51
|
He P, Li K, Li SB, Hu TT, Guan M, Sun FY, Liu WW. Upregulation of AKAP12 with HDAC3 depletion suppresses the progression and migration of colorectal cancer. Int J Oncol 2018; 52:1305-1316. [PMID: 29484387 DOI: 10.3892/ijo.2018.4284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/16/2018] [Indexed: 11/05/2022] Open
Abstract
A-kinase anchor protein 12 (AKAP12; also known as Gravin) functions as a tumor suppressor in several human primary cancers. However, the potential correlation between histone deacetylase 3 (HDAC3) and AKAP12 and the underlying mechanisms remain unclear. Thus, in this study, in an aim to shed light into this matter, the expression levels of HDAC3 and AKAP12 in 96 colorectal cancer (CRC) and adjacent non-cancerous tissues, as well as in SW480 cells were examined by immunohistochemical, RT-qPCR and western blot analyses. The effects of HDAC3 and AKAP12 on the proliferation, apoptosis and metastasis of CRC cells were examined by cell counting kit-8 (CCK-8) assay, colony formation assays, flow cytometry, cell cycle analysis and Transwell assays. The results revealed that the reduction or loss of AKAP12 expression was detected in 69 (71.8%) of the 96 tissue specimens, whereas HDAC3 was upregulated in 50 (52.1%) of the 96 tumor tissue specimens. AKAP12 expression was markedly increased upon treatment with the HDAC3 inhibitors, trichostatin A (TSA) and RGFP966, at both the mRNA and protein level. Mechanistically, the direct binding of HDAC3 within the intron-1 region of AKAP12 was identified to be indispensable for the inhibition of AKAP12 expression. Moreover, the proliferation, colony-forming ability, cell cycle progression and the migration of the CRC cells were found to be promoted in response to AKAP12 silencing or AKAP12/HDAC3 co-silencing, whereas transfection with si-HDAC3 yielded opposite effects. Apart from the elevated expression of the anti-apoptotic protein, Bcl-2, after AKAP12 knockdown, the increased activity of PI3K/AKT signaling was found to be indispensable for AKAP12-mediated colony formation and migration. On the whole, these findings indicate that AKAP12 may be a potential prognostic predictor and therapeutic target for the treatment of CRC in combination with HDAC3.
Collapse
Affiliation(s)
- Ping He
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Ke Li
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Shi-Bao Li
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221100, P.R. China
| | - Ting-Ting Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Fen-Yong Sun
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Wei-Wei Liu
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| |
Collapse
|
52
|
Structure–activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery. Future Med Chem 2017; 9:2211-2237. [PMID: 29182018 DOI: 10.4155/fmc-2017-0130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure–activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.
Collapse
|
53
|
HDAC8 functions in spindle assembly during mouse oocyte meiosis. Oncotarget 2017; 8:20092-20102. [PMID: 28223544 PMCID: PMC5386746 DOI: 10.18632/oncotarget.15383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
HDAC8 is a class I histone deacetylase that functions in a variety of biological processes through its non-histone substrates. However, its roles during oocyte meiosis remain elusive. Here, we document that HDAC8 localizes at spindle poles and positively participates in the regulation of microtubule organization and spindle assembly in mouse oocytes. Depletion of HDAC8 by siRNA-based gene silencing results in various spindle defects and chromosome misalignment during oocyte meiotic maturation, accompanied by impaired kinetochore-microtubule attachments. Consequently, a higher incidence of aneuploidy is generated in HDAC8-depleted MII eggs. In addition, inhibition of HDAC8 activity with its selective inhibitor PCI-34051 phenocopies the spindle/chromosome defects resulting from HDAC8 depletion by siRNA injection. Finally, we find that HDAC8 is required for the correct localization of ϕ-tubulin to spindle poles. Collectively, these data reveal that HDAC8 plays a significant role in regulating spindle assembly and thus ensuring the euploidy in mouse eggs.
Collapse
|
54
|
Evolutionary relationships among protein lysine deacetylases of parasites causing neglected diseases. INFECTION GENETICS AND EVOLUTION 2017; 53:175-188. [DOI: 10.1016/j.meegid.2017.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
55
|
Structural insights of SmKDAC8 inhibitors: Targeting Schistosoma epigenetics through a combined structure-based 3D QSAR, in vitro and synthesis strategy. Bioorg Med Chem 2017; 25:2105-2132. [DOI: 10.1016/j.bmc.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 11/24/2022]
|
56
|
Abstract
Cancer cell hallmarks are underpinned by transcriptional programmes operating in the context of a dynamic and complicit epigenomic environment. Somatic alterations of chromatin modifiers are among the most prevalent cancer perturbations. There is a pressing need for targeted chemical probes to dissect these complex, interconnected gene regulatory circuits. Validated chemical probes empower mechanistic research while providing the pharmacological proof of concept that is required to translate drug-like derivatives into therapy for cancer patients. In this Review, we describe chemical probe development for epigenomic effector proteins that are linked to cancer pathogenesis. By annotating these reagents, we aim to share our perspectives on an informative 'epigenomic toolbox' of broad utility to the research community.
