51
|
Bull CT, Koike ST. Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:157-80. [PMID: 26002289 DOI: 10.1146/annurev-phyto-080614-120122] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management in agricultural systems. This knowledge is critical for growers, diagnosticians, extension agents, and others dealing with crops. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that are often not used by those who are diagnosing field problems. Modern molecular tools for fingerprinting and sequencing allow for pathogen identification in the absence of distinguishing or conveniently tested phenotypic characteristics. These methods are also useful in studying the etiology and epidemiology of phytopathogenic bacteria from epidemics, as was done in numerous studies conducted in California's Salinas Valley. Multilocus and whole-genome sequence analyses are becoming the cornerstones of studies of microbial diversity and bacterial taxonomy. Whole-genome sequence analysis needs to become adequately accessible, automated, and affordable in order to be used routinely for identification and epidemiology. The power of molecular tools in accurately identifying bacterial pathogenesis is therefore of value to the farmer, diagnostician, phytobacteriologist, and taxonomist.
Collapse
Affiliation(s)
- Carolee T Bull
- United States Department of Agriculture, Agricultural Research Service, Salinas, California 93905;
| | | |
Collapse
|
52
|
Vandamme P, Peeters C. Time to revisit polyphasic taxonomy. Antonie Van Leeuwenhoek 2014; 106:57-65. [PMID: 24633913 DOI: 10.1007/s10482-014-0148-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/01/2014] [Indexed: 11/28/2022]
Abstract
Although the International Code of Nomenclature of Bacteria does not specify a working strategy, editors and reviewers of taxonomic journals commonly request a polyphasic taxonomic approach that includes phenotypic, genotypic and chemotaxonomic information for the description of novel bacterial species. Whole genome sequences provide an insight into the genetic nature of microbial species, yield new and superior tools for delineating bacterial species and for studying their phylogeny, and provide a window on an organism's metabolic potential. These new insights and tools are gradually introduced in the polyphasic taxonomic practice. The genus Burkholderia, a controversial group of bacteria with both benign and devastating characteristics, is used as an example to show that the modern practice of polyphasic taxonomy is counterproductive in light of the tremendous number of bacterial species that awaits formal description and naming. Bacterial taxonomists must urgently reconsider how to describe and name novel bacteria in the genomic era, and should consider using a full genome sequence and a minimal description of phenotypic characteristics as a basic, sufficient, cost-effective and appropriate biological identity card for a species description.
Collapse
Affiliation(s)
- Peter Vandamme
- Laboratory of Microbiology, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium,
| | | |
Collapse
|
53
|
Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie van Leeuwenhoek 2014; 105:849-61. [PMID: 24604690 DOI: 10.1007/s10482-014-0139-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
A polyphasic study was carried out to establish the taxonomic status of an Atacama Desert isolate, Streptomyces strain C34(T), which synthesises novel antibiotics, the chaxalactins and chaxamycins. The organism was shown to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces. Analysis of 16S rRNA gene sequences showed that strain C34(T) formed a distinct phyletic line in the Streptomyces gene tree that was very loosely associated with the type strains of several Streptomyces species. Multilocus sequence analysis based on five house-keeping gene alleles underpinned the separation of strain C34(T) from all of its nearest phylogenetic neighbours, apart from Streptomyces chiangmaiensis TA-1(T) and Streptomyces hyderabadensis OU-40(T) which are not currently in the MLSA database. Strain C34(T) was distinguished readily from the S. chiangmaiensis and S. hyderabadensis strains by using a combination of cultural and phenotypic data. Consequently, strain C34(T) is considered to represent a new species of the genus Streptomyces for which the name Streptomyces leeuwenhoekii sp. nov. is proposed. The type strain is C34(T) (= DSM 42122(T) = NRRL B-24963(T)). Analysis of the whole-genome sequence of S. leeuwenhoekii, with 6,780 predicted open reading frames and a total genome size of around 7.86 Mb, revealed a high potential for natural product biosynthesis.
