51
|
Kamo T, Eki T, Hirose Y. Pressurized Liquid Extraction of a Phycocyanobilin Chromophore and Its Reconstitution with a Cyanobacteriochrome Photosensor for Efficient Isotopic Labeling. PLANT & CELL PHYSIOLOGY 2021; 62:334-347. [PMID: 33386854 PMCID: PMC8112840 DOI: 10.1093/pcp/pcaa164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Linear tetrapyrrole compounds (bilins) are chromophores of the phytochrome and cyanobacteriochrome classes of photosensors and light-harvesting phycobiliproteins. Various spectroscopic techniques, such as resonance Raman, Fourier transform-infrared and nuclear magnetic resonance, have been used to elucidate the structures underlying their remarkable spectral diversity, in which the signals are experimentally assigned to specific structures using isotopically labeled bilin. However, current methods for isotopic labeling of bilins require specialized expertise, time-consuming procedures and/or expensive reagents. To address these shortcomings, we established a method for pressurized liquid extraction of phycocyanobilin (PCB) from the phycobiliprotein powder Lina Blue and also the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). PCB was efficiently cleaved in ethanol with three extractions (5 min each) under nitrogen at 125�C and 100 bars. A prewash at 75�C was effective for removing cellular pigments of Synechocystis without PCB cleavage. Liquid chromatography and mass spectrometry suggested that PCB was cleaved in the C3-E (majority) and C3-Z (partial) configurations. 15N- and 13C/15N-labeled PCBs were prepared from Synechocystis cells grown with NaH13CO3 and/or Na15NO3, the concentrations of which were optimized based on cell growth and pigmentation. Extracted PCB was reconstituted with a recombinant apoprotein of the cyanobacteriochrome-class photosensor RcaE. Yield of the photoactive holoprotein was improved by optimization of the expression conditions and cell disruption in the presence of Tween 20. Our method can be applied for the isotopic labeling of other PCB-binding proteins and for the commercial production of non-labeled PCB for food, cosmetic and medical applications.
Collapse
Affiliation(s)
- Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| |
Collapse
|
52
|
Zhan J, Steglich C, Scholz I, Hess WR, Kirilovsky D. Inverse regulation of light harvesting and photoprotection is mediated by a 3'-end-derived sRNA in cyanobacteria. THE PLANT CELL 2021; 33:358-380. [PMID: 33793852 PMCID: PMC8136909 DOI: 10.1093/plcell/koaa030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.
Collapse
Affiliation(s)
- Jiao Zhan
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Steglich
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Ingeborg Scholz
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Diana Kirilovsky
- Université Paris-Saclay, Commissariat à l’Énergie Atomiques et aux Énergies Alternatives, Centre National de la Recherche Scientifique (CEA, CNRS), Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| |
Collapse
|
53
|
Wang X, Chen G, Du S, Wu H, Fu R, Yu X. Light Intensity Influence on Growth and Photosynthetic Characteristics of Horsfieldia hainanensis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Due to both anthropogenic and natural causes, the number of Horsfieldia hainanensis has been decreasing each year in the Tongza Branch nursery (109.534 525°E, 18.763 516°N) of the Hainan Academy of Forestry, China. Consequently, the protection of H. hainanensis is urgent, as is that of most rare tree species. To develop a more comprehensive understanding of the H. hainanensis growth environment, we took 3-year-old H. hainanensis saplings as the research object. We controlled the light intensity by setting different shade amounts to explore the growth and photosynthetic characteristics of H. hainanensis under different light intensities. We found that shade can promote growth and increase the contents of certain substances. Light transmittance of 44.41% can increase plant height (by 29.545%) and biomass (by 66.676%). Light transmittance of 16.19% can increase the pigment content; Chl increased by 40.864%, Chl a increased by 38.031%, and Chl b increased by 48.412%. Light transmittance of 7.30% can increase the soil plant analysis development (SPAD) value of each part of the leaf; the leaf base increased by 41.000%, the leaf margin increased by 32.574%, the blade tip increased by 49.003%, and the leaf average increased by 40.466%. The specific leaf area can reduce the specific leaf weight. We also found that compared to full light, reducing the light transmittance can increase the total chlorophyll (Chl), chlorophyll A (Chl a), and chlorophyll B (Chl b) contents, and the Chl-SPAD-leaf base, leaf edge, leaf tip, average content, and light-saturated net photosynthetic rate. This can in turn reduce the apparent quantum efficiency (AQY), light compensation point (LCP), and dark respiration rate (Rd). In addition, we found a strong correlation between seven of the photosynthetic pigment indicators (Chl, Chla, Chl b, Chl-SPAD-leaf base, leaf margin, leaf tip, and mean) and the three photosynthesis physiological parameters (AQY, LCP, and Rd). The light transmittance of 44.41% (one layer of shading net) treatment group was conducive to the growth of H. hainanensis and photosynthetic characteristic improvement. Therefore, our light transmittance selection of approximately 44.4% is significant for the natural return of H. hainanensis.
Collapse
|
54
|
Chakraborty S, Mishra AK. Effects of zinc toxicity on the nitrogen-fixing cyanobacterium Anabaena sphaerica-ultastructural, physiological and biochemical analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12882-1. [PMID: 33638788 DOI: 10.1007/s11356-021-12882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The current study describes the mechanisms of zinc toxicity in the cyanobacterium Anabaena sphaerica after eight days treatment with 10 mg L-1 ZnCl2. The application of zinc not only showed elevated accumulation of the metal inside the cells but also exhibited devastating impacts on the cell numbers, morphology, and ultrastructure of A. sphaerica. The effects of zinc on the pigments contents, oxygen evolution rate, Fv/Fm, electron transport rate, and carbohydrate content were also evaluated in A. sphaerica. Moreover, zinc adversely affected nutrient uptake and the cellular energy budget in the test cyanobacterium which in turn hampered heterocyst development and nitrogen fixation. Alongside, the cyanobacterium experienced zinc-mediated non-competitive inhibition of glutamine synthetase activity, curtailed synthesis of amino acids and proteins. Furthermore, drastically reduced total lipid and increased unsaturated lipid contents were also the prominent characteristics of zinc stressed A. sphaerica. Most importantly, zinc stress caused severe damages to the protein, lipid, and DNA by triggering hydrogen peroxide generation and accumulation of oxidized glutathione. Therefore, excess zinc is highly toxic to the cyanobacterium A. sphaerica, and the mechanisms of its toxicity followed a cascade of events including oxidative stress mediated geopardisation of growth and ultrastructure, metabolic derangements, and macromolecular damages.
Collapse
Affiliation(s)
| | - Arun Kumar Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
55
|
Insights into Solution Structures of Photosynthetic Protein Complexes from Small-Angle Scattering Methods. CRYSTALS 2021. [DOI: 10.3390/cryst11020203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
High-resolution structures of photosynthetic pigment–protein complexes are often determined using crystallography or cryo-electron microscopy (cryo-EM), which are restricted to the use of protein crystals or to low temperatures, respectively. However, functional studies and biotechnological applications of photosystems necessitate the use of proteins isolated in aqueous solution, so that the relevance of high-resolution structures has to be independently verified. In this regard, small-angle neutron and X-ray scattering (SANS and SAXS, respectively) can serve as the missing link because of their capability to provide structural information for proteins in aqueous solution at physiological temperatures. In the present review, we discuss the principles and prototypical applications of SANS and SAXS using the photosynthetic pigment–protein complexes phycocyanin (PC) and Photosystem I (PSI) as model systems for a water-soluble and for a membrane protein, respectively. For example, the solution structure of PSI was studied using SAXS and SANS with contrast matching. A Guinier analysis reveals that PSI in solution is virtually free of aggregation and characterized by a radius of gyration of about 75 Å. The latter value is about 10% larger than expected from the crystal structure. This is corroborated by an ab initio structure reconstitution, which also shows a slight expansion of Photosystem I in buffer solution at room temperature. In part, this may be due to conformational states accessible by thermally activated protein dynamics in solution at physiological temperatures. The size of the detergent belt is derived by comparison with SANS measurements without detergent match, revealing a monolayer of detergent molecules under proper solubilization conditions.