Collapse
Affiliation(s)
- Jake Shortt
- Gene Regulation Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3052, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3052, Australia
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
57
|
Zhao G, Wang G, Bai H, Li T, Gong F, Yang H, Wen J, Wang W. Targeted inhibition of HDAC8 increases the doxorubicin sensitivity of neuroblastoma cells via up regulation of miR-137. Eur J Pharmacol 2017; 802:20-26. [PMID: 28223126 DOI: 10.1016/j.ejphar.2017.02.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/11/2017] [Accepted: 02/17/2017] [Indexed: 11/30/2022]
Abstract
Histone deacetylases (HDACs) have been suggested to be potential therapeutic targets for cancer treatment. Recent studies revealed that HDAC8 expression was associated with poor prognostic markers and poor overall survival rate of neuroblastoma (NB). Our present study revealed that among the four members of class I HDACs, HDAC8 is significantly over expressed in NB cells as compared with the normal fibroblast 3T3 cells or primary normal human astrocytes (NHA) cells. Targeted inhibition of HDAC8 by its specific siRNA (si-HDAC8) can inhibit the in vitro growth of NB cells. Furthermore, si-HDAC8 significantly increases the sensitivity of NB cells to doxorubicin (Dox). Silencing of HDAC8 can increase the expression of miR-137, which has been suggested to mediate the Dox sensitivity of NB cells. Knockdown of miR-137 can attenuate si-HDAC8 enhanced Dox sensitivity. Further, si-HDAC8 can also inhibit the expression of multi-drug resistance gene 1 (MDR1). While knockdown of miR-137 can attenuate si-HDAC8 induced down regulation of MDR1. Collectively, our data revealed that targeted inhibition of HDAC8 can suppress the growth of NB cells and increase Dox sensitivity via up regulation of miR-137 and suppression of MDR1. Therefor, combination of HDAC8 inhibitor will be helpful to elevate the treatment outcome of NB patients.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Neurosurgery, Guangzhou General Hospital of PLA, Liuhua Road, Guangzhou 510010, China
| | - Guoliang Wang
- Department of Neurosurgery, Guangzhou General Hospital of PLA, Liuhua Road, Guangzhou 510010, China
| | - Hongmin Bai
- Department of Neurosurgery, Guangzhou General Hospital of PLA, Liuhua Road, Guangzhou 510010, China.
| | - Tiandong Li
- Department of Neurosurgery, Guangzhou General Hospital of PLA, Liuhua Road, Guangzhou 510010, China
| | - Fanghe Gong
- Department of Neurosurgery, Guangzhou General Hospital of PLA, Liuhua Road, Guangzhou 510010, China
| | - Huan Yang
- Department of Neurosurgery, Guangzhou General Hospital of PLA, Liuhua Road, Guangzhou 510010, China
| | - Jinchong Wen
- Department of Neurosurgery, Guangzhou General Hospital of PLA, Liuhua Road, Guangzhou 510010, China
| | - Weimin Wang
- Department of Neurosurgery, Guangzhou General Hospital of PLA, Liuhua Road, Guangzhou 510010, China
| |
Collapse
|
58
|
Arai E, Yotani T, Kanai Y. DNA and Histone Methylation in Liver Cancer. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:437-460. [DOI: 10.1007/978-3-319-59786-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
59
|
Non-epigenetic function of HDAC8 in regulating breast cancer stem cells by maintaining Notch1 protein stability. Oncotarget 2016; 7:1796-807. [PMID: 26625202 PMCID: PMC4811498 DOI: 10.18632/oncotarget.6427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Here, we report a novel non-epigenetic function of histone deacetylase (HDAC) 8 in activating cancer stem cell (CSC)-like properties in breast cancer cells by enhancing the stability of Notch1 protein. The pan-HDAC inhibitors AR-42 and SAHA, and the class I HDAC inhibitor depsipeptide, suppressed mammosphere formation and other CSC markers by reducing Notch1 expression in MDA-MB-231 and SUM-159 cells. Interrogation of individual class I isoforms (HDAC1-3 and 8) using si/shRNA-mediated knockdown, ectopic expression and/or pharmacological inhibition revealed HDAC8 to be the primary mediator of this drug effect. This suppression of Notch1 in response to HDAC8 inhibition was abrogated by the proteasome inhibitor MG132 and siRNA-induced silencing of Fbwx7, indicating Notch1 suppression occurred through proteasomal degradation. However, co-immunoprecipitation analysis indicated that HDAC8 did not form complexes with Notch1 and HDAC inhibition had no effect on Notch1 acetylation. In a xenograft tumor model, the tumorigenicity of breast cancer cells was decreased by HDAC8 knockdown. These findings suggest the therapeutic potential of HDAC8 inhibition to suppress Notch1 signaling in breast cancer.