Collapse
|
54
|
Gyrase subunit B amino acid signatures for the actinobacterial family Streptosporangiaceae. Syst Appl Microbiol 2014; 37:252-60. [PMID: 24423454 DOI: 10.1016/j.syapm.2013.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022]
Abstract
Higher order taxonomic assignments (family level and above) in the phylum Actinobacteria are currently based only on 16S-rRNA gene sequence analyses. Additional molecular markers need to be identified to increase the number of reference points for defining actinobacterial families and other higher taxa. Furthermore, since most novel actinobacterial taxa are defined at the level of species and genera, it is necessary to define molecular signatures at the genus level to enhance the robustness of genus descriptions. The current use of chemotaxonomic markers to define genera could be improved by the identification of genus-specific molecular signatures. In this study, GyrB amino acid sequences for members of the family Streptosporangiaceae were analysed for molecular signatures. Phylogenetic analyses showed that the gyrB gene tree supported the composition of the currently recognised genera in this family. The catalytically important amino acids were identified in the GyrB sequences, as were the GHKL superfamily motifs. Examination of GyrB protein sequence alignments revealed that there are genus-specific sequences for most of the multi-species genera and genus-defining amino acid insertions for the genera Herbidospora and Microbispora. Furthermore, there are GyrB signature amino acids which distinguish the family Streptosporangiaceae from the family Nocardiopsaceae.
Collapse
|
55
|
|
56
|
Gupta RS. Identification of Conserved Indels that are Useful for Classification and Evolutionary Studies. J Microbiol Methods 2014. [DOI: 10.1016/bs.mim.2014.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
57
|
Oren A, Garrity GM. Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie van Leeuwenhoek 2013; 106:43-56. [DOI: 10.1007/s10482-013-0084-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
|
58
|
Girard G, Traag BA, Sangal V, Mascini N, Hoskisson PA, Goodfellow M, van Wezel GP. A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open Biol 2013; 3:130073. [PMID: 24153003 PMCID: PMC3814722 DOI: 10.1098/rsob.130073] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the era when large whole genome bacterial datasets are generated routinely, rapid and accurate molecular systematics is becoming increasingly important. However, 16S ribosomal RNA sequencing does not always offer sufficient resolution to discriminate between closely related genera. The SsgA-like proteins are developmental regulatory proteins in sporulating actinomycetes, whereby SsgB actively recruits FtsZ during sporulation-specific cell division. Here, we present a novel method to classify actinomycetes, based on the extraordinary way the SsgA and SsgB proteins are conserved. The almost complete conservation of the SsgB amino acid (aa) sequence between members of the same genus and its high divergence between even closely related genera provides high-quality data for the classification of morphologically complex actinomycetes. Our analysis validates Kitasatospora as a sister genus to Streptomyces in the family Streptomycetaceae and suggests that Micromonospora, Salinispora and Verrucosispora may represent different clades of the same genus. It is also apparent that the aa sequence of SsgA is an accurate determinant for the ability of streptomycetes to produce submerged spores, dividing the phylogenetic tree of streptomycetes into liquid-culture sporulation and no liquid-culture sporulation branches. A new phylogenetic tree of industrially relevant actinomycetes is presented and compared with that based on 16S rRNA sequences.
Collapse
Affiliation(s)
- Geneviève Girard
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
59
|
Doroghazi JR, Metcalf WW. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 2013; 14:611. [PMID: 24020438 PMCID: PMC3848822 DOI: 10.1186/1471-2164-14-611] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/04/2013] [Indexed: 01/15/2023] Open
Abstract
Background Actinomycetes are a diverse group of medically, industrially and ecologically important bacteria, studied as much for the diseases they cause as for the cures they hold. The genomes of actinomycetes revealed that these bacteria have a large number of natural product gene clusters, although many of these are difficult to tie to products in the laboratory. Large scale comparisons of these clusters are difficult to perform due to the presence of highly similar repeated domains in the most common biosynthetic machinery: polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). Results We have used comparative genomics to provide an overview of the genomic features of a set of 102 closed genomes from this important group of bacteria with a focus on natural product biosynthetic genes. We have focused on well-represented genera and determine the occurrence of gene cluster families therein. Conservation of natural product gene clusters within Mycobacterium, Streptomyces and Frankia suggest crucial roles for natural products in the biology of each genus. The abundance of natural product classes is also found to vary greatly between genera, revealing underlying patterns that are not yet understood. Conclusions A large-scale analysis of natural product gene clusters presents a useful foundation for hypothesis formulation that is currently underutilized in the field. Such studies will be increasingly necessary to study the diversity and ecology of natural products as the number of genome sequences available continues to grow.