Collapse
|
56
|
Jangir MM, Chowdhury S, Bhagavatula V. Differential response of photosynthetic apparatus towards alkaline pH treatment in NIES-39 and PCC 7345 strains of Arthrospira platensis. Int Microbiol 2021; 24:219-231. [PMID: 33438119 DOI: 10.1007/s10123-021-00160-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Alkaline stress is one of the severe abiotic stresses, which is not well studied so far, especially among cyanobacteria. To affirm the characteristics of alkaline stress and the subsequent adaptive responses in Arthrospira platensis NIES-39 and Arthrospira platensis PCC 7345, photosynthetic pigments, spectral properties of thylakoids, PSII and PSI activities, and pigment-protein profiles of thylakoids under different pH regimes were examined. The accessory pigments showed a pH-mediated sensitivity. The pigment-protein complexes of thylakoids are also affected, resulting in the altered fluorescence emission profile. At pH 11, a possible shift of the PBsome antenna complex from PSII to PSI is observed. PSII reaction center is found to be more susceptible to alkaline stress in comparison to the PSI. In Arthrospira platensis NIES-39 at pH 11, a drop of 68% in the oxygen evolution with a significant increase of PSI activity by 114% is recorded within 24 h of pH treatment. Alterations in the cellular ultrastructure of Arthrospira platensis NIES-39 at pH 11 were observed, along with the increased number of plastoglobules attached with the thylakoid membranes. Arthrospira platensis NIES-39 is more adaptable to pH variation than Arthrospira platensis PCC 7345.
Collapse
Affiliation(s)
- Monika Mahesh Jangir
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| | - Vani Bhagavatula
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
57
|
Liu J, Zhang H, Yan L, Kerr PG, Zhang S, Wu Y. Electron transport, light energy conversion and proteomic responses of periphyton in photosynthesis under exposure to AgNPs. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123809. [PMID: 33113741 DOI: 10.1016/j.jhazmat.2020.123809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 05/09/2023]
Abstract
Silver nanoparticles (AgNPs) including a mix of intact nanoparticle-Ag and 'free' Ag+ pose high risks to benthic photoautotrophs, but the photosynthetic responses of benthic microbial aggregates to AgNPs still remain largely unknown. Here, periphyton and Nostoc were used to elucidate the photosynthetic responses of benthic algae community to intact nanoparticle-Ag and Ag+. During exposure, both intact nanoparticle-Ag and Ag+ imposed negative effects on photosynthesis of benthic algae, but via different pathways. Specifically, Ag+ had stronger effects on damaging the oxygen-evolving complex (OEC) and thylakoid membrane than intact nanoparticle-Ag. Ag+ also suppressed electron transfer from QA to QB, and impaired phycobilisome. Intact nanoparticle-Ag inhibited the expression of PsbD and PsbL in PSII, but prompted the ROS scavenging capacity. In response to the stress of AgNPs, the benthic algae increased light energy absorption to maintain the electron transport efficiency, and up-regulated PSI reaction center protein (PsaA) to compensate the degraded PSII. These results reveal how intact nanoparticle-Ag and Ag+ influence electron transport, energy conversion and protein expression in the photosynthesis of periphyton, and provide deep insights into the responses of benthic photoautotrophs to different components of AgNPs.
Collapse
Affiliation(s)
- Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang, 443605, China.
| | - Huijie Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; College of Agricultural Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University, Boorooma St., Wagga Wagga, NSW, 2678, Australia
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang, 443605, China.
| |
Collapse
|
58
|
Supramolecular chlorophyll aggregates inspired from specific light-harvesting antenna “chlorosome”: Static nanostructure, dynamic construction process, and versatile application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100385] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
59
|
Holtrop T, Huisman J, Stomp M, Biersteker L, Aerts J, Grébert T, Partensky F, Garczarek L, Woerd HJVD. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans. Nat Ecol Evol 2020; 5:55-66. [PMID: 33168993 DOI: 10.1038/s41559-020-01330-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Stretching and bending vibrations of water molecules absorb photons of specific wavelengths, a phenomenon that constrains light energy available for aquatic photosynthesis. Previous work suggested that these absorption properties of water create a series of spectral niches but the theory was still too simplified to enable prediction of the spectral niches in real aquatic ecosystems. Here, we show with a state-of-the-art radiative transfer model that the vibrational modes of the water molecule delineate five spectral niches, in the violet, blue, green, orange and red parts of the spectrum. These five niches are effectively captured by chlorophylls and phycobilin pigments of cyanobacteria and their eukaryotic descendants. Global distributions of the spectral niches are predicted by satellite remote sensing and validated with observed large-scale distribution patterns of cyanobacterial pigment types. Our findings provide an elegant explanation for the biogeographical distributions of photosynthetic pigments across the lakes and oceans of our planet.
Collapse
Affiliation(s)
- Tadzio Holtrop
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands.,Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Maayke Stomp
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Levi Biersteker
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands.,Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Aerts
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands
| | - Théophile Grébert
- Research Department UMR 7144-Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Frédéric Partensky
- Research Department UMR 7144-Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Laurence Garczarek
- Research Department UMR 7144-Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Hendrik Jan van der Woerd
- Department of Water & Climate Risk, Institute for Environmental Studies (IVM), VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
60
|
Šebelík V, West R, Trsková EK, Kaňa R, Polívka T. Energy transfer pathways in the CAC light-harvesting complex of Rhodomonas salina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148280. [PMID: 32717221 DOI: 10.1016/j.bbabio.2020.148280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
Photosynthetic organisms had to evolve diverse mechanisms of light-harvesting to supply photosynthetic apparatus with enough energy. Cryptophytes represent one of the groups of photosynthetic organisms combining external and internal antenna systems. They contain one type of immobile phycobiliprotein located at the lumenal side of the thylakoid membrane, together with membrane-bound chlorophyll a/c antenna (CAC). Here we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the CAC proteins of cryptophyte Rhodomonas salina. The major CAC carotenoid, alloxanthin, is a cryptophyte-specific carotenoid, and it is the only naturally-occurring carotenoid with two triple bonds in its structure. In order to explore the energy transfer pathways within the CAC complex, three excitation wavelengths (505, 590, and 640 nm) were chosen to excite pigments in the CAC antenna. The excitation of Chl c at either 590 or 640 nm proves efficient energy transfer between Chl c and Chl a. The excitation of alloxanthin at 505 nm shows an active pathway from the S2 state with efficiency around 50%, feeding both Chl a and Chl c with approximately 1:1 branching ratio, yet, the S1-route is rather inefficient. The 57 ps energy transfer time to Chl a gives ~25% efficiency of the S1 channel. The low efficiency of the S1 route renders the overall carotenoid-Chl energy transfer efficiency low, pointing to the regulatory role of alloxanthin in the CAC antenna.
Collapse
Affiliation(s)
- Václav Šebelík
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Robert West
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Eliška Kuthanová Trsková
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
61
|
Chakraborty S, Mishra AK. Mitigation of zinc toxicity through differential strategies in two species of the cyanobacterium Anabaena isolated from zinc polluted paddy field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114375. [PMID: 32220689 DOI: 10.1016/j.envpol.2020.114375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
The present study describes the physiological and biochemical mechanisms of zinc tolerance in two heterocytous cyanobacteria i.e. Anabaena doliolum and Anabaena oryzae, treated with their respective LC50 concentrations of zinc (3 and 4.5 mg L-1) for eight days. The feedbacks were examined in terms of growth, metabolism, zinc exclusion, zinc accumulation, oxidative stress, antioxidants and metallothionein contents. Although the growth and metabolic activities were reduced in both the cyanobacterium, maximum adversity was noticed in A. doliolum. The higher order of abnormalities in A. doliolum was attributed to excessive accumulation of zinc and enhanced reactive oxygen species (ROS) production. However, the comparatively higher growth and metabolic activities of A. oryzae were ascribed to the lower accumulation of zinc as a result of released polysaccharides mediated zinc exclusion, synthesis of zinc chelating metallothioneins and subsequent less production of ROS. The oxidative stress and macromolecular damages were prominent in both the cyanobacterium but the condition was much harsher in A. doliolum which may be explained by its comparatively low antioxidative enzyme activities (SOD, APX and GR) and smaller amount of ascorbate-glutathione-tocopherol contents than that of A. oryzae. However, sustenance of 50% growth by A. doliolum under zinc stress despite severe cellular damages was attributed to the enhanced synthesis of phenolics, flavonoids, and proline. Thus, differential zinc tolerance in A. doliolum and A. oryzae is possibly the outcome of their distinct mitigation strategies. Although the two test organisms followed pseudo second order kinetics model during zinc biosorption yet they exhibited differential zinc biosorption capacity. The cyanobacterium A. oryzae was found to be more efficient in removing zinc as compared to A. doliolum and this efficiency makes A. oryzae a promising candidate for the phycoremediation of zinc polluted environments.
Collapse
Affiliation(s)
| | - Arun K Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
62
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light‐Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [DOI: https:/doi.org/10.1111/php.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2023]
Abstract
AbstractThe evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain — bilins and cyclic — chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions—light‐harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D‐ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D. Bekasova
- Bach Institute of Biochemistry Fundamentals of Biotechnology Federal Research Centre Russian Academy of Sciences Moscow Russia
| |
Collapse
|
63
|
Sineshchekov VA, Bekasova OD. Two Distinct Photoprocesses in Cyanobacterial Bilin Pigments: Energy Migration in Light-Harvesting Phycobiliproteins versus Photoisomerization in Phytochromes. Photochem Photobiol 2020; 96:750-767. [PMID: 31869438 DOI: 10.1111/php.13197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
Abstract
The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions-light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.