Collapse
|
60
|
Ahn MY, Yoon JH. Histone deacetylase 8 as a novel therapeutic target in oral squamous cell carcinoma. Oncol Rep 2016; 37:540-546. [PMID: 28004115 DOI: 10.3892/or.2016.5280] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/21/2016] [Indexed: 11/06/2022] Open
Abstract
The overexpression of histone deacetylases (HDACs) has been observed in many cancers and inhibition of specific HDAC has emerged as a new target for cancer therapy. The present study examined the expression of HDAC8 and the inhibitory effect of HDAC8 in oral squamous cell carcinoma (OSCC). The expression of HDAC8 was measured in human OSCC tissues and OSCC cell lines using immunohistochemistry and immunoblotting. HDAC8 was knocked down in OSCC cells by transfection with HDAC8 siRNAs and cell proliferation was quantified. Apoptosis and autophagy were measured using flow cytometry and immunoblotting. HDAC8 were overexpressed in OSCC tissues and OSCC cells, mainly localized in the cytoplasm. HDAC8 siRNAs effectively reduced the level of HDAC8 expression and HDAC8 silencing significantly inhibited the proliferation of OSCC cells. HDAC8 knockdown induced apoptotic cell death through caspases activation and pro-survival autophagy in OSCC cells. Combination with HDAC silencing and autophagy inhibition enhanced cell death by increasing apoptosis in OSCC cells. This study suggests that inhibition of HDAC8 might become a novel therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Mee-Young Ahn
- College of Medical and Life Sciences, Division of Bio-industry, Major in Pharmaceutical Engineering, Silla University, Busan 46958, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea
| |
Collapse
|
61
|
Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med Chem 2016; 8:1609-34. [PMID: 27572818 DOI: 10.4155/fmc-2016-0117] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Histone deacetylase 8 (HDAC8), a unique class I zinc-dependent HDAC, is an emerging target in cancer and other diseases. Its substrate repertoire extends beyond histones to many nonhistone proteins. Besides being a deacetylase, HDAC8 also mediates signaling via scaffolding functions. Aberrant expression or deregulated interactions with transcription factors are critical in HDAC8-dependent cancers. Many potent HDAC8-selective inhibitors with cellular activity and anticancer effects have been reported. We present HDAC8 as a druggable target and discuss inhibitors of different chemical scaffolds with cellular effects. Furthermore, we review HDAC8 activators that revert activity of mutant enzymes. Isotype-selective HDAC8 targeting in patients with HDAC8-relevant cancers is challenging, however, is promising to avoid adverse side effects as observed with pan-HDAC inhibitors.
Collapse
|
62
|
Zhu G, Tao T, Zhang D, Liu X, Qiu H, Han L, Xu Z, Xiao Y, Cheng C, Shen A. O-GlcNAcylation of histone deacetylases 1 in hepatocellular carcinoma promotes cancer progression. Glycobiology 2016; 26:820-833. [PMID: 27060025 DOI: 10.1093/glycob/cww025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/22/2016] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor originating in the liver. Previous studies have indicated that O-GlcNAc transferase (OGT) and histone deacetylase-1 (HDAC1) play important roles in the pathogenesis of HCC. In the present study, we investigated the physical link between OGT and HDAC1. The O-GlcNAcylation of HDAC1 is overexpressed in HCC. We found that HDAC1 has two major sites of O-GlcNAcylation in its histone deacetylase domain. HDAC1 O-GlcNAcylation increases the activated phosphorylation of HDAC1, which enhances its enzyme activity. HDAC1 O-GlcNAc mutants promote the p21 transcription regulation through affecting the acetylation levels of histones from chromosome, and then influence the proliferation of HCC cells. We also found that mutants of O-GlcNAcylation site of HDAC1 affect invasion and migration of HepG2 cells. E-cadherin level is highly up-regulated in HDAC1 O-GlcNAc mutant-treated liver cancer cells, which inhibit the occurrence and development of HCC. Our findings suggest that OGT promotes the O-GlcNAc modification of HDAC1in the development of HCC. Therefore, inhibiting O-GlcNAcylation of HDAC1 may repress the progression of HCC.
