51
|
Role of amyloid-β CSF levels in cognitive deficit in MS. Clin Chim Acta 2015; 449:23-30. [DOI: 10.1016/j.cca.2015.01.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 11/18/2022]
|
52
|
Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background. Neural Plast 2015; 2015:307175. [PMID: 26229689 PMCID: PMC4503575 DOI: 10.1155/2015/307175] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/09/2015] [Accepted: 06/21/2015] [Indexed: 01/19/2023] Open
Abstract
Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets.
Collapse
|
53
|
Wischnewski M, Schutter DJLG. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimul 2015; 8:685-92. [PMID: 26014214 DOI: 10.1016/j.brs.2015.03.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/12/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In the past decade research has shown that continuous (cTBS) and intermittent theta burst stimulation (iTBS) alter neuronal excitability levels in the primary motor cortex. OBJECTIVE Quantitatively review the magnitude and time course on cortical excitability of cTBS and iTBS. METHODS Sixty-four TBS studies published between January 2005 and October 2014 were retrieved from the scientific search engine PubMED and included for analyses. The main inclusion criteria involved stimulation of the primary motor cortex in healthy volunteers with no motor practice prior to intervention and motor evoked potentials as primary outcome measure. RESULTS ITBS applied for 190 s significantly increases cortical excitability up to 60 min with a mean maximum potentiation of 35.54 ± 3.32%. CTBS applied for 40 s decreases cortical excitability up to 50 min with a mean maximum depression of -22.81 ± 2.86%, while cTBS applied for 20 s decreases cortical excitability (mean maximum -27.84 ± 4.15%) for 20 min. CONCLUSION The present findings offer normative insights into the magnitude and time course of TBS-induced changes in cortical excitability levels.
Collapse
Affiliation(s)
- Miles Wischnewski
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands.
| | - Dennis J L G Schutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands
| |
Collapse
|
54
|
Di Filippo M, de Iure A, Durante V, Gaetani L, Mancini A, Sarchielli P, Calabresi P. Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Brain Res 2014; 1621:205-13. [PMID: 25498984 DOI: 10.1016/j.brainres.2014.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 12/22/2022]
Abstract
Structural and functional neuronal plasticity could play a crucial role during the course of multiple sclerosis (MS). The immune system and the central nervous system (CNS) strictly interact in physiologic conditions and during inflammation to modulate neuroplasticity and in particular the ability of the synapses to undergo long-term changes in the efficacy of synaptic transmission, such as long-term potentiation (LTP). During MS, neuro-inflammation might deeply influence the ability of neuronal networks to express physiologic plasticity, reducing the plastic reserve of the brain, with a negative impact on symptoms progression and cognitive performances. In this manuscript we review the evidence on synaptic plasticity alterations in experimental autoimmune encephalomyelitis (EAE), the most diffuse and widely utilized experimental model of MS, together with their potential underlying mechanisms and clinical relevance. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy.
| | - Antonio de Iure
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Valentina Durante
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Andrea Mancini
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paola Sarchielli
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy; IRCCS Fondazione S Lucia, Rome, Italy
| |
Collapse
|
55
|
Gentile A, Fresegna D, Federici M, Musella A, Rizzo FR, Sepman H, Bullitta S, De Vito F, Haji N, Rossi S, Mercuri NB, Usiello A, Mandolesi G, Centonze D. Dopaminergic dysfunction is associated with IL-1β-dependent mood alterations in experimental autoimmune encephalomyelitis. Neurobiol Dis 2014; 74:347-58. [PMID: 25511803 DOI: 10.1016/j.nbd.2014.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 11/16/2022] Open
Abstract
Mood disturbances are frequent in patients with multiple sclerosis (MS), even in non-disabled patients and in the remitting stages of the disease. It is still largely unknown how the pathophysiological process on MS causes anxiety and depression, but the dopaminergic system is likely involved. Aim of the present study was to investigate depressive-like behavior in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS, and its possible link to dopaminergic neurotransmission. Behavioral, amperometric and biochemical experiments were performed to determine the role of inflammation in mood control in EAE. First, we assessed the independence of mood alterations from motor disability during the acute phase of the disease, by showing a depressive-like behavior in EAE mice with mild clinical score and preserved motor skills (mild-EAE). Second, we linked such behavioral changes to the selective increased striatal expression of interleukin-1beta (IL-1β) in a context of mild inflammation and to dopaminergic system alterations. Indeed, in the striatum of EAE mice, we observed an impairment of dopamine (DA) neurotransmission, since DA release was reduced and signaling through DA D1- and D2-like receptors was unbalanced. In conclusion, the present study provides first evidence of the link between the depressive-like behavior and the alteration of dopaminergic system in EAE mice, raising the possibility that IL-1β driven dysfunction of dopaminergic signaling might play a role in mood disturbances also in MS patients.
