51
|
Plasma microRNA profiling: Exploring better biomarkers for lymphoma surveillance. PLoS One 2017; 12:e0187722. [PMID: 29131834 PMCID: PMC5683633 DOI: 10.1371/journal.pone.0187722] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Early detection of relapsed lymphoma improves response and survival. Current tools lack power for detection of early relapse, while being cumbersome and expensive. We searched for sensitive biomarkers that precede clinical relapse, and serve for further studies on therapy response and relapse. We recruited 20 healthy adults, 14 diffuse large B-cell lymphoma (DLBCL) patients and 11 Hodgkin lymphoma (HL) patients at diagnosis. Using small-RNA sequencing we identified in DLBCL patients increased plasma levels of miR-124 and miR-532-5p, and decreased levels of miR-425, miR-141, miR-145, miR-197, miR-345, miR-424, miR-128 and miR-122. In the HL group, we identified miR-25, miR-30a/d, miR-26b, miR-182, miR-186, miR-140* and miR-125a to be up-regulated, while miR-23a, miR-122, miR-93 and miR-144 were down-regulated. Pathway analysis of potential mRNAs targets of these miRNA revealed in the DLBCL group potential up-regulation of STAT3, IL8, p13k/AKT and TGF-B signaling, and potential down-regulation of the PTEN and p53 pathways; while in the HL group we have found the cAMP-mediated pathway and p53 pathway to be potentially down-regulated. Survival analyses revealed that plasma levels of miR-20a/b, miR-93 and miR-106a/b were associated with higher mortality. In conclusion, we identified sets of dysregulated circulating miRNA that might serve as reliable biomarkers for relapsed lymphoma.
Collapse
|
52
|
Solé C, Larrea E, Di Pinto G, Tellaetxe M, Lawrie CH. miRNAs in B-cell lymphoma: Molecular mechanisms and biomarker potential. Cancer Lett 2017; 405:79-89. [DOI: 10.1016/j.canlet.2017.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022]
|
53
|
Detassis S, Grasso M, Del Vescovo V, Denti MA. microRNAs Make the Call in Cancer Personalized Medicine. Front Cell Dev Biol 2017; 5:86. [PMID: 29018797 PMCID: PMC5614923 DOI: 10.3389/fcell.2017.00086] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Since their discovery and the advent of RNA interference, microRNAs have drawn enormous attention because of their ubiquitous involvement in cellular pathways from life to death, from metabolism to communication. It is also widely accepted that they possess an undeniable role in cancer both as tumor suppressors and tumor promoters modulating cell proliferation and migration, epithelial-mesenchymal transition and tumor cell invasion and metastasis. Moreover, microRNAs can even affect the tumor surrounding environment influencing angiogenesis and immune system activation and recruitment. The tight association of microRNAs with several cancer-related processes makes them undoubtedly connected to the effect of specific cancer drugs inducing either resistance or sensitization. In this context, personalized medicine through microRNAs arose recently with the discovery of single nucleotide polymorphisms in the target binding sites, in the sequence of the microRNA itself or in microRNA biogenesis related genes, increasing risk, susceptibility and progression of multiple types of cancer in different sets of the population. The depicted scenario implies that the overall variation displayed by these small non-coding RNAs have an impact on patient-specific pharmacokinetics and pharmacodynamics of cancer drugs, pushing on a rising need of personalized treatment. Indeed, microRNAs from either tissues or liquid biopsies are also extensively studied as valuable biomarkers for disease early recognition, progression and prognosis. Despite microRNAs being intensively studied in recent years, a comprehensive review describing these topics all in one is missing. Here we report an up-to-date and critical summary of microRNAs as tools for better understanding personalized cancer biogenesis, evolution, diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Michela A. Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| |
Collapse
|
54
|
Li LL, Qu LL, Fu HJ, Zheng XF, Tang CH, Li XY, Chen J, Wang WX, Yang SX, Wang L, Zhao GH, Lv PP, Zhang M, Lei YY, Qin HF, Wang H, Gao HJ, Liu XQ. Circulating microRNAs as novel biomarkers of ALK-positive nonsmall cell lung cancer and predictors of response to crizotinib therapy. Oncotarget 2017; 8:45399-45414. [PMID: 28514730 PMCID: PMC5542196 DOI: 10.18632/oncotarget.17535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023] Open