Collapse
Affiliation(s)
- Guizhou Zhu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Tao Tao
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Dongmei Zhang
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Xiaojuan Liu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Huiyuan Qiu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - LiJian Han
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Zhiwei Xu
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Ying Xiao
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Chun Cheng
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| | - Aiguo Shen
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
- Department of Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu, People's Republic of China
| |
Collapse
|
63
|
Rodrigues DA, Ferreira-Silva GÀ, Ferreira ACS, Fernandes RA, Kwee JK, Sant'Anna CMR, Ionta M, Fraga CAM. Design, Synthesis, and Pharmacological Evaluation of Novel N-Acylhydrazone Derivatives as Potent Histone Deacetylase 6/8 Dual Inhibitors. J Med Chem 2016; 59:655-70. [PMID: 26705137 DOI: 10.1021/acs.jmedchem.5b01525] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This manuscript describes a novel class of N-acylhydrazone (NAH) derivatives that act as histone deacetylase (HDAC) 6/8 dual inhibitors and were designed from the structure of trichostatin A (1). Para-substituted phenyl-hydroxamic acids presented a more potent inhibition of HDAC6/8 than their meta analogs. In addition, the effect of compounds (E)-4-((2-(4-(dimethylamino)benzoyl)hydrazono)methyl)-N-hydroxybenzamide (3c) and (E)-4-((2-(4-(dimethylamino)benzoyl)-2-methylhydrazono)methyl)-N-hydroxybenzamide (3f) on the acetylation of α-tubulin revealed an increased level of acetylation. These two compounds also affected cell migration, indicating their inhibition of HDAC6. An analysis of the antiproliferative activity of these compounds, which presented the most potent activity, showed that compound 3c induced cell cycle arrest and 3g induced apoptosis through caspase 3/7 activation. These results suggest HDAC6/8 as a potential target of future molecular therapies for cancer.
Collapse
Affiliation(s)
| | - Guilherme À Ferreira-Silva
- Laboratório de Biologia Animal Integrativa, Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas , 37130-000 Alfenas, Minas Gerais, Brazil
| | - Ana C S Ferreira
- Coordenação de Pesquisa, Instituto Nacional de Câncer , 20231-050 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan A Fernandes
- Coordenação de Pesquisa, Instituto Nacional de Câncer , 20231-050 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jolie K Kwee
- Coordenação de Pesquisa, Instituto Nacional de Câncer , 20231-050 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M R Sant'Anna
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro , 23970-000 Seropédica, Rio de Janeiro, Brazil
| | - Marisa Ionta
- Laboratório de Biologia Animal Integrativa, Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas , 37130-000 Alfenas, Minas Gerais, Brazil
| | | |
Collapse
|
64
|
Liu W, Liu Y, Liu H, Zhang W, Fu Q, Xu J, Gu J. Tumor Suppressive Function of p21-activated Kinase 6 in Hepatocellular Carcinoma. J Biol Chem 2015; 290:28489-28501. [PMID: 26442588 DOI: 10.1074/jbc.m115.658237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Indexed: 01/16/2023] Open
Abstract
Our previous studies identified the oncogenic role of p21-activated kinase 1 (PAK1) in hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). Contrarily, PAK6 was found to predict a favorable prognosis in RCC patients. Nevertheless, the ambiguous tumor suppressive function of PAK6 in hepatocarcinogenesis remains obscure. Herein, decreased PAK6 expression was found to be associated with tumor node metastasis stage progression and unfavorable overall survival in HCC patients. Additionally, overexpression and silence of PAK6 experiments showed that PAK6 inhibited xenografted tumor growth in vivo, and restricted cell proliferation, colony formation, migration, and invasion and promoted cell apoptosis and anoikis in vitro. Moreover, overexpression of kinase dead and nuclear localization signal deletion mutants of PAK6 experiments indicated the tumor suppressive function of PAK6 was partially dependent on its kinase activity and nuclear translocation. Furthermore, gain or loss of function in polycomb repressive complex 2 (PRC2) components, including EZH2, SUZ12, and EED, elucidated epigenetic control of H3K27me3-arbitrated PAK6 down-regulation in hepatoma cells. More importantly, negative correlation between PAK6 and EZH2 expression was observed in hepatoma tissues from HCC patients. These data identified the tumor suppressive role and potential underlying mechanism of PAK6 in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Weisi Liu
- Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032
| | - Yidong Liu
- Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
| | - Weijuan Zhang
- Departments of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032
| | - Qiang Fu
- Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032
| | - Jiejie Xu
- Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032.