Collapse
Affiliation(s)
| | - Olga D Bekasova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
64
|
Puzorjov A, McCormick AJ. Phycobiliproteins from extreme environments and their potential applications. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3827-3842. [PMID: 32188986 DOI: 10.1093/jxb/eraa139] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/18/2023]
Abstract
The light-harvesting phycobilisome complex is an important component of photosynthesis in cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including the blue phycobiliprotein phycocyanin, that are considered high-value products with applications in several industries. Remarkably, several cyanobacteria and red algal species retain the capacity to harvest light and photosynthesise under highly selective environments such as hot springs, and flourish in extremes of pH and elevated temperatures. These thermophilic organisms produce thermostable phycobiliproteins, which have superior qualities much needed for wider adoption of these natural pigment-proteins in the food, textile, and other industries. Here we review the available literature on the thermostability of phycobilisome components from thermophilic species and discuss how a better appreciation of phycobiliproteins from extreme environments will benefit our fundamental understanding of photosynthetic adaptation and could provide a sustainable resource for several industrial processes.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
65
|
Kashimoto T, Miyake K, Sato M, Maeda K, Matsumoto C, Ikeuchi M, Toyooka K, Watanabe S, Kanesaki Y, Narikawa R. Acclimation process of the chlorophyll d-bearing cyanobacterium Acaryochloris marina to an orange light environment revealed by transcriptomic analysis and electron microscopic observation. J GEN APPL MICROBIOL 2020; 66:106-115. [PMID: 32147625 DOI: 10.2323/jgam.2019.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cyanobacterium Acaryochloris marina MBIC 11017 (A. marina 11017) possesses chlorophyll d (Chl. d) peaking at 698 nm as photosystem reaction center pigments, instead of chlorophyll a (Chl. a) peaking at 665 nm. About 95% of the total chlorophylls is Chl. d in A. marina 11017. In addition, A. marina 11017 possesses phycobilisome (PBS) supercomplex to harvest orange light and to transfer the absorbing energy to the photosystems. In this context, A. marina 11017 utilizes both far-red and orange light as the photosynthetic energy source. In the present study, we incubated A. marina 11017 cells under monochromatic orange and far-red light conditions and performed transcriptional and morphological studies by RNA-seq analysis and electron microscopy. Cellular absorption spectra, transcriptomic profiles, and microscopic observations demonstrated that PBS was highly accumulated under an orange light condition relative to a far-red light condition. Notably, transcription of one cpcBA operon encoding the phycobiliprotein of the phycocyanin was up-regulated under the orange light condition, but another operon was constitutively expressed under both conditions, indicating functional diversification of these two operons for light harvesting. Taking the other observations into consideration, we could illustrate the photoacclimation processes of A. marina 11017 in response to orange and far-red light conditions in detail.
Collapse
Affiliation(s)
- Tomonori Kashimoto
- Department of Biological Science, Faculty of Science, Shizuoka University
| | - Keita Miyake
- Department of Biological Science, Faculty of Science, Shizuoka University
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science
| | - Kaisei Maeda
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Department of Bioscience, Tokyo University of Agriculture
| | | | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency
| | | | | | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University.,NODAI Genome Research Center, Tokyo University of Agriculture
| | - Rei Narikawa
- Department of Biological Science, Faculty of Science, Shizuoka University.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency.,Research Institute of Green Science and Technology, Shizuoka University
| |
Collapse
|
66
|
Investigations of the Energy Transfer in the Phycobilisome Antenna of Arthrospira platensis Using Femtosecond Spectroscopy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10114045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the energy transfer in phycobilisomes extracted from cyanobacteria can be used for building biomimetic hybrid systems for optimized solar energy collection and photocurrent amplification. In this paper, we applied time-resolved absorption and fluorescence spectroscopy to investigate the ultrafast dynamics in a hemidiscoidal phycobilisome obtained from Arthrospira platensis. We obtained the steady-state and time-resolved optical properties and identified the possible pathways of the excitation energy transfer in the phycobilisome and its components, phycocyanin and allophycocyanin. The transient absorption data were studied using global analysis and revealed the existence of ultrafast kinetics down to 850 fs in the phycobilisome. The fluorescence lifetimes in the nanosecond time-scale assigned to the final emitters in each sample were obtained from the time-correlated single photon counting fluorescence experiments.
Collapse
|
67
|
Slonimskiy YB, Maksimov EG, Sluchanko NN. Fluorescence recovery protein: a powerful yet underexplored regulator of photoprotection in cyanobacteria†. Photochem Photobiol Sci 2020; 19:763-775. [PMID: 33856677 DOI: 10.1039/d0pp00015a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023]
Abstract
Cyanobacteria utilize an elegant photoprotection mechanism mediated by the photoactive Orange Carotenoid Protein (OCP), which upon binding dissipates excess energy from light-harvesting complexes, phycobilisomes. The OCP activity is efficiently regulated by its partner, the Fluorescence Recovery Protein (FRP). FRP accelerates OCP conversion to the resting state, thus counteracting the OCP-mediated photoprotection. Behind the deceptive simplicity of such regulation is hidden a multistep process involving dramatic conformational rearrangements in OCP and FRP, the details of which became clearer only a decade after the FRP discovery. Yet many questions regarding the functioning of FRP have remained controversial. In this review, we summarize the current knowledge and understanding of the FRP role in cyanobacterial photoprotection as well as its evolutionary history that presumably lies far beyond cyanobacteria.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Biochemistry, Faculty of Biology, 119991, Moscow, Russian Federation
| | - Eugene G Maksimov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, 119991, Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russian Federation.
- M. V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, 119991, Moscow, Russian Federation.
| |
Collapse
|
68
|
Sonani RR, Roszak AW, Liu H, Gross ML, Blankenship RE, Madamwar D, Cogdell RJ. Revisiting high-resolution crystal structure of Phormidium rubidum phycocyanin. PHOTOSYNTHESIS RESEARCH 2020; 144:349-360. [PMID: 32303893 PMCID: PMC7491960 DOI: 10.1007/s11120-020-00746-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The crystal structure of phycocyanin (pr-PC) isolated from Phormidium rubidum A09DM (P. rubidum) is described at a resolution of 1.17 Å. Electron density maps derived from crystallographic data showed many clear differences in amino acid sequences when compared with the previously obtained gene-derived sequences. The differences were found in 57 positions (30 in α-subunit and 27 in β-subunit of pr-PC), in which all residues except one (β145Arg) are not interacting with the three phycocyanobilin chromophores. Highly purified pr-PC was then sequenced by mass spectrometry (MS) using LC-MS/MS. The MS data were analyzed using two independent proteomic search engines. As a result of this analysis, complete agreement between the polypeptide sequences and the electron density maps was obtained. We attribute the difference to multiple genes in the bacterium encoding the phycocyanin apoproteins and that the gene sequencing sequenced the wrong ones. We are not implying that protein sequencing by mass spectrometry is more accurate than that of gene sequencing. The final 1.17 Å structure of pr-PC allows the chromophore interactions with the protein to be described with high accuracy.
Collapse
Affiliation(s)
- Ravi R Sonani
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388 315, India
- Małopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Aleksander W Roszak
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Haijun Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388 315, India.
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
69
|
Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. Annu Rev Microbiol 2020; 73:407-433. [PMID: 31500538 DOI: 10.1146/annurev-micro-020518-115738] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatic acclimation (CA) encompasses a diverse set of molecular processes that involve the ability of cyanobacterial cells to sense ambient light colors and use this information to optimize photosynthetic light harvesting. The six known types of CA, which we propose naming CA1 through CA6, use a range of molecular mechanisms that likely evolved independently in distantly related lineages of the Cyanobacteria phylum. Together, these processes sense and respond to the majority of the photosynthetically relevant solar spectrum, suggesting that CA provides fitness advantages across a broad range of light color niches. The recent discoveries of several new CA types suggest that additional CA systems involving additional light colors and molecular mechanisms will be revealed in coming years. Here we provide a comprehensive overview of the currently known types of CA and summarize the molecular details that underpin CA regulation.