Abstract
Circulating microRNAs are potential diagnostic and predictive biomarkers, but have not been investigated for patients with anaplastic lymphoma kinase (ALK)-positive lung cancer. In this exploratory study, we sought to identify potential plasma biomarkers for ALK-positive non-small cell lung cancer (NSCLC). A microRNA microarray was used to select ALK-related microRNAs in ALK-positive NSCLC (n = 3), ALK-negative NSCLC (n = 3), and healthy subjects (n = 3). Plasma levels of 21 microRNAs were differentially expressed for ALK-positive and ALK-negative NSCLC, including 14 down-regulated and 7 up-regulated microRNAs. We also identified 5s rRNA as the most stable endogenous control gene using geNorm and NormFinder algorithms. Candidate microRNAs in plasma from ALK-positive (n = 41) and ALK-negative NSCLC patients (n = 32) were quantified using real-time reverse transcriptase quantitative polymerase chain reaction. The expression levels of miR-28-5p, miR-362-5p, and miR-660-5p were all down-regulated in ALK-positive NSCLC, compared with ALK-negative NSCLC. The areas under the receiver operating characteristic curves of miR-28-5p, miR-362-5p, miR-660-5p, and 3-microRNAs panel were 0.873, 0.673, 0.760, and 0.876, respectively. The positive predictive values of miR-28-5p, miR-362-5p, and miR-660-5p were 96.43%, 80.77%, and 83.87%, respectively. Increased plasma levels of miR-660-5p after crizotinib treatment predicted good tumor response (p = 0.012). The pre-crizotinib levels of miR-362-5p were significantly associated with progression-free survival (p = 0.015). Thus, in this preliminary investigation, we identified a potential panel of 3 microRNAs for distinguishing between patients with ALK-positive and ALK-negative NSCLC. We also identified miR-660-5p and miR-362-5p as potential predictors for response to crizotinib treatment.
Collapse
Affiliation(s)
- Liang-Liang Li
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
- Department of Oncology, 309th Hospital of PLA, Beijing, China
| | - Li-Li Qu
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Han-Jiang Fu
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Fei Zheng
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chuan-Hao Tang
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Xiao-Yan Li
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Jian Chen
- Department of Respiratory, Affiliated Hospital of Aviation Medicine, Beijing, China
| | - Wei-Xia Wang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Shao-Xing Yang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Lin Wang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Guan-Hua Zhao
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Pan-Pan Lv
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Min Zhang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Yang-Yang Lei
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Hai-Feng Qin
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Hong Wang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Hong-Jun Gao
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Qing Liu
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
55
|
Cordeiro A, Monzó M, Navarro A. Non-Coding RNAs in Hodgkin Lymphoma. Int J Mol Sci 2017; 18:ijms18061154. [PMID: 28555062 PMCID: PMC5485978 DOI: 10.3390/ijms18061154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression by binding to the 3’-UTR of their target genes, can act as oncogenes or tumor suppressors. Recently, other types of non-coding RNAs—piwiRNAs and long non-coding RNAs—have also been identified. Hodgkin lymphoma (HL) is a B cell origin disease characterized by the presence of only 1% of tumor cells, known as Hodgkin and Reed-Stenberg (HRS) cells, which interact with the microenvironment to evade apoptosis. Several studies have reported specific miRNA signatures that can differentiate HL lymph nodes from reactive lymph nodes, identify histologic groups within classical HL, and distinguish HRS cells from germinal center B cells. Moreover, some signatures are associated with survival or response to chemotherapy. Most of the miRNAs in the signatures regulate genes related to apoptosis, cell cycle arrest, or signaling pathways. Here we review findings on miRNAs in HL, as well as on other non-coding RNAs.
