51
|
Cell aggregations in yeasts and their applications. Appl Microbiol Biotechnol 2013; 97:2305-18. [PMID: 23397484 DOI: 10.1007/s00253-013-4735-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 12/23/2022]
Abstract
Yeasts can display four types of cellular aggregation: sexual, flocculation, biofilm formation, and filamentous growth. These cell aggregations arise, in some yeast strains, as a response to environmental or physiological changes. Sexual aggregation is part of the yeast mating process, representing the first step of meiotic recombination. The flocculation phenomenon is a calcium-dependent asexual reversible cellular aggregation that allows the yeast to withstand adverse conditions. Biofilm formation consists of multicellular aggregates that adhere to solid surfaces and are embedded in a protein matrix; this gives the yeast strain either the ability to colonize new environments or to survive harsh environmental conditions. Finally, the filamentous growth is the ability of some yeast strains to grow in filament forms. Filamentous growth can be attained by two different means, with the formation of either hyphae or pseudohyphae. Both hyphae and pseudohyphae arise when the yeast strain is under nutrient starvation conditions and they represent a means for the microbial strain to spread over a wide area to survey for food sources, without increasing its biomass. Additionally, this filamentous growth is also responsible for the invasive growth of some yeast.
Collapse
|
52
|
Abstract
Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases.
Collapse
|
53
|
Springer SA, Gagneux P. Glycan evolution in response to collaboration, conflict, and constraint. J Biol Chem 2013; 288:6904-11. [PMID: 23329843 DOI: 10.1074/jbc.r112.424523] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycans, oligo- and polysaccharides secreted or attached to proteins and lipids, cover the surfaces of all cells and have a regulatory capacity and structural diversity beyond any other class of biological molecule. Glycans may have evolved these properties because they mediate cellular interactions and often face pressure to evolve new functions rapidly. We approach this idea two ways. First, we discuss evolutionary innovation. Glycan synthesis, regulation, and mode of chemical interaction influence the spectrum of new forms presented to evolution. Second, we describe the evolutionary conflicts that arise when alleles and individuals interact. Glycan regulation and diversity are integral to these biological negotiations. Glycans are tasked with such an amazing diversity of functions that no study of cellular interaction can begin without considering them. We propose that glycans predominate the cell surface because their physical and chemical properties allow the rapid innovation required of molecules on the frontlines of evolutionary conflict.
Collapse
Affiliation(s)
- Stevan A Springer
- Glycobiology Research and Training Center and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0687 USA
| | | |
Collapse
|
54
|
Goossens KVY, De Greve H, Willaert RG. Cloning, expression, and purification of the N-terminal domain of the Flo1 flocculation protein from Saccharomyces cerevisiae in Pichia pastoris. Protein Expr Purif 2012; 88:114-9. [PMID: 23247087 DOI: 10.1016/j.pep.2012.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Abstract
Saccharomyces cerevisiae flocculation is governed by FLO genes, encoding Flo proteins (flocculins). Flo proteins are cell wall proteins consisting of three domains, sticking out of the cell wall and interacting with other yeast cells using their N-terminal mannose-binding domain. Until recently, flocculation research was focused on the genetic and cellular level. To extend the knowledge about flocculation to the protein level, we isolated the N-terminal domain of the Flo1p (N-Flo1p) that contains the mannose-binding domain, which is responsible for the strong interaction (flocculation) of S. cerevisiae cells. To obtain a high production yield and a more uniform and lower glycosylation of N-Flo1p, it was cloned in Pichia pastoris. The expression and the purification of N-Flo1p were optimised towards a one-step purification protocol. The activity of the protein, i.e. the binding of the purified protein to mannose using fluorescence spectroscopy, was demonstrated.
