest that our heterozygous de novo PPP1CB pathogenic variants are associated with syndromic intellectual disability.
Collapse
Affiliation(s)
- Lijiang Ma
- Department of Pediatrics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Alyson Krokosky
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | | | | | - Weiyi Mu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joann Bodurtha
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Veronique Weinstein
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, DC, USA
| | | | | | - Zöe Powis
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Yunru Shao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Andrea M Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shalani N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Elif Yilmaz Gulec
- Medical Genetics Section, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, NY, 10032, USA.
| |
Collapse
|
65
|
Abstract
The next-generation sequencing revolution has substantially increased our understanding of the mutated genes that underlie complex neurodevelopmental disease. Exome sequencing has enabled us to estimate the number of genes involved in the etiology of neurodevelopmental disease, whereas targeted sequencing approaches have provided the means for quick and cost-effective sequencing of thousands of patient samples to assess the significance of individual genes. By leveraging such technologies and clinical exome sequencing, a genotype-first approach has emerged in which patients with a common genotype are first identified and then clinically reassessed as a group. This approach has proven a powerful methodology for refining disease subtypes. We propose that the molecular characterization of these genetic subtypes has important implications for diagnostics and also for future drug development. Classifying patients into subgroups with a common genetic etiology and applying treatments tailored to the specific molecular defect they carry is likely to improve management of neurodevelopmental disease in the future.
Collapse
|