Collapse
Affiliation(s)
- Joseph E Sanfilippo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA;
| | - Laurence Garczarek
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - Frédéric Partensky
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
70
|
Wahadoszamen M, Krüger TPJ, Ara AM, van Grondelle R, Gwizdala M. Charge transfer states in phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148187. [PMID: 32173383 DOI: 10.1016/j.bbabio.2020.148187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Phycobilisomes (PBs) absorb light and supply downstream photosynthetic processes with excitation energy in many cyanobacteria and algae. In response to a sudden increase in light intensity, excess excitation energy is photoprotectively dissipated in PBs by means of the orange carotenoid protein (OCP)-related mechanism or via a light-activated intrinsic decay channel. Recently, we have identified that both mechanisms are associated with far-red emission states. Here, we investigate the far-red states involved with the light-induced intrinsic mechanism by exploring the energy landscape and electro-optical properties of the pigments in PBs. While Stark spectroscopy showed that the far-red states in PBs exhibit a strong charge-transfer (CT) character at cryogenic temperatures, single molecule spectroscopy revealed that CT states should also be present at room temperature. Owing to the strong environmental sensitivity of CT states, the knowledge gained from this study may contribute to the design of a new generation of fluorescence markers.
Collapse
Affiliation(s)
- Md Wahadoszamen
- Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa
| | - Anjue Mane Ara
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Rienk van Grondelle
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa; Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
71
|
Luimstra VM, Verspagen JMH, Xu T, Schuurmans JM, Huisman J. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies. Ecology 2020; 101:e02951. [PMID: 31840230 PMCID: PMC7079016 DOI: 10.1002/ecy.2951] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022]
Abstract
The color of many lakes and seas is changing, which is likely to affect the species composition of freshwater and marine phytoplankton communities. For example, cyanobacteria with phycobilisomes as light-harvesting antennae can effectively utilize green or orange-red light. However, recent studies show that they use blue light much less efficiently than phytoplankton species with chlorophyll-based light-harvesting complexes, even though both phytoplankton groups may absorb blue light to a similar extent. Can we advance ecological theory to predict how these differences in light-harvesting strategy affect competition between phytoplankton species? Here, we develop a new resource competition model in which the absorption and utilization efficiency of different colors of light are varied independently. The model was parameterized using monoculture experiments with a freshwater cyanobacterium and green alga, as representatives of phytoplankton with phycobilisome-based vs. chlorophyll-based light-harvesting antennae. The parameterized model was subsequently tested in a series of competition experiments. In agreement with the model predictions, the green alga won the competition in blue light whereas the cyanobacterium won in red light, irrespective of the initial relative abundances of the species. These results are in line with observed changes in phytoplankton community structure in response to lake brownification. Similarly, in marine waters, the model predicts dominance of Prochlorococcus with chlorophyll-based light-harvesting complexes in blue light but dominance of Synechococcus with phycobilisomes in green light, with a broad range of coexistence in between. These predictions agree well with the known biogeographical distributions of these two highly abundant marine taxa. Our results offer a novel trait-based approach to understand and predict competition between phytoplankton species with different photosynthetic pigments and light-harvesting strategies.
Collapse
Affiliation(s)
- Veerle M. Luimstra
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
- WetsusEuropean Centre of Excellence for Sustainable Water TechnologyOostergoweg 9Leeuwarden8911 MAThe Netherlands
| | - Jolanda M. H. Verspagen
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - Tianshuo Xu
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - J. Merijn Schuurmans
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| |
Collapse
|
72
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
73
|
Effects of Cadmium on Bioaccumulation, Bioabsorption, and Photosynthesis in Sarcodia suiae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041294. [PMID: 32085376 PMCID: PMC7068516 DOI: 10.3390/ijerph17041294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022]
Abstract
This study investigated the changes in bioaccumulation, bioabsorption, photosynthesis rate, respiration rate, and photosynthetic pigments (phycoerythrin, phycocyanin, and allophycocyanin) of Sarcodia suiae following cadmium exposure within 24 h. The bioabsorption was significantly higher than the bioaccumulation at all cadmium levels (p < 0.05). The ratios of bioabsorption/bioaccumulation in light and dark bottles were 2.17 and 1.74, respectively, when S. suiae was exposed to 5 Cd2+ mg/L. The chlorophyll a (Chl-a) concentration, oxygen evolution rate (photosynthetic efficiency), and oxygen consumption rate (respiratory efficiency) decreased with increasing bioaccumulation and ambient cadmium levels. The levels of bioaccumulation and bioabsorption in light environments were significantly higher than those in dark environments (p < 0.05). In addition, the ratios of phycoerythrin (PE)/Chl-a, phycocyanin (PC)/Chl-a, and allophycocyanin (APC)/Chl-a were also higher in light bottles compared to dark bottles at all ambient cadmium levels. These results indicated that the photosynthesis of seaweed will increase bioaccumulation and bioabsorption in a cadmium environment.
Collapse
|
74
|
Miyake K, Fushimi K, Kashimoto T, Maeda K, Ni-Ni-Win, Kimura H, Sugishima M, Ikeuchi M, Narikawa R. Functional diversification of two bilin reductases for light perception and harvesting in unique cyanobacterium Acaryochloris marina MBIC 11017. FEBS J 2020; 287:4016-4031. [PMID: 31995844 DOI: 10.1111/febs.15230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Bilin pigments play important roles for both light perception and harvesting in cyanobacteria by binding to cyanobacteriochromes (CBCRs) and phycobilisomes (PBS), respectively. Among various cyanobacteria, Acaryochloris marina MBIC 11017 (A. marina 11017) exceptionally uses chlorophyll d as the main photosynthetic pigment absorbing longer wavelength light than the canonical pigment, chlorophyll a, indicating existence of a system to sense longer wavelength light than others. On the other hand, A. marina 11017 has the PBS apparatus to harvest short-wavelength orange light, similar to most cyanobacteria. Thus, A. marina 11017 might sense longer wavelength light and harvest shorter wavelength light by using bilin pigments. Phycocyanobilin (PCB) is the main bilin pigment of both systems. Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes PCB synthesis from biliverdin via the intermediate 181 ,182 -dihydrobiliverdin (181 ,182 -DHBV), resulting in the stepwise shortening of the absorbing wavelengths. In this study, we found that A. marina 11017 exceptionally encodes two PcyA homologs, AmPcyAc and AmPcyAp. AmPcyAc is encoded on the main chromosome with most photoreceptor genes, whereas AmPcyAp is encoded on a plasmid with PBS-related genes. High accumulation of 181 ,182 -DHBV for extended periods was observed during the reaction catalyzed by AmPcyAc, whereas 181 ,182 -DHBV was transiently accumulated for a short period during the reaction catalyzed by AmPcyAp. CBCRs could sense longer wavelength far-red light through 181 ,182 -DHBV incorporation, whereas PBS could only harvest orange light through PCB incorporation, suggesting functional diversification of PcyA as AmPcyAc and AmPcyAp to provide 181 ,182 -DHBV and PCB to the light perception and harvesting systems, respectively.
Collapse
Affiliation(s)
- Keita Miyake
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Keiji Fushimi
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Tomonori Kashimoto
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Kaisei Maeda
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Ni-Ni-Win
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Hiroyuki Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Japan
| | - Masahiko Ikeuchi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Rei Narikawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
75
|
Slonimskiy YB, Maksimov EG, Lukashev EP, Moldenhauer M, Friedrich T, Sluchanko NN. Engineering the photoactive orange carotenoid protein with redox-controllable structural dynamics and photoprotective function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148174. [PMID: 32059843 DOI: 10.1016/j.bbabio.2020.148174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Photosynthesis requires various photoprotective mechanisms for survival of organisms in high light. In cyanobacteria exposed to high light, the Orange Carotenoid Protein (OCP) is reversibly photoswitched from the orange (OCPO) to the red (OCPR) form, the latter binds to the antenna (phycobilisomes, PBs) and quenches its overexcitation. OCPR accumulation implicates restructuring of a compact dark-adapted OCPO state including detachment of the N-terminal extension (NTE) and separation of protein domains, which is reversed by interaction with the Fluorescence Recovery Protein (FRP). OCP phototransformation supposedly occurs via an intermediate characterized by an OCPR-like absorption spectrum and an OCPO-like protein structure, but the hierarchy of steps remains debatable. Here, we devise and analyze an OCP variant with the NTE trapped on the C-terminal domain (CTD) via an engineered disulfide bridge (OCPCC). NTE trapping preserves OCP photocycling within the compact protein structure but precludes functional interaction with PBs and especially FRP, which is completely restored upon reduction of the disulfide bridge. Non-interacting with the dark-adapted oxidized OCPCC, FRP binds reduced OCPCC nearly as efficiently as OCPO devoid of the NTE, suggesting that the low-affinity FRP binding to OCPO is realized via NTE displacement. The low efficiency of excitation energy transfer in complexes between PBs and oxidized OCPCC indicates that OCPCC binds to PBs in an orientation suboptimal for quenching PBs fluorescence. Our approach supports the presence of the OCPR-like intermediate in the OCP photocycle and shows effective uncoupling of spectral changes from functional OCP photoactivation, enabling redox control of its structural dynamics and function.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biochemistry, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Eugene G Maksimov
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Evgeny P Lukashev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Nikolai N Sluchanko
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| |
Collapse
|
76
|
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 2020; 17:37-50. [PMID: 30410070 DOI: 10.1038/s41579-018-0110-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
77
|
Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 2020; 19:585-603. [DOI: 10.1039/c9pp00451c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical evaluation of “new” and “old” models of cyanobacterial state transitions. Phycobilisome and membrane contributions to this mechanism are addressed. The signaling transduction pathway is discussed.