| | - Jianxin Gu
- Departments of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032
| |
Collapse
|
65
|
Kim HS, Shen Q, Nam SW. Histone Deacetylases and Their Regulatory MicroRNAs in Hepatocarcinogenesis. J Korean Med Sci 2015; 30:1375-1380. [PMID: 26425032 PMCID: PMC4575924 DOI: 10.3346/jkms.2015.30.10.1375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
A growing body of evidence suggests that epigenetic modifications are promising potential mechanisms in cancer research. Among the molecules that mediate epigenetic mechanisms, histone deacetylases (HDACs) are critical regulators of gene expression that promote formation of heterochromatin by deacetylating histone and non-histone proteins. Aberrant regulation of HDACs contributes to malignant transformation and progression in a wide variety of human cancers, including hepatocellular carcinoma (HCC), gastric cancer, lung cancer, and other cancers. Thus, the roles of HDACs have been extensively studied because of their potential as therapeutic targets. However, the underlying mechanism leading to deregulation of individual HDACs remains largely unknown. Some reports have suggested that functional microRNAs (miRNAs) modulate epigenetic effector molecules including HDACs. Here, we describe the oncogenic or tumor suppressive functions of HDAC families and their regulatory miRNAs governing HDAC expression in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hyung Seok Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Korea
| | - Qingyu Shen
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Korea
- Cancer Evolution Research Center, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
66
|
Song S, Wang Y, Xu P, Yang R, Ma Z, Liang S, Zhang G. The inhibition of histone deacetylase 8 suppresses proliferation and inhibits apoptosis in gastric adenocarcinoma. Int J Oncol 2015; 47:1819-28. [PMID: 26412386 DOI: 10.3892/ijo.2015.3182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 8 (HDAC8), a unique member of class I HDACs, shows remarkable correlation with advanced disease stage. The depletion of HDAC8 leads to inhibition of proliferation, apoptosis and cell cycle arrest in multiple malignant tumors. However, little is known about the contribution of HDAC8 to the tumorigenesis of gastric cancer (GC). The present study investigated expression of HDAC8 in GC cell lines and tissues, and the roles of HDAC8 inhibition in the proliferation, cell cycle and apoptosis of gastric cancer cells and explored the potential mechanisms. In the present study, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry were used to examine the mRNA and protein expression of HDAC8 in GC cell lines and tissues. Then, the correlation between the clinicopathological parameters and the expression of HDAC8 was assessed. Finally, siRNA transfection and HDAC8 plasmid was performed to explore the functions of HDAC8 in GC progression in vitro. We found that the expression of HDAC8 was significantly upregulated both in GC cell lines and tumor tissues compared to human normal gastric epithelial cell, GES-1 and matched non-tumor tissues. Furthermore, depletion of HDAC8 remarkably inhibited GC cell proliferation, increased the apoptosis rate and G0/G1 phase percentage in vitro. Western blotting showed that the expression of protein promoting apoptosis such as, Bmf, activated caspase-3, caspase-6 were elevated following HDAC8 depletion. Our data exhibited an important role of HDAC8 in promoting gastric cancer tumorigenesis and identify this HDAC8 as a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Shiyuan Song
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ying Wang
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Po Xu
- Department of Urology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ruina Yang
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhikun Ma
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shuo Liang
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Guangping Zhang
- Department of Oncology, Τhe First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
67
|
Tian Y, Wong VWS, Wong GLH, Yang W, Sun H, Shen J, Tong JHM, Go MYY, Cheung YS, Lai PBS, Zhou M, Xu G, Huang THM, Yu J, To KF, Cheng ASL, Chan HLY. Histone Deacetylase HDAC8 Promotes Insulin Resistance and β-Catenin Activation in NAFLD-Associated Hepatocellular Carcinoma. Cancer Res 2015; 75:4803-16. [PMID: 26383163 DOI: 10.1158/0008-5472.can-14-3786] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/04/2015] [Indexed: 12/13/2022]
Abstract
The growing epidemic of obesity, which causes nonalcoholic fatty liver disease (NAFLD) and the more severe phenotype nonalcoholic steatohepatitis (NASH), has paralleled the increasing incidence of hepatocellular carcinoma (HCC). Accumulating evidence demonstrates that overnutrition and metabolic pathways can trigger modifications of DNA and histones via deregulation of chromatin modifiers, resulting in aberrant transcriptional activity. However, the epigenetic regulation of HCC development in NAFLD remains obscure. Here, we uncover key epigenetic regulators using both dietary and genetic obesity-promoted HCC models through quantitative expression profiling and characterize the oncogenic activities of histone deacetylase HDAC8 in NAFLD-associated hepatocarcinogenesis. HDAC8 is directly upregulated by the lipogenic transcription factor SREBP-1 where they are coexpressed in dietary obesity models of NASH and HCC. Lentiviral-mediated HDAC8 attenuation in vivo reversed insulin resistance and reduced NAFLD-associated tumorigenicity. HDAC8 modulation by genetic and pharmacologic approaches inhibited p53/p21-mediated apoptosis and G2-M phase cell-cycle arrest and stimulated β-catenin-dependent cell proliferation. Mechanistically, HDAC8 physically interacted with the chromatin modifier EZH2 to concordantly repress Wnt antagonists via histone H4 deacetylation and H3 lysine 27 trimethylation. In human NAFLD-associated HCC, levels of SREBP-1, HDAC8, EZH2, H4 deacetylation, H3K27me3, and active β-catenin were all correlated positively in tumors compared with nontumor tissues. Overall, our findings show how HDAC8 drives NAFLD-associated hepatocarcinogenesis, offering a novel epigenetic target to prevent or treat HCC in obese patients.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Vincent W S Wong
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Grace L H Wong
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Weiqin Yang
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hanyong Sun
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jiayun Shen
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Joanna H M Tong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Minnie Y Y Go
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yue S Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Mingyan Zhou
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Gang Xu
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Tim H M Huang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jun Yu
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ka F To
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Alfred S L Cheng
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Henry L Y Chan
- Department of Medicine and Therapeutics and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China. State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
68
|
HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci 2015; 36:481-92. [PMID: 26013035 DOI: 10.1016/j.tips.2015.04.013] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 02/08/2023]
Abstract
Histone deacetylase 8 (HDAC8) is a class I histone deacetylase implicated as a therapeutic target in various diseases, including cancer, X-linked intellectual disability, and parasitic infections. It is a structurally well-characterized enzyme that also deacetylates nonhistone proteins. In cancer, HDAC8 is a major 'epigenetic player' that is linked to deregulated expression or interaction with transcription factors critical to tumorigenesis. In the parasite Schistosoma mansoni and in viral infections, HDAC8 is a novel target to subdue infection. The current challenge remains in the development of potent selective inhibitors that would specifically target HDAC8 with fewer adverse effects compared with pan-HDAC inhibitors. Here, we review HDAC8 as a drug target and discuss inhibitors with respect to their structural features and therapeutic interventions.
