51
|
McGonagle D, Sharif K, O'Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev 2020; 19:102537. [PMID: 32251717 PMCID: PMC7195002 DOI: 10.1016/j.autrev.2020.102537] [Citation(s) in RCA: 1177] [Impact Index Per Article: 235.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Severe COVID-19 associated pneumonia patients may exhibit features of systemic hyper-inflammation designated under the umbrella term of macrophage activation syndrome (MAS) or cytokine storm, also known as secondary haemophagocytic lymphohistocytosis (sHLH). This is distinct from HLH associated with immunodeficiency states termed primary HLH -with radically different therapy strategies in both situations. COVID-19 infection with MAS typically occurs in subjects with adult respiratory distress syndrome (ARDS) and historically, non-survival in ARDS was linked to sustained IL-6 and IL-1 elevation. We provide a model for the classification of MAS to stratify the MAS-like presentation in COVID-19 pneumonia and explore the complexities of discerning ARDS from MAS. We discuss the potential impact of timing of anti-cytokine therapy on viral clearance and the impact of such therapy on intra-pulmonary macrophage activation and emergent pulmonary vascular disease.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK.
| | - Kassem Sharif
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; Sheba Medical Center, Tel Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anthony O'Regan
- National University of Ireland, Saolta University Healthcare Group, Galway, Ireland
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| |
Collapse
|
52
|
The unleashing of the immune system in COVID-19 and sepsis: the calm before the storm? Inflamm Res 2020; 69:757-763. [PMID: 32468151 PMCID: PMC8823100 DOI: 10.1007/s00011-020-01366-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sorely testing health care systems and economies around the world and is rightly considered as the major health emergency in a century. Despite the course of the disease appearing to be mild in many cases, a significant proportion of symptomatic patients develop pneumonia requiring hospitalisation or progress to manifest respiratory complications leading to intensive care treatment. Potential interventions for SARS-CoV2-associated pneumonia are being tested, some of which holding promise, but as of today none of these has yet demonstrated outstanding efficacy in treating COVID-19. In this article, we discuss fresh perspectives and insights into the potential role of immune dysregulation in COVID-19 as well as similarities with systemic inflammatory response in sepsis and the rationale for exploring novel treatment options affecting host immune response.
Collapse
|
53
|
Liu K, Tian LX, Tang X, Wang J, Tang WQ, Ma ZF, Chen T, Liang HP. Neutrophilic granule protein (NGP) attenuates lipopolysaccharide-induced inflammatory responses and enhances phagocytosis of bacteria by macrophages. Cytokine 2020; 128:155001. [PMID: 32035329 DOI: 10.1016/j.cyto.2020.155001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Neutrophilic granule protein (NGP) belongs to the cystatin superfamily. Even though this superfamily is critically involved in cancer biology and adaptive immunity, the relationship of macrophage NGP to inflammation and phagocytosis remains poorly understood. In this study, we observed a significant increase of NGP in peritoneal macrophages (PMs) isolated from mice challenged with E. coli or lipopolysaccharide (LPS), as judged by NGP mRNA microarray. We also found changes in NGP to be mainly Toll-like receptor 4 (TLR4)-dependent. By western blot and electrophoretic mobility shift assay, we demonstrated NGP overexpression to reduce TNF-α and IL-1β production by LPS-induced RAW264.7 cells (RAW) via suppression of the NF-κB (p65 and p50) signalling pathway, rather than the JNK1/AP-1 (fos and jun) signalling pathway. NGP overexpression by LPS-induced RAW also induced IL-10, an anti-inflammatory cytokine, which was partially involved in the anti-inflammatory effect produced by NGP overexpression. Moreover, upregulated NGP enhanced the phagocytosis of E. coli by RAW. Taken together, these results demonstrated NGP to be an important host defense component that regulates inflammatory responses and phagocytosis by activated macrophages. As such, NGP may be useful for the treatment of inflammatory based disease.
Collapse
Affiliation(s)
- Kuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China; Department of Intensive Care Unit, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Xing Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Xin Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China; Department of Intensive Care Unit, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China; Department Of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wan-Qi Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhong-Fu Ma
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Intensive Care Unit, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hua-Ping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
54
|
Wang H, Peng X, Huang Y, Xiao Y, Wang Z, Zhan L. Propofol Attenuates Hypoxia/Reoxygenation-Induced Apoptosis and Autophagy in HK-2 Cells by Inhibiting JNK Activation. Yonsei Med J 2019; 60:1195-1202. [PMID: 31769251 PMCID: PMC6881709 DOI: 10.3349/ymj.2019.60.12.1195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The aim of this study was to investigate whether propofol could attenuate hypoxia/reoxygenation-induced apoptosis and autophagy in human renal proximal tubular cells (HK-2) by inhibiting JNK activation. MATERIALS AND METHODS HK-2 cells were treated with or without propofol or JNK inhibitor SP600125 for 1 hour and then subjected to 15 hours of hypoxia and 2 hours of reoxygenation (H/R). Cell viability and LDH release were measured with commercial kits. Cell apoptosis was evaluated by flow cytometry. The expressions of p-JNK, cleaved-caspase-3, Bcl-2, and autophagy markers LC3 and p62 were measured by Western blot or immunofluorescence. RESULTS HK-2 cells exposed to H/R insult showed higher cell injury (detected by increased LDH release and decreased cell viability), increased cell apoptosis index and expression of cleaved-caspase-3, a decrease in the expression of Bcl-2 accompanied by increased expression of p-JNK and LC3II, and a decrease in expression of p62. All of these alterations were attenuated by propofol treatment. Similar effects were provoked upon treatment with the JNK inhibitor SP600125. Moreover, the protective effects were more obvious with the combination of propofol and SP600125. CONCLUSION These results suggest that propofol could attenuate hypoxia/reoxygenation induced apoptosis and autophagy in HK-2 cells, probably through inhibiting JNK activation.
Collapse
Affiliation(s)
- Huaxin Wang
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China
| | - Xuan Peng
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China
| | - Yayi Huang
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China
| | - Yeda Xiao
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China
| | - Zhuo Wang
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China
| | - Liying Zhan
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China.
| |
Collapse
|