Collapse
Affiliation(s)
- Anna Cordeiro
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, School of Medicine, University of Barcelona, C/Casanova 143, 08032 Barcelona, Spain.
| | - Mariano Monzó
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, School of Medicine, University of Barcelona, C/Casanova 143, 08032 Barcelona, Spain.
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, School of Medicine, University of Barcelona, C/Casanova 143, 08032 Barcelona, Spain.
| |
Collapse
|
56
|
Xie H, Zhang Q, Zhou H, Zhou J, Zhang J, Jiang Y, Wang J, Meng X, Zeng L, Jiang X. microRNA-889 is downregulated by histone deacetylase inhibitors and confers resistance to natural killer cytotoxicity in hepatocellular carcinoma cells. Cytotechnology 2017; 70:513-521. [PMID: 28550492 DOI: 10.1007/s10616-017-0108-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Major histocompatibility complex class I chain-related gene B (MICB) is expressed on tumor cells and participates in natural killer (NK) cell-mediated antitumor immune response through engagement with the NKG2D receptor. This study was undertaken to identify novel microRNA (miRNA) regulators of MICB and clarify their functions in NK cell-mediated cytotoxicity to hepatocellular carcinoma (HCC) cells. Bioinformatic analysis and luciferase reporter assay were conducted to search for MICB-targeting miRNAs. Overexpression and knockdown experiments were performed to determine the roles of candidate miRNAs in the susceptibility of HCC cells to NK lysis. miR-889 was identified as a novel MICB-targeting miRNA and overexpression of miR-889 significantly inhibited the mRNA and protein expression of MICB in HepG2 and SMMC7721 HCC cells. miR-889 expression had a negative correlation with MICB mRNA levels in HCC specimens (r = -0.392, P = 0.0146). NK cell-mediated cytotoxicity was reduced in miR-889-overexpressing HCC cells, which was reversed by restoration of MICB expression. In contrast, knockdown of miR-889 led to more pronounced NK cell-mediated lysis in HCC cells. HCC cells exposed to the histone deacetylase (HDAC) inhibitor sodium valproate showed downregulation of miR-889. Enforced expression of miR-889 prevented the upregulation of MICB and enhancement of NK cell-mediated lysis by HDAC inhibitors. In conclusion, miR-889 upregulation attenuates the susceptibility of HCC cells to NK lysis and represents a potential target for improving NK cell-based antitumor therapies.
Collapse
Affiliation(s)
- Haitao Xie
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Qiugui Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hui Zhou
- Tumor Hospital Xiangya School of Medicine of Central South University, Changsha, China
| | - Jun Zhou
- Department of Rehabilitation, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Ji Zhang
- Laboratory of Rheumatology and Immunology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yan Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jinghong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xianglin Meng
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Leping Zeng
- Department of Anatomy and Neurobiology, Biology Postdoctoral Workstation, Basic School of Medicine, Central South University, Changsha, China.
| | - Xiaoxin Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China.
| |
Collapse
|
57
|
Shan C, Fei F, Li F, Zhuang B, Zheng Y, Wan Y, Chen J. miR-448 is a novel prognostic factor of lung squamous cell carcinoma and regulates cells growth and metastasis by targeting DCLK1. Biomed Pharmacother 2017; 89:1227-1234. [DOI: 10.1016/j.biopha.2017.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023] Open
|
58
|
van Krieken JH. New developments in the pathology of malignant lymphoma. A review of the literature published from January-April 2016. J Hematop 2016; 9:73-83. [PMID: 27398102 PMCID: PMC4912577 DOI: 10.1007/s12308-016-0277-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- J Han van Krieken
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|