Collapse
|
69
|
Omonijo O, Wongprayoon P, Ladenheim B, McCoy MT, Govitrapong P, Jayanthi S, Cadet JL. Differential effects of binge methamphetamine injections on the mRNA expression of histone deacetylases (HDACs) in the rat striatum. Neurotoxicology 2014; 45:178-84. [PMID: 25452209 DOI: 10.1016/j.neuro.2014.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/19/2022]
Abstract
Methamphetamine use disorder is characterized by recurrent binge episodes. Humans addicted to methamphetamine experience various degrees of cognitive deficits and show evidence of neurodegenerative processes in the brain. Binge injections of METH to rodents also cause significant toxic changes in the brain. In addition, this pattern of METH injections can alter gene expression in the dorsal striatum. Gene expression is regulated, in part, by histone deacetylation. We thus tested the possibility that METH toxic doses might cause changes in the mRNA levels of histone deacetylases (HDACs). We found that METH did produce significant decreases in the mRNA expression of HDAC8, which is a class I HDAC. METH also decreased expression of HDAC6, HDAC9, and HDAC10 that are class II HDACs. The expression of the class IV HDAC, HDAC11, was also suppressed by METH. The expression of Sirt2, Sirt5, and Sirt6 that are members of class III HDACs was also downregulated by METH injections. Our findings implicate changes in HDAC expression may be an early indicator of impending METH-induced neurotoxicity in the striatum. This idea is consistent with the accumulated evidence that some HDACs are involved in neurodegenerative processes in the brain.
Collapse
Affiliation(s)
- Oluwaseyi Omonijo
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, United States
| | - Pawaris Wongprayoon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, United States
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, United States
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, United States
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, United States.
| |
Collapse
|
70
|
HDAC8 and STAT3 repress BMF gene activity in colon cancer cells. Cell Death Dis 2014; 5:e1476. [PMID: 25321483 PMCID: PMC4237248 DOI: 10.1038/cddis.2014.422] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are undergoing clinical trials as anticancer agents, but some exhibit resistance mechanisms linked to anti-apoptotic Bcl-2 functions, such as BH3-only protein silencing. HDAC inhibitors that reactivate BH3-only family members might offer an improved therapeutic approach. We show here that a novel seleno-α-keto acid triggers global histone acetylation in human colon cancer cells and activates apoptosis in a p21-independent manner. Profiling of multiple survival factors identified a critical role for the BH3-only member Bcl-2-modifying factor (Bmf). On the corresponding BMF gene promoter, loss of HDAC8 was associated with signal transducer and activator of transcription 3 (STAT3)/specificity protein 3 (Sp3) transcription factor exchange and recruitment of p300. Treatment with a p300 inhibitor or transient overexpression of exogenous HDAC8 interfered with BMF induction, whereas RNAi-mediated silencing of STAT3 activated the target gene. This is the first report to identify a direct target gene of HDAC8 repression, namely, BMF. Interestingly, the repressive role of HDAC8 could be uncoupled from HDAC1 to trigger Bmf-mediated apoptosis. These findings have implications for the development of HDAC8-selective inhibitors as therapeutic agents, beyond the reported involvement of HDAC8 in childhood malignancy.