Collapse
Affiliation(s)
- Pablo I. Calzadilla
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| | - Diana Kirilovsky
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| |
Collapse
|
78
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
79
|
Fan G, Zhou J, Zheng X, Luo J, Hong L, Qu F. Fast photocatalytic inactivation of Microcystis aeruginosa by metal-organic frameworks under visible light. CHEMOSPHERE 2020; 239:124721. [PMID: 31493752 DOI: 10.1016/j.chemosphere.2019.124721] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
In this work, Metal-organic Frameworks (MOFs) were applied to inactivate algae under visible light with low doses. Five MOFs with different compositions (Zn and Fe; carboxylates or imidazolates) were successfully synthesized and characterized by XRD, SEM and UV-vis. The effects of MOFs on Microcystis aeruginosa were evaluated with regard to morphology characteristics, physiological activity, cell integrity and pigment degradation. The results indicated that Ag/AgCl@ZIF-8 outperformed MOF-235, ZIF-8, Bi2WO6/MIL-100(Fe) and BiOBr/MOF-5 in the degradation of chlorophyll a at the dose of 10 mg L-1. After 6 h of irradiation, 93.1% of Microcystis aeruginosa died and was unable to regrow and reproduce, which was demonstrated by changes in cell morphology, damage of cell membrane integrity and antioxidant enzyme system. Besides, the intracellular organic matter (IOM) and extracellular organic matter (EOM) were proven to be efficiently removed by MOF-assisted photocatalytic inactivation. Superoxide radical (O2·-) was demonstrated to be the major reactive oxygen species. A probable mechanism was proposed that the electrons in the valence band of Ag/AgCl@ZIF-8 transfer into the conduction band under irradiation to produce O2·- which inactivated the algae cells. Furthermore, Ag/AgCl@ZIF-8 can effectively remove Microcystis aeruginosa under sunlight and is of great application prospects for algae removal in real water bodies.
Collapse
Affiliation(s)
- Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, PR China.
| | - Jinjin Zhou
- College of Civil Engineering, Fuzhou University, 350116, Fujian, PR China
| | - Xiaomei Zheng
- College of Civil Engineering, Fuzhou University, 350116, Fujian, PR China
| | - Jing Luo
- College of Civil Engineering, Fuzhou University, 350116, Fujian, PR China
| | - Liang Hong
- College of Civil Engineering, Fuzhou University, 350116, Fujian, PR China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
80
|
Nadel O, Rozenberg A, Flores-Uribe J, Larom S, Schwarz R, Béjà O. An uncultured marine cyanophage encodes an active phycobilisome proteolysis adaptor protein NblA. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:848-854. [PMID: 31600852 DOI: 10.1111/1758-2229.12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes (PBS) are large water-soluble membrane-associated complexes in cyanobacteria and some chloroplasts that serve as light-harvesting antennae for the photosynthetic apparatus. When deplete of nitrogen or sulphur, cyanobacteria readily degrade their phycobilisomes allowing the cell to replenish these vanishing nutrients. The key regulator in the degradation process is NblA, a small protein (∼6 kDa), which recruits proteases to the PBS. It was discovered previously that not only do cyanobacteria possess nblA genes but also that they are encoded by genomes of some freshwater cyanophages. A recent study, using assemblies from oceanic metagenomes, revealed genomes of a novel uncultured marine cyanophage lineage, representatives of which contain genes coding for the PBS degradation protein. Here, we examined the functionality of nblA-like genes from these marine cyanophages by testing them in a freshwater model cyanobacterial nblA knockout. One of the viral NblA variants could complement the non-bleaching phenotype and restore PBS degradation. Our findings reveal a functional NblA from a novel marine cyanophage lineage. Furthermore, we shed new light on the distribution of nblA genes in cyanobacteria and cyanophages.
Collapse
Affiliation(s)
- Omer Nadel
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Shirley Larom
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
81
|
Green BR. What Happened to the Phycobilisome? Biomolecules 2019; 9:biom9110748. [PMID: 31752285 PMCID: PMC6921069 DOI: 10.3390/biom9110748] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
The phycobilisome (PBS) is the major light-harvesting complex of photosynthesis in cyanobacteria, red algae, and glaucophyte algae. In spite of the fact that it is very well structured to absorb light and transfer it efficiently to photosynthetic reaction centers, it has been completely lost in the green algae and plants. It is difficult to see how selection alone could account for such a major loss. An alternative scenario takes into account the role of chance, enabled by (contingent on) the evolution of an alternative antenna system early in the diversification of the three lineages from the first photosynthetic eukaryote.
Collapse
Affiliation(s)
- Beverley R Green
- Botany Department, University of British Columbia, Vancouver, BC V6N 3T7, Canada
| |
Collapse
|
82
|
Fuenzalida Werner JP, Mishra K, Huang Y, Vetschera P, Glasl S, Chmyrov A, Richter K, Ntziachristos V, Stiel AC. Structure-Based Mutagenesis of Phycobiliprotein smURFP for Optoacoustic Imaging. ACS Chem Biol 2019; 14:1896-1903. [PMID: 31389680 DOI: 10.1021/acschembio.9b00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo- or optoacoustics (OA) imaging is increasingly being used as a non-invasive imaging method that can simultaneously reveal structure and function in deep tissue. However, the most frequent transgenic OA labels are current fluorescent proteins that are not optimized for OA imaging. Thus, they lack OA signal strength, and their absorption maxima are positioned at short wavelengths, thus giving small penetration depths and strong background signals. Here, we apply insights from our recent determination of the structure of the fluorescent phycobiliprotein smURFP to mutate a range of residues to promote the nonradiative decay pathway that generates the OA signal. We identified hydrophobic and aromatic substitutions within the chromophore-binding pocket that substantially increase the intensity of the OA signal and red-shift the absorption. Our results demonstrate the feasibility of structure-based mutagenesis to repurpose fluorescent probes for OA imaging, and they may provide structure-function insights for de novo engineering of transgenic OA probes.
Collapse
Affiliation(s)
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Yuanhui Huang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Paul Vetschera
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Andriy Chmyrov
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, D-81675 Munich, Germany
| | - Klaus Richter
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, D-81675 Munich, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
83
|
Alcorta J, Vergara-Barros P, Antonaru LA, Alcamán-Arias ME, Nürnberg DJ, Díez B. Fischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria. Extremophiles 2019; 23:635-647. [PMID: 31512055 DOI: 10.1007/s00792-019-01125-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
Abstract
The true-branching cyanobacterium Fischerella thermalis (also known as Mastigocladus laminosus) is widely distributed in hot springs around the world. Morphologically, it has been described as early as 1837. However, its taxonomic placement remains controversial. F. thermalis belongs to the same genus as mesophilic Fischerella species but forms a monophyletic clade of thermophilic Fischerella strains and sequences from hot springs. Their recent divergence from freshwater or soil true-branching species and the ongoing process of specialization inside the thermal gradient make them an interesting evolutionary model to study. F. thermalis is one of the most complex prokaryotes. It forms a cellular network in which the main trichome and branches exchange metabolites and regulators via septal junctions. This species can adapt to a variety of environmental conditions, with its photosynthetic apparatus remaining active in a temperature range from 15 to 58 °C. Together with its nitrogen-fixing ability, this allows it to dominate in hot spring microbial mats and contribute significantly to the de novo carbon and nitrogen input. Here, we review the current knowledge on the taxonomy and distribution of F. thermalis, its morphological complexity, and its physiological adaptations to an extreme environment.