Collapse
Affiliation(s)
- Katty V Y Goossens
- Lab. Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.
| | | | | |
Collapse
|
55
|
Deciphering the transcriptional-regulatory network of flocculation in Schizosaccharomyces pombe. PLoS Genet 2012; 8:e1003104. [PMID: 23236291 PMCID: PMC3516552 DOI: 10.1371/journal.pgen.1003104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/03/2012] [Indexed: 01/07/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, the transcriptional-regulatory network that governs flocculation remains poorly understood. Here, we systematically screened an array of transcription factor deletion and overexpression strains for flocculation and performed microarray expression profiling and ChIP-chip analysis to identify the flocculin target genes. We identified five transcription factors that displayed novel roles in the activation or inhibition of flocculation (Rfl1, Adn2, Adn3, Sre2, and Yox1), in addition to the previously-known Mbx2, Cbf11, and Cbf12 regulators. Overexpression of mbx2(+) and deletion of rfl1(+) resulted in strong flocculation and transcriptional upregulation of gsf2(+)/pfl1(+) and several other putative flocculin genes (pfl2(+)-pfl9(+)). Overexpression of the pfl(+) genes singly was sufficient to trigger flocculation, and enhanced flocculation was observed in several combinations of double pfl(+) overexpression. Among the pfl1(+) genes, only loss of gsf2(+) abrogated the flocculent phenotype of all the transcription factor mutants and prevented flocculation when cells were grown in inducing medium containing glycerol and ethanol as the carbon source, thereby indicating that Gsf2 is the dominant flocculin. In contrast, the mild flocculation of adn2(+) or adn3(+) overexpression was likely mediated by the transcriptional activation of cell wall-remodeling genes including gas2(+), psu1(+), and SPAC4H3.03c. We also discovered that Mbx2 and Cbf12 displayed transcriptional autoregulation, and Rfl1 repressed gsf2(+) expression in an inhibitory feed-forward loop involving mbx2(+). These results reveal that flocculation in S. pombe is regulated by a complex network of multiple transcription factors and target genes encoding flocculins and cell wall-remodeling enzymes. Moreover, comparisons between the flocculation transcriptional-regulatory networks of Saccharomyces cerevisiae and S. pombe indicate substantial rewiring of transcription factors and cis-regulatory sequences.
Collapse
|
56
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
57
|
Vallejo JA, Serrat M, Pérez-Portuondo I, Sánchez-Pérez A, Ageitos JM, Villa TG. A novel Kluyveromyces marxianus strain with an inducible flocculation phenotype. AMB Express 2012; 2:38. [PMID: 22838397 PMCID: PMC3431993 DOI: 10.1186/2191-0855-2-38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/20/2012] [Indexed: 12/03/2022] Open
Abstract
Flocculation is a very useful phenotype for industrial yeast strains, since it facilitates cell harvest and represents an easy way of cell immobilization in continuous fermentation processes. The present work represents the first time that an inducible flocculation phenotype has been generated in a non flocculent strain of Kluyveromyces marxianus. This was accomplished by expressing Saccharomyces cerevisiae FLO5 gene in K. marxianus CECT 11769 strain. The FLO 5 gene was placed under the control of an EPG promoter, not repressed by glucose and induced by anoxia. Our experimental approach successfully generated two novel K. marxianus flocculent phenotypes: one inducible and one constitutive. The constitutive phenotype originated from deletions in the FLO5 promoter region, indicating the existence of putative upstream repressor site involved in oxygen regulation of the EPG1 promoter. The novel strains here generated had a unique set of characteristics that provided an advantage, over the wild-type strain, for the industrial co-production of ethanol and polygalacturonase.