Collapse
Affiliation(s)
- James R Doroghazi
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | | |
Collapse
|
60
|
Sentausa E, Fournier PE. Advantages and limitations of genomics in prokaryotic taxonomy. Clin Microbiol Infect 2013; 19:790-5. [DOI: 10.1111/1469-0691.12181] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
61
|
Berrington JE, Stewart CJ, Embleton ND, Cummings SP. Gut microbiota in preterm infants: assessment and relevance to health and disease. Arch Dis Child Fetal Neonatal Ed 2013; 98:F286-90. [PMID: 23009761 DOI: 10.1136/archdischild-2012-302134] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Janet Elizabeth Berrington
- Newcastle Neonatal Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle Upon Tyne, UK.
| | | | | | | |
Collapse
|
62
|
Sutcliffe IC, Trujillo ME, Whitman WB, Goodfellow M. A call to action for the International Committee on Systematics of Prokaryotes. Trends Microbiol 2013; 21:51-2. [DOI: 10.1016/j.tim.2012.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
|
63
|
Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV, Mikhailov VV, Ponamoreva ON, Crawford RJ. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek 2013; 103:877-84. [DOI: 10.1007/s10482-012-9869-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/20/2012] [Indexed: 11/30/2022]
|
64
|
Ng HJ, Webb HK, Crawford RJ, Malherbe F, Butt H, Knight R, Mikhailov VV, Ivanova EP. Updating the taxonomic toolbox: classification of Alteromonas spp. using multilocus phylogenetic analysis and MALDI-TOF mass spectrometry. Antonie van Leeuwenhoek 2012; 103:265-75. [PMID: 22965754 DOI: 10.1007/s10482-012-9807-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/01/2012] [Indexed: 11/30/2022]
Abstract
Bacteria of the genus Alteromonas are Gram-negative, strictly aerobic, motile, heterotrophic marine bacteria known for their versatile metabolic activities. Identification and classification of novel species belonging to the genus Alteromonas generally involves DNA-DNA hybridization (DDH) as distinct species often fail to be resolved at the 97 % threshold value of the 16S rRNA gene sequence similarity. In this study, the applicability of Multilocus Phylogenetic Analysis (MLPA) and Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for the differentiation of Alteromonas species has been evaluated. Phylogenetic analysis incorporating five house-keeping genes (dnaK, sucC, rpoB, gyrB, and rpoD) revealed a threshold value of 98.9 % that could be considered as the species cut-off value for the delineation of Alteromonas spp. MALDI-TOF MS data analysis reconfirmed the Alteromonas species clustering. MLPA and MALDI-TOF MS both generated data that were comparable to that of the 16S rRNA gene sequence analysis and may be considered as useful complementary techniques for the description of new Alteromonas species.
Collapse
Affiliation(s)
- Hooi Jun Ng
- Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Vic 3122, Australia
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Publication of descriptions of novel bacterial taxa in Antonie van Leeuwenhoek. Antonie van Leeuwenhoek 2012; 103:1-2. [DOI: 10.1007/s10482-012-9799-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
66
|
Abstract
Microbial systematics has always been a misunderstood scientific discipline. It is readily assumed that systematists use antiquated techniques to examine the molecular, morphological, physiological, and biochemical properties of microorganisms. It is also believed that the circumscription of novel taxa is not essential let alone a requirement and it is due to this that systematics has become a dying art. It is rarely appreciated that systematics is a discipline that is essential to all sciences and that without the use of current techniques, descriptions of novel species or higher taxa cannot be correctly published. Since Woese and colleagues first publicized the use of the small subunit ribosomal RNA as a molecular tool, phylogenetic analysis of 16S rRNA gene sequences has become an essential step in the polyphasic approach of microbial systematics. However, this molecular technique has limitations which have become apparent, and therefore it is evident that full genome comparisons are soon going to be a requirement for the full circumscription of novel taxa. The next generation of sequencing technology has enabled more information to be incorporated into the full systematic picture and that is immense as it is only the start of the genomic era. It is hoped that high-throughput sequencing will compliment polyphasic data rather than throwing a different light on it and thus soon become an essential minimal standard for taxonomic descriptions.
Collapse
|