Collapse
Affiliation(s)
- Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile
| | - Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile
| | - Laura A Antonaru
- Department of Life Science, Imperial College, London, SW7 2AZ, UK
| | - María E Alcamán-Arias
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile.,Department of Oceanography, University of Concepcion, Concepción, Chile.,Center for Climate and Resilience Research (CR)2, Santiago, Chile
| | - Dennis J Nürnberg
- Department of Life Science, Imperial College, London, SW7 2AZ, UK.,Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile. .,Center for Climate and Resilience Research (CR)2, Santiago, Chile.
| |
Collapse
|
84
|
Maksimov EG, Li WJ, Protasova EA, Friedrich T, Ge B, Qin S, Sluchanko NN. Hybrid coupling of R-phycoerythrin and the orange carotenoid protein supports the FRET-based mechanism of cyanobacterial photoprotection. Biochem Biophys Res Commun 2019; 516:699-704. [DOI: 10.1016/j.bbrc.2019.06.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
|
85
|
Leney AC. Subunit pI Can Influence Protein Complex Dissociation Characteristics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1389-1395. [PMID: 31077092 PMCID: PMC6669198 DOI: 10.1007/s13361-019-02198-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
Mass spectrometry is frequently used to determine protein complex topology. By combining in-solution and gas-phase dissociation measurements, information can be indirectly inferred about the original composition of the protein complex. Although the mechanisms behind gas-phase complex dissociation are becoming more established, protein complex dissociation is not always predictable. Here, we looked into the effect of the protein subunits pI on complex dissociation. We chose two structurally similar, hexameric protein complexes that consist of a ring of alternating alpha and beta subunits. For one complex, allophycocyanin, the alpha and beta subunits are structurally similar, almost identical in mass, but have distinct pIs. In contrast, the other complex, phycoerythrin, is structural similar to allophycocyanin, yet the subunits have identical pIs. As predicted based on the structural arrangement, dissociation of phycoerythrin resulted in the observation of both the alpha and beta monomeric subunits in the mass spectrometer. However, for allophycocyanin, the results differed dramatically, with only the alpha monomeric subunit being detected upon gas-phase dissociation. Together, the results highlighted the importance of considering the isoelectric points of individual subunits within a protein complex when using tandem mass spectrometry data to elucidate protein complex topology.
Collapse
Affiliation(s)
- Aneika C Leney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
86
|
Adir N, Bar-Zvi S, Harris D. The amazing phycobilisome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148047. [PMID: 31306623 DOI: 10.1016/j.bbabio.2019.07.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Cyanobacteria and red-algae share a common light-harvesting complex which is different than all other complexes that serve as photosynthetic antennas - the Phycobilisome (PBS). The PBS is found attached to the stromal side of thylakoid membranes, filling up most of the gap between individual thylakoids. The PBS self assembles from similar homologous protein units that are soluble and contain conserved cysteine residues that covalently bind the light absorbing chromophores, linear tetra-pyrroles. Using similar construction principles, the PBS can be as large as 16.8 MDa (68×45×39nm), as small as 1.2 MDa (24 × 11.5 × 11.5 nm), and in some unique cases smaller still. The PBS can absorb light between 450 nm to 650 nm and in some cases beyond 700 nm, depending on the species, its composition and assembly. In this review, we will present new observations and structures that expand our understanding of the distinctive properties that make the PBS an amazing light harvesting system. At the end we will suggest why the PBS, for all of its excellent properties, was discarded by photosynthetic organisms that arose later in evolution such as green algae and higher plants.
Collapse
Affiliation(s)
- Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Shira Bar-Zvi
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dvir Harris
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
87
|
Sonani RR, Rastogi RP, Patel SN, Chaubey MG, Singh NK, Gupta GD, Kumar V, Madamwar D. Phylogenetic and crystallographic analysis of Nostoc phycocyanin having blue-shifted spectral properties. Sci Rep 2019; 9:9863. [PMID: 31285455 PMCID: PMC6614406 DOI: 10.1038/s41598-019-46288-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 01/22/2023] Open
Abstract
The distinct sequence feature and spectral blue-shift (~10 nm) of phycocyanin, isolated from Nostoc sp. R76DM (N-PC), were investigated by phylogenetic and crystallographic analyses. Twelve conserved substitutions in N-PC sequence were found distributed unequally among α- and β-subunit (3 in α- and 9 in β-subunit). The phylogenetic analysis suggested that molecular evolution of α- and β-subunit of Nostoc-phycocyanin is faster than evolution of Nostoc-species. The divergence events seem to have occurred more frequently in β-subunit, compared to α-subunit (relative divergence, 7.38 for α-subunit and 9.66 for β-subunit). Crystal structure of N-PC was solved at 2.35 Å resolution to reasonable R-factors (Rwork/RFree = 0.199/0.248). Substitutions congregate near interface of two αβ-monomer in N-PC trimer and are of compensatory nature. Six of the substitutions in β-subunit may be involved in maintaining topology of β-subunit, one in inter-monomer interaction and one in interaction with linker-protein. The β153Cys-attached chromophore adopts high-energy conformational state resulting due to reduced coplanarity of B- and C-pyrrole rings. Distortion in chromophore conformation can result in blue-shift in N-PC spectral properties. N-PC showed significant in-vitro and in-vivo antioxidant activity comparable with other phycocyanin. Since Nostoc-species constitute a distinct phylogenetic clade, the present structure would provide a better template to build a model for phycocyanins of these species.
Collapse
Affiliation(s)
- Ravi R Sonani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rajesh Prasad Rastogi
- Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, New Delhi, 110003, India
| | - Stuti Nareshkumar Patel
- Post-Graduate Department of Biosciences, Satellite Campus, Sardar Patel University, Bakrol, Anand, 388 315, Gujarat, India
| | - Mukesh Ghanshyam Chaubey
- Shri A. N. Patel P. G. Institute of Science and Research, Sardar Patel University, Anand, Gujarat, 388001, India
| | - Niraj Kumar Singh
- Shri A. N. Patel P. G. Institute of Science and Research, Sardar Patel University, Anand, Gujarat, 388001, India
| | - Gagan D Gupta
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Satellite Campus, Sardar Patel University, Bakrol, Anand, 388 315, Gujarat, India.
| |
Collapse
|
88
|
Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties. Sci Rep 2019; 9:9474. [PMID: 31263160 PMCID: PMC6603007 DOI: 10.1038/s41598-019-45905-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
C-phycocyanin (C-PC) pigment, as a natural blue dye, has particular applications in various fields. It is a water-soluble protein which has anticancer, antioxidant and anti-inflammatory properties. Here, we introduce an efficient procedure for the purification of C-PC pigment, followed by conducting a comprehensive investigation of its cytotoxic effects on human breast cancer (MCF-7) cells and the underlying mechanisms. A novel four-step purification procedure including the adsorption of impurities with chitosan, activated charcoal, ammonium sulfate precipitation, and ion exchange chromatography was employed, achieving a high purity form of C-PC with purity index (PI) of 5.26. SDS-PAGE analysis showed the purified C-PC with two discrete bands, subunit α (17 kD) and β (20 kD), as confirmed its identity by Native-PAGE. A highly purified C-PC was employed to evaluate its anticancer activity and underlying molecular mechanisms of action. The inhibitory effects of highly purified C-PC on the proliferation of human breast cancer cells (MCF-7) have detected by MTT assay. The IC50 values for 24, 48, and 72 hours of exposure to C-PC were determined to be 5.92, 5.66, and 4.52 μg/μl, respectively. Flow cytometric analysis of cells treated with C-PC, by Annexin V/PI double staining, demonstrated to induce MCF-7 cells apoptosis. Also, the results obtained from propidium iodide (PI) staining showed that MCF-7 cells treated with 5.92 μg/μl C-PC for 24 h would arrest at the G2 phase and 5.66 and 4.52 μg/μl C-PC for 48 and 72 h could induce cell cycle arrest at both G2 and S phases. The oxidative damage and mitochondrial dysfunction were evaluated to determine the possible pathways involved in C-PC-induced apoptosis in MCF-7 cells. Our findings clearly indicated that the treatment of MCF-7 cells with C-PC (IC50 for 24 h) increased the production of reactive oxygen species (ROS). Consequently, an increase in the lipid peroxidation (LPO) level and a reduction in the ATP level, mitochondrial membrane potential (MMP), glutathione (GSH) and its oxidized form (GSSG), occurred over time. The reduced expression levels of anti-apoptotic proteins, Bcl2 and Stat3, plus cell cycle regulator protein, Cyclin D1, using Real-Time PCR confirm that the C-PC-induced death of MCF-7 human breast cancer cells occurred through the mitochondrial pathway of apoptosis. Collectively, the analyses presented here suggest that C-PC has the potential so that to develop it as a chemotherapeutic anticancer drug.
Collapse
|
89
|
Ma Y, He L, Huan L, Lu X, Wang G. Characterization of a high-growth-rate mutant strain of Pyropia yezoensis using physiology measurement and transcriptome analysis. JOURNAL OF PHYCOLOGY 2019; 55:651-662. [PMID: 30721534 DOI: 10.1111/jpy.12842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
A mutant strain of Pyropia yezoensis, strain E, was isolated from the free-living conchocelis of a pure strain (NA) treated with ethyl methane sulfonate. The incremental quantities of young strain E blades were higher than those of NA after 14 d of cultivation, indicating that young blades of mutant strain E released more archeospores. The mean length and weight of large E blades were both over three times greater than those of NA after 4 weeks of cultivation. The photosynthetic parameters (Fv/Fm, Y[I], Y[II], and O2 evolution rate) and pigment contents (including phycoerythrin and phycocyanin) of strain E blades were higher than those of NA (P < 0.05). The cellular respiratory rate of strain E blades was lower than that of NA (P < 0.05). In order to investigate the causes of changes in strain E blades, total RNA in strain E and NA blades were sequenced using the Illumina Hiseq platform. Compared with NA, 1,549 unigenes were selected in strain E including 657 up-regulated and 892 down-regulated genes. According to the physiology measurement and differentially expressed genes analysis, cell respiration in strain E might decrease, whereas anabolic-like photosynthesis and protein biosynthesis might increase compared with NA. This means substance accumulation might be greater than decomposition in strain E. This might explain why strain E blades showed improved growth compared with NA. In addition, several genes related to stress resistance were up-regulated in strain E indicating that strain E might have a higher stress resistance. The sequencing dataset may be conducive to Pyropia yezoensis molecular breeding research.