Collapse
Affiliation(s)
- Antonietta Gentile
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Diego Fresegna
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Mauro Federici
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Alessandra Musella
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Romana Rizzo
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Helena Sepman
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Bullitta
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Francesca De Vito
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Nabila Haji
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Silvia Rossi
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola B Mercuri
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandro Usiello
- Behavioural Neuroscience Laboratory, CEINGE - Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), Caserta, Italy
| | - Georgia Mandolesi
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Diego Centonze
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Via del Fosso di Fiorano 64, 00143 Rome, Italy; Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
56
|
Rossi S, Motta C, Musella A, Centonze D. The interplay between inflammatory cytokines and the endocannabinoid system in the regulation of synaptic transmission. Neuropharmacology 2014; 96:105-12. [PMID: 25268960 DOI: 10.1016/j.neuropharm.2014.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022]
Abstract
Excessive glutamate-mediated synaptic transmission and secondary excitotoxicity have been proposed as key determinants of neurodegeneration in many neurological diseases. Soluble mediators of inflammation have recently gained attention owing to their ability to enhance glutamate transmission and affect synaptic sensitivity to neurotransmitters. In the complex crosstalk between soluble immunoactive molecules and synapses, the endocannabinoid system (ECS) plays a central role, exerting an indirect neuroprotective action by inhibiting cytokine-dependent synaptic alterations, and a direct neuroprotective effect by limiting glutamate transmission and excitotoxic damage. On the other hand, the endocannabinoid (eCB)-mediated control of synaptic transmission is altered by proinflammatory cytokines with consequent effects in central nervous system (CNS) disorders. In this review, we summarize the interactions, at the pre- and postsynaptic level, between major inflammatory cytokines and the ECS. In addition, the behavioral and clinical consequences of the modulation of synaptic transmission during neuroinflammation are discussed. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy
| | - Caterina Motta
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy
| | - Alessandra Musella
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy
| | - Diego Centonze
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), 00143 Rome, Italy.
| |
Collapse
|
57
|
Role of astrocytes in memory and psychiatric disorders. ACTA ACUST UNITED AC 2014; 108:240-51. [PMID: 25169821 DOI: 10.1016/j.jphysparis.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/12/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023]
Abstract
Over the past decade, the traditional description of astrocytes as being merely accessories to brain function has shifted to one in which their role has been pushed into the forefront of importance. Current views suggest that astrocytes:(1) are excitable through calcium fluctuations and respond to neurotransmitters released at synapses; (2) communicate with each other via calcium waves and release their own gliotransmitters which are essential for synaptic plasticity; (3) activate hundreds of synapses at once, thereby synchronizing neuronal activity and activating or inhibiting complete neuronal networks; (4) release vasoactive substances to the smooth muscle surrounding blood vessels enabling the coupling of circulation (blood flow) to local brain activity; and (5) release lactate in an activity-dependent manner in order to supply neuronal metabolic demand. In consequence, the role of astrocytes and astrocytic gliotransmitters is now believed to be critical for higher brain function and recently, evidence begins to gather suggesting that astrocytes are pivotal for learning and memory. All of the above are reviewed here while focusing on the role of astrocytes in memory and psychiatric disorders.
Collapse
|
58
|
Pepe D, Grassi M. Investigating perturbed pathway modules from gene expression data via structural equation models. BMC Bioinformatics 2014; 15:132. [PMID: 24885496 PMCID: PMC4052286 DOI: 10.1186/1471-2105-15-132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 04/25/2014] [Indexed: 01/18/2023] Open
Abstract
Background It is currently accepted that the perturbation of complex intracellular networks, rather than the dysregulation of a single gene, is the basis for phenotypical diversity. High-throughput gene expression data allow to investigate changes in gene expression profiles among different conditions. Recently, many efforts have been made to individuate which biological pathways are perturbed, given a list of differentially expressed genes (DEGs). In order to understand these mechanisms, it is necessary to unveil the variation of genes in relation to each other, considering the different phenotypes. In this paper, we illustrate a pipeline, based on Structural Equation Modeling (SEM) that allowed to investigate pathway modules, considering not only deregulated genes but also the connections between the perturbed ones. Results The procedure was tested on microarray experiments relative to two neurological diseases: frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) and multiple sclerosis (MS). Starting from DEGs and dysregulated biological pathways, a model for each pathway was generated using databases information biological databases, in order to design how DEGs were connected in a causal structure. Successively, SEM analysis proved if pathways differ globally, between groups, and for specific path relationships. The results confirmed the importance of certain genes in the analyzed diseases, and unveiled which connections are modified among them. Conclusions We propose a framework to perform differential gene expression analysis on microarray data based on SEM, which is able to: 1) find relevant genes and perturbed biological pathways, investigating putative sub-pathway models based on the concept of disease module; 2) test and improve the generated models; 3) detect a differential expression level of one gene, and differential connection between two genes. This could shed light, not only on the mechanisms affecting variations in gene expression, but also on the causes of gene-gene relationship modifications in diseased phenotypes.