Collapse
|
58
|
Pathak DT, Wei X, Bucuvalas A, Haft DH, Gerloff DL, Wall D. Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism. PLoS Genet 2012; 8:e1002626. [PMID: 22511878 PMCID: PMC3325183 DOI: 10.1371/journal.pgen.1002626] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/14/2012] [Indexed: 01/15/2023] Open
Abstract
Biofilms are dense microbial communities. Although widely distributed and medically important, how biofilm cells interact with one another is poorly understood. Recently, we described a novel process whereby myxobacterial biofilm cells exchange their outer membrane (OM) lipoproteins. For the first time we report here the identification of two host proteins, TraAB, required for transfer. These proteins are predicted to localize in the cell envelope; and TraA encodes a distant PA14 lectin-like domain, a cysteine-rich tandem repeat region, and a putative C-terminal protein sorting tag named MYXO-CTERM, while TraB encodes an OmpA-like domain. Importantly, TraAB are required in donors and recipients, suggesting bidirectional transfer. By use of a lipophilic fluorescent dye, we also discovered that OM lipids are exchanged. Similar to lipoproteins, dye transfer requires TraAB function, gliding motility and a structured biofilm. Importantly, OM exchange was found to regulate swarming and development behaviors, suggesting a new role in cell–cell communication. A working model proposes TraA is a cell surface receptor that mediates cell–cell adhesion for OM fusion, in which lipoproteins/lipids are transferred by lateral diffusion. We further hypothesize that cell contact–dependent exchange helps myxobacteria to coordinate their social behaviors. All cells interact with their environment, including other cells, to elicit cellular responses. Cell–cell interactions between eukaryotic cells are widely appreciated as large multicellular organisms coordinate cell behaviors for tissue and organ functions. In bacteria cell–cell interactions are not widely appreciated, as these organisms are relatively simple and are often depicted as single-cell entities. However, over the past decade, the concept of bacteria living in microbial communities or biofilms has received broad acceptance as a major lifestyle. As biofilm cells are packed in tight physical contact, there is an opportunity for cell–cell signaling to provide spatial and physiological clues of neighboring cells to elicit cellular responses. Although much has been learned about diffusible signals through quorum sensing, little is known about cell contact–dependent signaling in bacteria. In this report we describe a new mechanism where bacterial cells within structured biofilms form contacts that allow cellular material to be exchanged. This exchange elicits phenotypic changes, including in cell movements and development. We hypothesize that OM exchange involves kin recognition that bestows social benefits to myxobacterial populations.
Collapse
Affiliation(s)
- Darshankumar T. Pathak
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Xueming Wei
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Alex Bucuvalas
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Daniel H. Haft
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Dietlind L. Gerloff
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
59
|
Ielasi FS, Decanniere K, Willaert RG. The epithelial adhesin 1 (Epa1p) from the human-pathogenic yeast Candida glabrata: structural and functional study of the carbohydrate-binding domain. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:210-7. [PMID: 22349222 DOI: 10.1107/s0907444911054898] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/20/2011] [Indexed: 01/18/2023]
Abstract
The yeast Candida glabrata represents the second major cause of clinical candidiasis cases in the world. The ability of this opportunistic pathogen to adhere to human epithelial and endothelial cells relies on the Epa adhesins, a large set of cell-wall proteins whose N-terminal domains are endowed with a calcium-dependent lectin activity. This feature allows the yeast cells to adhere to host cells by establishing multiple interactions with the glycans expressed on their cell membrane. The ligand-binding domain of the Epa1p adhesin, which is one of the best characterized in the Epa family, was expressed in Escherichia coli, purified and crystallized in complex with lactose. Sequence identity with the domain of another yeast adhesin, the Flo5p flocculin from Saccharomyces cerevisiae, was exploited for molecular replacement and the structure of the domain was solved at a resolution of 1.65 Å. The protein is a member of the PA14 superfamily. It has a β-sandwich core and a DcisD calcium-binding motif, which is also present in the binding site of Flo5p. However, Epa1p differs from this homologue by the lack of a Flo5-like subdomain and by a significantly decreased accessibility of the solvent to the binding site, in which a calcium ion still plays an active role in the interactions with carbohydrates. This structural insight, together with fluorescence-assay data, confirms and explains the higher specificity of Epa1p adhesin for glycan molecules compared with the S. cerevisiae flocculins.
Collapse
Affiliation(s)
- Francesco S Ielasi
- Research Group Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | |
Collapse
|
60
|
Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes Are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent. G3-GENES GENOMES GENETICS 2012; 2:131-41. [PMID: 22384390 PMCID: PMC3276193 DOI: 10.1534/g3.111.001644] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/21/2011] [Indexed: 01/01/2023]
Abstract
The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and directly affects cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. Flo mannoproteins have been implicated in phenotypes such as flocculation, substrate adhesion, biofilm formation, and pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather as the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11 has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8. Here we use genome-wide transcription analysis to identify genes that are directly or indirectly regulated by Mss11. Interestingly, many of these genes encode cell wall mannoproteins, in particular, members of the TIR and DAN families. To examine whether these genes play a role in the adhesion properties associated with Mss11 expression, we assessed deletion mutants of these genes in wild-type and flo11Δ genetic backgrounds. This analysis shows that only FLO genes, in particular FLO1/10/11, appear to significantly impact on such phenotypes. Thus adhesion-related phenotypes are primarily dependent on the balance of FLO gene expression.