Collapse
Affiliation(s)
- Yingchao Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Linwen He
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Li Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Xiaoping Lu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| |
Collapse
|
90
|
Niedzwiedzki DM, Liu H, Blankenship RE. Excitation Energy Transfer in Intact CpcL-Phycobilisomes from Synechocystis sp. PCC 6803. J Phys Chem B 2019; 123:4695-4704. [PMID: 31042029 DOI: 10.1021/acs.jpcb.9b02696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work highlights spectroscopic studies performed on a CpcL-phycobilisome (CpcL-PBS) light-harvesting complex from cyanobacterium Synechocystis sp. PCC 6803 ΔAB strain. The CpcL-PBS antenna has the form of a single rod made up exclusively of phycocyanins (PCs), a structure that is much simpler compared to the better known and broadly studied CpcG-PBS that consists of a cylindrical core with a set of protruding PC rods. Steady-state and time-resolved fluorescence studies demonstrated that the CpcL-PBS antenna comprises two spectral forms of phycocyanobilin (PCB), one emitting at 650 nm and a second emitting at 670 nm. The latter one presumably serves as the so-called terminal energy emitter without allophycocyanin. Studies of excitation energy migration between those two PCB forms demonstrated that even small buffer alterations, commonly applied by spectroscopists to tweak buffers to be more friendly for a certain type of spectroscopy, may lead to very different experimental outcomes and, in consequence, to differences in models of excitation migration pathway in this antenna complex.
Collapse
|
91
|
Hirose Y, Chihong S, Watanabe M, Yonekawa C, Murata K, Ikeuchi M, Eki T. Diverse Chromatic Acclimation Processes Regulating Phycoerythrocyanin and Rod-Shaped Phycobilisome in Cyanobacteria. MOLECULAR PLANT 2019; 12:715-725. [PMID: 30818037 DOI: 10.1016/j.molp.2019.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Cyanobacteria have evolved various photoacclimation processes to perform oxygenic photosynthesis under different light environments. Chromatic acclimation (CA) is a widely recognized and ecologically important type of photoacclimation, whereby cyanobacteria alter the absorbing light colors of a supermolecular antenna complex called the phycobilisome. To date, several CA variants that regulate the green-absorbing phycoerythrin (PE) and/or the red-absorbing phycocyanin (PC) within the hemi-discoidal form of phycobilisome have been characterized. In this study, we identified a unique CA regulatory gene cluster encoding yellow-green-absorbing phycoerythrocyanin (PEC) and a rod-membrane linker protein (CpcL) for the rod-shaped form of phycobilisome. Using the cyanobacterium Leptolyngbya sp. PCC 6406, we revealed novel CA variants regulating PEC (CA7) and the rod-shaped phycobilisome (CA0), which maximize yellow-green light-harvesting capacity and balance the excitation of photosystems, respectively. Analysis of the distribution of CA gene clusters in 445 cyanobacteria genomes revealed eight CA variants responding to green and red light, which are classified based on the presence of PEC, PE, cpcL, and CA photosensor genes. Phylogenetic analysis further suggested that the emergence of CA7 was a single event and preceded that of heterocystous strains, whereas the acquisition of CA0 occurred multiple times. Taken together, these results offer novel insights into the diversity and evolution of the complex cyanobacterial photoacclimation mechanisms.
Collapse
Affiliation(s)
- Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan.
| | - Song Chihong
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Mai Watanabe
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Chinatsu Yonekawa
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihiko Eki
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
92
|
Liu H, Weisz DA, Zhang MM, Cheng M, Zhang B, Zhang H, Gerstenecker GS, Pakrasi HB, Gross ML, Blankenship RE. Phycobilisomes Harbor FNR L in Cyanobacteria. mBio 2019; 10:e00669-19. [PMID: 31015331 PMCID: PMC6479007 DOI: 10.1128/mbio.00669-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Cyanobacterial phycobilisomes (PBSs) are photosynthetic antenna complexes that harvest light energy and supply it to two reaction centers (RCs) where photochemistry starts. PBSs can be classified into two types, depending on the presence of allophycocyanin (APC): CpcG-PBS and CpcL-PBS. Because the accurate protein composition of CpcL-PBS remains unclear, we describe here its isolation and characterization from the cyanobacterium Synechocystis sp. strain 6803. We found that ferredoxin-NADP+ oxidoreductase (or FNRL), an enzyme involved in both cyclic electron transport and the terminal step of the electron transport chain in oxygenic photosynthesis, is tightly associated with CpcL-PBS as well as with CpcG-PBS. Room temperature and low-temperature fluorescence analyses show a red-shifted emission at 669 nm in CpcL-PBS as a terminal energy emitter without APC. SDS-PAGE and quantitative mass spectrometry reveal an increased content of FNRL and CpcC2, a rod linker protein, in CpcL-PBS compared to that of CpcG-PBS rods, indicative of an elongated CpcL-PBS rod length and its potential functional differences from CpcG-PBS. Furthermore, we combined isotope-encoded cross-linking mass spectrometry with computational protein structure predictions and structural modeling to produce an FNRL-PBS binding model that is supported by two cross-links between K69 of FNRL and the N terminus of CpcB, one component in PBS, in both CpcG-PBS and CpcL-PBS (cross-link 1), and between the N termini of FNRL and CpcB (cross-link 2). Our data provide a novel functional assembly form of phycobiliproteins and a molecular-level description of the close association of FNRL with phycocyanin in both CpcG-PBS and CpcL-PBS.IMPORTANCE Cyanobacterial light-harvesting complex PBSs are essential for photochemistry in light reactions and for balancing energy flow to carbon fixation in the form of ATP and NADPH. We isolated a new type of PBS without an allophycocyanin core (i.e., CpcL-PBS). CpcL-PBS contains both a spectral red-shifted chromophore, enabling efficient energy transfer to chlorophyll molecules in the reaction centers, and an increased FNRL content with various rod lengths. Identification of a close association of FNRL with both CpcG-PBS and CpcL-PBS brings new insight to its regulatory role for fine-tuning light energy transfer and carbon fixation through both noncyclic and cyclic electron transport.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel A Weisz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mengru M Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ming Cheng
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hao Zhang
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gary S Gerstenecker
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Photosynthetic Antenna Research Center (PARC), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
93
|
Kaldmäe M, Sahin C, Saluri M, Marklund EG, Landreh M. A strategy for the identification of protein architectures directly from ion mobility mass spectrometry data reveals stabilizing subunit interactions in light harvesting complexes. Protein Sci 2019; 28:1024-1030. [PMID: 30927297 PMCID: PMC6511732 DOI: 10.1002/pro.3609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/04/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
Biotechnological applications of protein complexes require detailed information about their structure and composition, which can be challenging to obtain for proteins from natural sources. Prominent examples are the ring-shaped phycoerythrin (PE) and phycocyanin (PC) complexes isolated from the light-harvesting antennae of red algae and cyanobacteria. Despite their widespread use as fluorescent probes in biotechnology and medicine, the structures and interactions of their noncrystallizable central subunits are largely unknown. Here, we employ ion mobility mass spectrometry to reveal varying stabilities of the PC and PE complexes and identify their closest architectural homologues among all protein assemblies in the Protein Data Bank (PDB). Our results suggest that the central subunits of PC and PE complexes, although absent from the crystal structures, may be crucial for their stability, and thus of unexpected importance for their biotechnological applications.