Collapse
|
71
|
Du C, Lv Z, Cao L, Ding C, Gyabaah OAK, Xie H, Zhou L, Wu J, Zheng S. MiR-126-3p suppresses tumor metastasis and angiogenesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2. J Transl Med 2014; 12:259. [PMID: 25240815 PMCID: PMC4189615 DOI: 10.1186/s12967-014-0259-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/10/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The deregulation of microRNAs has been reported to play a pivotal role in hepatocellular carcinoma (HCC). MiR-126-3p has been reported to be associated with poor prognosis in HCC. However the underlying mechanism of miR-126-3p in HCC remains unclear. METHODS The expression levels of miR-126-3p in HCC tissues and cells were detected by RT-PCR. Transwell assay and capillary tube formation assay were applied to assess the metastasis and angiogenesis in vitro. Nude mice subcutaneous tumor model was used to perform in vivo study. Dual- luciferase reporter assay was conducted to confirm the direct binding of miR-126-3p and target genes. The changes of biomarker protein levels were examined by western blot and Immunohistochemistry. RESULTS We observed that the miR-126-3p expression levels in HCC tissues and cells were significantly down-regulated. Through gain- and loss- of function studies, we showed that miR-126-3p dramatically inhibited HCC cells from migrating and invading extracellular matrix gel and suppressed capillary tube formation of endothelial cells in vitro. Furthermore, overexpression of miR-126-3p significantly reduced the volume of tumor and microvessel density in vivo. LRP6 and PIK3R2 were identified as targets of miR-126-3p. Silencing LRP6 and PIK3R2 had similar effects of miR-126-3p restoration on metastasis and angiogenesis individually in HCC cells. Furthermore, the miR-126-3p level was inversely correlated with LRP6 and PIK3R2 in HCC tissues. In addition, the rescue experiments indicated that the metastasis and angiogenesis functions of miR-126-3p were mediated by LRP6 and PIK3R2. CONCLUSION Our results demonstrates that deregulation of miR-126-3p contributes to metastasis and angiogenesis in HCC. The restoration of miR-126-3p expression may be a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Chengli Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Zhen Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Linping Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Chaofeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Owusu-ansah K Gyabaah
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Haiyang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Lin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Jian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China
| |
Collapse
|
72
|
Lehmann M, Hoffmann MJ, Koch A, Ulrich SM, Schulz WA, Niegisch G. Histone deacetylase 8 is deregulated in urothelial cancer but not a target for efficient treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:59. [PMID: 25011684 PMCID: PMC4230422 DOI: 10.1186/s13046-014-0059-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 12/24/2022]
Abstract
Background Previous studies have shown that class-I histone deacetylase (HDAC) 8 mRNA is upregulated in urothelial cancer tissues and urothelial cancer cell lines compared to benign controls. Using urothelial cancer cell lines we evaluated whether specific targeting of HDAC8 might be a therapeutic option in bladder cancer treatment. Methods We conducted siRNA-mediated knockdown and specific pharmacological inhibition of HDAC8 with the three different inhibitors compound 2, compound 5, and compound 6 in several urothelial carcinoma cell lines with distinct HDAC8 expression profiles. Levels of HDAC and marker proteins were determined by western blot analysis and mRNA levels were measured by quantitative real-time PCR. Cellular effects of HDAC8 suppression were analyzed by ATP assay, flow cytometry, colony forming assay and migration assay. Results Efficient siRNA-mediated knockdown of HDAC8 reduced proliferation up to 45%. The HDAC8 specific inhibitors compound 5 and compound 6 significantly reduced viability of all urothelial cancer cell lines (IC50 9 – 21 μM). Flow cytometry revealed only a slight increase in the sub-G1 fraction indicating a limited induction of apoptosis. Expression of thymidylate synthase was partly reduced; PARP-cleavage was not detected. The influence of the pharmacological inhibition on clonogenic growth and migration show a cell line- and inhibitor-dependent reduction with the strongest effects after treatment with compound 5 and compound 6. Conclusions Deregulation of HDAC8 is frequent in urothelial cancer, but neither specific pharmacological inhibition nor siRNA-mediated knockdown of HDAC8 impaired viability of urothelial cancer cell lines in a therapeutic useful manner. Accordingly, HDAC8 on its own is not a promising drug target in bladder cancer.