Collapse
|
61
|
Goossens KV, Willaert RG. The N-terminal domain of the Flo11 protein from Saccharomyces cerevisiae is an adhesin without mannose-binding activity. FEMS Yeast Res 2011; 12:78-87. [DOI: 10.1111/j.1567-1364.2011.00766.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Katty V.Y. Goossens
- Laboratory of Structural Biology; Department of Bioengineering Sciences; Vrije Universiteit Brussel; Brussels; Belgium
| | - Ronnie G. Willaert
- Laboratory of Structural Biology; Department of Bioengineering Sciences; Vrije Universiteit Brussel; Brussels; Belgium
| |
Collapse
|
62
|
Wendland J, Walther A. Genome evolution in the eremothecium clade of the Saccharomyces complex revealed by comparative genomics. G3 (BETHESDA, MD.) 2011; 1:539-48. [PMID: 22384365 PMCID: PMC3276169 DOI: 10.1534/g3.111.001032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/07/2011] [Indexed: 11/24/2022]
Abstract
We used comparative genomics to elucidate the genome evolution within the pre-whole-genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete genome of Eremothecium cymbalariae, a filamentous ascomycete representing the Eremothecium type strain. Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae genome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the reconstructed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy-type transposable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth α-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin overproduction in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g. involving fungal-insect interactions as in Eremothecium), which have encountered challenges that may be reflected both in genome streamlining and their biosynthetic potential.
Collapse
Affiliation(s)
| | - Andrea Walther
- Carlsberg Laboratory, Yeast Biology, Valby 2500, Denmark
| |
Collapse
|
63
|
Gori K, Knudsen PB, Nielsen KF, Arneborg N, Jespersen L. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. FEMS Yeast Res 2011; 11:643-52. [DOI: 10.1111/j.1567-1364.2011.00755.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Klaus Gori
- Department of Food Science, Food Microbiology; Faculty of Life Sciences; University of Copenhagen; Frederiksberg; Denmark
| | - Peter B. Knudsen
- Department of Systems Biology; Center for Microbial Biotechnology; Technical University of Denmark; Lyngby; Denmark
| | - Kristian F. Nielsen
- Department of Systems Biology; Center for Microbial Biotechnology; Technical University of Denmark; Lyngby; Denmark
| | - Nils Arneborg
- Department of Food Science, Food Microbiology; Faculty of Life Sciences; University of Copenhagen; Frederiksberg; Denmark
| | - Lene Jespersen
- Department of Food Science, Food Microbiology; Faculty of Life Sciences; University of Copenhagen; Frederiksberg; Denmark
| |
Collapse
|
64
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
65
|
Cell signals, cell contacts, and the organization of yeast communities. EUKARYOTIC CELL 2011; 10:466-73. [PMID: 21296916 DOI: 10.1128/ec.00313-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Even relatively simple species have evolved mechanisms to organize individual organisms into communities, such that the fitness of the group is greater than the fitness of isolated individuals. Within the fungal kingdom, the ability of many yeast species to organize into communities is crucial for their growth and survival, and this property has important impacts both on the economy and on human health. Over the last few years, studies of Saccharomyces cerevisiae have revealed several fundamental properties of yeast communities. First, strain-to-strain variation in the structures of these groups is attributable in part to variability in the expression and functions of adhesin proteins. Second, the extracellular matrix surrounding these communities can protect them from environmental stress and may also be important in cell signaling. Finally, diffusible signals between cells contribute to community organization so that different regions of a community express different genes and adopt different cell fates. These findings provide an arena in which to view fundamental mechanisms by which contacts and signals between individual organisms allow them to assemble into functional communities.
Collapse
|