Collapse
Affiliation(s)
- Margit Kaldmäe
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, SE-171 65, Stockholm, Sweden
| | - Cagla Sahin
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, SE-171 65, Stockholm, Sweden
| | - Mihkel Saluri
- School of Natural Sciences and Health, Tallinn University, Narva mnt 25, 10120, Tallinn, Estonia
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-751 23, Uppsala, Sweden
| | - Michael Landreh
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, SE-171 65, Stockholm, Sweden
| |
Collapse
|
94
|
Niedzwiedzki DM, Bar-Zvi S, Blankenship RE, Adir N. Mapping the excitation energy migration pathways in phycobilisomes from the cyanobacterium Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:286-296. [PMID: 30703363 DOI: 10.1016/j.bbabio.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/17/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
|
95
|
Qin X, Pi X, Wang W, Han G, Zhu L, Liu M, Cheng L, Shen JR, Kuang T, Sui SF. Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. NATURE PLANTS 2019; 5:263-272. [PMID: 30850820 DOI: 10.1038/s41477-019-0379-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Photosystem I (PSI) is a highly efficient natural light-energy converter, and has diverse light-harvesting antennas associated with its core in different photosynthetic organisms. In green algae, an extremely large light-harvesting complex I (LHCI) captures and transfers energy to the PSI core. Here, we report the structure of PSI-LHCI from a green alga Bryopsis corticulans at 3.49 Å resolution, obtained by single-particle cryo-electron microscopy, which revealed 13 core subunits including subunits characteristic of both prokaryotes and eukaryotes, and 10 light-harvesting complex a (Lhca) antennas that form a double semi-ring and an additional Lhca dimer, including a novel four-transmembrane-helix Lhca. In total, 244 chlorophylls were identified, some of which were located at key positions for the fast energy transfer. These results provide a firm structural basis for unravelling the mechanisms of light-energy harvesting, transfer and quenching in the green algal PSI-LHCI, and important clues as to how PSI-LHCI has changed during evolution.
Collapse
Affiliation(s)
- Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiong Pi
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lixia Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Mingmei Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Linpeng Cheng
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
96
|
Zlenko DV, Elanskaya IV, Lukashev EP, Bolychevtseva YV, Suzina NE, Pojidaeva ES, Kononova IA, Loktyushkin AV, Stadnichuk IN. Role of the PB-loop in ApcE and phycobilisome core function in cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:155-166. [DOI: 10.1016/j.bbabio.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 11/30/2022]
|
97
|
Capretti A, Ringsmuth AK, van Velzen JF, Rosnik A, Croce R, Gregorkiewicz T. Nanophotonics of higher-plant photosynthetic membranes. LIGHT, SCIENCE & APPLICATIONS 2019; 8:5. [PMID: 30651980 PMCID: PMC6325066 DOI: 10.1038/s41377-018-0116-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 05/25/2023]
Abstract
The thylakoid membrane inside chloroplasts hosts the light-dependent reactions of photosynthesis. Its embedded protein complexes are responsible for light harvesting, excitation energy transfer, charge separation, and transport. In higher plants, when the illumination conditions vary, the membrane adapts its composition and nanoscale morphology, which is characterized by appressed and non-appressed regions known as grana and stroma lamellae, respectively. Here we investigate the nanophotonic regime of light propagation in chloroplasts of higher plants and identify novel mechanisms in the optical response of the thylakoid membrane. Our results indicate that the relative contributions of light scattering and absorption to the overall optical response of grana strongly depend on the concentration of the light-harvesting complexes. For the pigment concentrations typically found in chloroplasts, the two mechanisms have comparable strengths, and their relative value can be tuned by variations in the protein composition or in the granal diameter. Furthermore, we find that collective modes in ensembles of grana significantly increase light absorption at selected wavelengths, even in the presence of moderate biological disorder. Small variations in the granal separation or a large disorder can dismantle this collective response. We propose that chloroplasts use this mechanism as a strategy against dangerously high illumination conditions, triggering a transition to low-absorbing states. We conclude that the morphological separation of the thylakoid membrane in higher plants supports strong nanophotonic effects, which may be used by chloroplasts to regulate light absorption. This adaptive self-organization capability is of interest as a model for novel bioinspired optical materials for artificial photosynthesis, imaging, and sensing.
Collapse
Affiliation(s)
- A. Capretti
- Institute of Physics, University of Amsterdam, Amsterdam, Netherlands
| | - A. K. Ringsmuth
- Dep. Physics and Astronomy, VU University Amsterdam, Amsterdam, Netherlands
- Present Address: Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - J. F. van Velzen
- Institute of Physics, University of Amsterdam, Amsterdam, Netherlands
- Dep. Physics and Astronomy, VU University Amsterdam, Amsterdam, Netherlands
| | - A. Rosnik
- College of Chemistry, University of California, Berkeley, CA USA
| | - R. Croce
- Dep. Physics and Astronomy, VU University Amsterdam, Amsterdam, Netherlands
| | - T. Gregorkiewicz
- Institute of Physics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
98
|
Fuenzalida-Werner JP, Janowski R, Mishra K, Weidenfeld I, Niessing D, Ntziachristos V, Stiel AC. Crystal structure of a biliverdin-bound phycobiliprotein: Interdependence of oligomerization and chromophorylation. J Struct Biol 2018; 204:519-522. [PMID: 30287387 DOI: 10.1016/j.jsb.2018.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 11/28/2022]
Abstract
Small, ultra-red fluorescence protein (smURFP) introduces the non-native biliverdin (BV) chromophore to phycobiliproteins (PBPs), allowing them to be used as transgenic labels for in vivo mammalian imaging. Presently, no structural information exists for PBPs bound to the non-native BV chromophore, which limits the further development of smURFP and related proteins as imaging labels or indicators. Here we describe the first crystal structure of a PBP bound to BV. The structures of smURFP-Y56R with BV and smURFP-Y56F without BV reveal unique oligomerization interfaces different from those in wild-type PBPs bound to native chromophores. Our structures suggest that the oligomerization interface affects the BV binding site, creating a link between oligomerization and chromophorylation that we confirmed through site-directed mutagenesis and that may help guide efforts to improve the notorious chromophorylation of smURFP and other PBPs engineered to bind BV.
Collapse
Affiliation(s)
| | - Robert Janowski
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ina Weidenfeld
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Dierk Niessing
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging, Technische Universität München, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Technische Universität München, Munich, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
99
|
Radioprotective role of cyanobacterial phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:121-128. [PMID: 30465750 DOI: 10.1016/j.bbabio.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are thought to be responsible for pioneering dioxygen production and the so-called "Great Oxygenation Event" that determined the formation of the ozone layer and the ionosphere restricting ionizing radiation levels reaching our planet, which increased biological diversity but also abolished the necessity of radioprotection. We speculated that ancient protection mechanisms could still be present in cyanobacteria and studied the effect of ionizing radiation and space flight during the Foton-M4 mission on Synechocystis sp. PCC6803. Spectral and functional characteristics of photosynthetic membranes revealed numerous similarities of the effects of α-particles and space flight, which both interrupted excitation energy transfer from phycobilisomes to the photosystems and significantly reduced the concentration of phycobiliproteins. Although photosynthetic activity was severely suppressed, the effect was reversible, and the cells could rapidly recover from the stress. We suggest that the actual existence and the uncoupling of phycobilisomes may play a specific role not only in photo-, but also in radioprotection, which could be crucial for the early evolution of Life on Earth.
Collapse
|
100
|
Luimstra VM, Schuurmans JM, Verschoor AM, Hellingwerf KJ, Huisman J, Matthijs HCP. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. PHOTOSYNTHESIS RESEARCH 2018; 138:177-189. [PMID: 30027501 PMCID: PMC6208612 DOI: 10.1007/s11120-018-0561-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/12/2018] [Indexed: 05/29/2023]
Abstract
Several studies have described that cyanobacteria use blue light less efficiently for photosynthesis than most eukaryotic phototrophs, but comprehensive studies of this phenomenon are lacking. Here, we study the effect of blue (450 nm), orange (625 nm), and red (660 nm) light on growth of the model cyanobacterium Synechocystis sp. PCC 6803, the green alga Chlorella sorokiniana and other cyanobacteria containing phycocyanin or phycoerythrin. Our results demonstrate that specific growth rates of the cyanobacteria were similar in orange and red light, but much lower in blue light. Conversely, specific growth rates of the green alga C. sorokiniana were similar in blue and red light, but lower in orange light. Oxygen production rates of Synechocystis sp. PCC 6803 were five-fold lower in blue than in orange and red light at low light intensities but approached the same saturation level in all three colors at high light intensities. Measurements of 77 K fluorescence emission demonstrated a lower ratio of photosystem I to photosystem II (PSI:PSII ratio) and relatively more phycobilisomes associated with PSII (state 1) in blue light than in orange and red light. These results support the hypothesis that blue light, which is not absorbed by phycobilisomes, creates an imbalance between the two photosystems of cyanobacteria with an energy excess at PSI and a deficiency at the PSII-side of the photosynthetic electron transfer chain. Our results help to explain why phycobilisome-containing cyanobacteria use blue light less efficiently than species with chlorophyll-based light-harvesting antennae such as Prochlorococcus, green algae and terrestrial plants.
Collapse
Affiliation(s)
- Veerle M Luimstra
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - J Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Antonie M Verschoor
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
- KWR Watercycle Research Institute, PO Box 1072, 3430 BB, Nieuwegein, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands.
| | - Hans C P Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|