Collapse
Affiliation(s)
- Daniele Pepe
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
59
|
Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. J Neurosci 2014; 33:19112-9. [PMID: 24305808 DOI: 10.1523/jneurosci.2536-13.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuroplasticity is essential to prevent clinical worsening despite continuing neuronal loss in several brain diseases, including multiple sclerosis (MS). The precise nature of the adaptation mechanisms taking place in MS brains, ensuring protection from disability appearance and accumulation, is however unknown. Here, we explored the hypothesis that long-term synaptic potentiation (LTP), potentially able to minimize the effects of neuronal loss by providing extra excitation of denervated neurons, is the most relevant form of adaptive plasticity in stable MS patients, and it is disrupted in progressing MS patients. We found that LTP, explored by means of transcranial magnetic theta burst stimulation over the primary motor cortex, was still possible, and even favored, in stable relapsing-remitting (RR-MS) patients, whereas it was absent in individuals with primary progressive MS (PP-MS). We also provided evidence that platelet-derived growth factor (PDGF) plays a substantial role in favoring both LTP and brain reserve in MS patients, as this molecule: (1) was reduced in the CSF of PP-MS patients, (2) enhanced LTP emergence in hippocampal mouse brain slices, (3) was associated with more pronounced LTP in RR-MS patients, and (4) was associated with the clinical compensation of new brain lesion formation in RR-MS. Our results show that brain plasticity reserve, in the form of LTP, is crucial to contrast clinical deterioration in MS. Enhancing PDGF signaling might represent a valuable treatment option to maintain brain reserve and to attenuate the clinical consequences of neuronal damage in the progressive phases of MS and in other neurodegenerative disorders.
Collapse
|
60
|
|
61
|
Cui C, Shurtleff D, Harris RA. Neuroimmune mechanisms of alcohol and drug addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:1-12. [PMID: 25175859 DOI: 10.1016/b978-0-12-801284-0.00001-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alcohol and other drugs of abuse have significant impacts on the neuroimmune system. Studies have demonstrated that drugs of abuse interact with the neuroimmune system and alter neuroimmune gene expression and signaling, which in turn contribute to various aspects of addiction. As the key component of the CNS immune system, neuroimmune factors mediate neuroinflammation and modulate a wide range of brain function including neuronal activity, endocrine function, and CNS development. These neuromodulatory properties of immune factors, together with their essential role in neuroinflammation, provide a new framework to understand neuroimmune mechanisms mediating brain functional and behavioral changes contributing to addiction. This chapter highlights recent advances in understanding neuroimmune changes associated with exposure to alcohol and other drugs of abuse, including opiates, marijuana, methamphetamine, and cocaine. It provides a brief overview on what we know about neuroimmune signaling and its role in drug action and addiction.
Collapse
Affiliation(s)
- Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | - David Shurtleff
- National Center for Complementary & Alternative Medicine, Bethesda, Maryland, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
62
|
Nisticò R, Mori F, Feligioni M, Nicoletti F, Centonze D. Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130162. [PMID: 24298163 DOI: 10.1098/rstb.2013.0162] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Approximately half of all patients with multiple sclerosis (MS) experience cognitive dysfunction, including learning and memory impairment. Recent studies suggest that hippocampal pathology is involved, although the mechanisms underlying these deficits remain poorly understood. Evidence obtained from a mouse model of MS, the experimental autoimmune encephalomyelitis (EAE), suggests that in the hippocampus of EAE mice long-term potentiation (LTP) is favoured over long-term depression in response to repetitive synaptic activation, through a mechanism dependent on enhanced IL-1β released from infiltrating lymphocytes or activated microglia. Facilitated LTP during an immune-mediated attack might underlie functional recovery, but also cognitive deficits and excitotoxic neurodegeneration. Having identified that pro-inflammatory cytokines such as IL-1β can influence synaptic function and integrity in early MS, it is hoped that new treatments targeted towards preventing synaptic pathology can be developed.
Collapse
Affiliation(s)
- Robert Nisticò
- Department of Physiology and Pharmacology, Sapienza University of Rome, , 00185 Rome, Italy
| | | | | | | | | |
Collapse
|