Collapse
|
73
|
Chao J, Zhang XF, Pan QZ, Zhao JJ, Jiang SS, Wang Y, Zhang JH, Xia JC. Decreased expression of TRIM3 is associated with poor prognosis in patients with primary hepatocellular carcinoma. Med Oncol 2014; 31:102. [PMID: 24994609 DOI: 10.1007/s12032-014-0102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023]
Abstract
Tripartite motif-containing 3 (TRIM3) is a member of the tripartite motif (TRIM) protein family and is reported to be involved in the pathogenesis of various cancers. The role of TRIM3 in hepatocellular carcinoma (HCC) is unknown; thus, the goal of this study was to explore the expression level and prognostic value of TRIM3 in HCC. The expression level of TRIM3 in HCC surgically resected tumors and corresponding nontumorous samples was detected by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. The correlation between TRIM3 expression level and the clinicopathological features and prognosis of HCC patients was also analyzed. We observed that TRIM3 expression was remarkably decreased in tumor tissue samples from HCC patients, relative to matched nontumorous tissue samples, at the mRNA (p = 0.018) and protein level (p = 0.02). Similarly, immunohistochemical analysis showed that 53.4 % of samples had low TRIM3 protein expression. Clinicopathological analysis revealed that low TRIM3 expression was significantly correlated with tumor size (p = 0.034), histological grade (p < 0.001), serum AFP (p = 0.025), and TNM stage (p = 0.021). Furthermore, Kaplan-Meier survival analysis revealed that low TRIM3 expression was associated with poor survival in HCC patients. Finally, our multivariate Cox regression analysis showed that TRIM3 expression was an independent prognostic factor for overall survival of HCC patients. In conclusion, this study suggests that TRIM3 may play a significant role in HCC progression and acts as a valuable prognostic marker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jie Chao
- Department of Epidemiology and Health Statistics, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, 280 Waihuan Road East, Guangzhou, 510010, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Hsu FT, Liu YC, Chiang IT, Liu RS, Wang HE, Lin WJ, Hwang JJ. Sorafenib increases efficacy of vorinostat against human hepatocellular carcinoma through transduction inhibition of vorinostat-induced ERK/NF-κB signaling. Int J Oncol 2014; 45:177-88. [PMID: 24807012 DOI: 10.3892/ijo.2014.2423] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/24/2014] [Indexed: 12/16/2022] Open
Abstract
Sorafenib is effective for patients with advanced hepatocellular carcinoma (HCC) and particularly for those who are unsuitable to receive life-prolonging transarterial chemo-embolization. The survival benefit of sorafenib, however, is unsatisfactory. Vorinostat also known as suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor with anti-HCC efficacy in preclinical studies. SAHA induces nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in vitro, which may lead to cancer cell progression and jeopardize cytotoxic effect of SAHA in HCC. The goal of this study was to investigate whether sorafenib enhances SAHA cytotoxicity against HCC through inhibition of SAHA-induced NF-κB activity. The human HCC cell line Huh7 transfected with dual reporter genes, luciferase (luc) and thymidine kinase (tk) with NF-κB response elements, was co-transfected with red fluorescent protein (rfp) gene for non-invasive molecular imaging to assess NF-κB activity and living cells simultaneously. Cell viability assay, DNA fragmentation, western blotting, electrophoretic mobility shift assay (EMSA) and multiple modalities of molecular imaging were used to assess the combination efficacy and mechanism of sorafenib and SAHA. The administration of high-dose SAHA (10 µM) with long treatment time (48 h) in vitro, and 25 mg/kg/day by gavage in HCC-bearing nude mice to induce NF-κB activity were performed. Sorafenib inhibited SAHA-induced NF-κB activity and the expression of NF-κB-regulated effector proteins while it increased the efficacy of SAHA against HCC both in vitro and in vivo. The mechanism of sorafenib to enhance SAHA efficacy on HCC is through the suppression of ERK/NF-κB pathway, which induces extrinsic and intrinsic apoptosis. Combination of sorafenib and SAHA may have the potential as new strategy against HCC.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Yu-Chang Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - I-Tsang Chiang
- Department of Radiation Oncology, National Yang-Ming University Hospital, Yilan 260, Taiwan, R.O.C
| | - Ren-Shyan Liu
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Wuu-Jyh Lin
- Division of Radioisotope, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan, R.O.C
| | - Jeng-Jong Hwang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| |
Collapse
|
75
|
Frau M, Feo CF, Feo F, Pascale RM. New insights on the role of epigenetic alterations in hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:65-83. [PMID: 27508177 PMCID: PMC4918272 DOI: 10.2147/jhc.s44506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence assigns to epigenetic mechanisms heritable differences in gene function that come into being during cell development or via the effect of environmental factors. Epigenetic deregulation is strongly involved in the development of hepatocellular carcinoma (HCC). It includes changes in methionine metabolism, promoter hypermethylation, or increased proteasomal degradation of oncosuppressors, as well as posttranscriptional deregulation by microRNA or messenger RNA (mRNA) binding proteins. Alterations in the methylation of the promoter of methyl adenosyltransferase MAT1A and MAT2A genes in HCC result in decreased S-adenosylmethionine levels, global DNA hypomethylation, and deregulation of signal transduction pathways linked to methionine metabolism and methyl adenosyltransferases activity. Changes in S-adenosylmethionine levels may also depend on MAT1A mRNA destabilization associated with MAT2A mRNA stabilization by specific proteins. Decrease in MAT1A expression has also been attributed to miRNA upregulation in HCC. A complex deregulation of miRNAs is also strongly involved in hepatocarcinogenesis, with up-regulation of different miRNAs targeting oncosuppressor genes and down-regulation of miRNAs targeting genes involved in cell-cycle and signal transduction control. Oncosuppressor gene down-regulation in HCC is also induced by promoter hypermethylation or posttranslational deregulation, leading to proteasomal degradation. The role of epigenetic changes in hepatocarcinogenesis has recently suggested new promising therapeutic approaches for HCC on the basis of the administration of methylating agents, inhibition of methyl adenosyltransferases, and restoration of the expression of tumor-suppressor miRNAs.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Claudio F Feo
- Department of Clinical and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|