51
|
Gabriele E, Brambilla D, Ricci C, Regazzoni L, Taguchi K, Ferri N, Asai A, Sparatore A. New sulfurated derivatives of cinnamic acids and rosmaricine as inhibitors of STAT3 and NF-κB transcription factors. J Enzyme Inhib Med Chem 2017; 32:1012-1028. [PMID: 28738705 PMCID: PMC6009881 DOI: 10.1080/14756366.2017.1350658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 12/30/2022] Open
Abstract
A set of new sulfurated drug hybrids, mainly derived from caffeic and ferulic acids and rosmaricine, has been synthesized and their ability to inhibit both STAT3 and NF-κB transcription factors have been evaluated. Results showed that most of the new hybrid compounds were able to strongly and selectively bind to STAT3, whereas the parent drugs were devoid of this ability at the tested concentrations. Some of them were also able to inhibit the NF-κB transcriptional activity in HCT-116 cell line and inhibited HCT-116 cell proliferation in vitro with IC50 in micromolar range, thus suggesting a potential anticancer activity. Taken together, our study described the identification of new derivatives with dual STAT3/NF-κB inhibitory activity, which may represent hit compounds for developing multi-target anticancer agents.
Collapse
Affiliation(s)
- Elena Gabriele
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Dario Brambilla
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Chiara Ricci
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Kyoko Taguchi
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Largo Egidio Meneghetti, Padova, Italy
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Anna Sparatore
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
52
|
Liu J, Fei D, Xing J, Du J. Retracted: MicroRNA-29a inhibits proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes by repressing STAT3. Biomed Pharmacother 2017; 96:173-181. [PMID: 28987940 DOI: 10.1016/j.biopha.2017.09.120] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/16/2017] [Accepted: 09/23/2017] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis-fibroblast-like synoviocytes (RA-FLS) with aberrant expression of microRNA (miRNA) have been reported to be involved in the initiation, progression, and perpetuation of rheumatoid arthritis (RA). In this study, we explored the biological function and underlying mechanism of microRNA-29a (miR-29a) in cultured RA-FLS from RA patients. The expression of miR-29a in serum, synovial tissues, and FLS from RA patients and health donors was detected by real-time quantitative RT-PCR (qRT-PCR). The effects of miR-29a on cell proliferation, apoptosis, and inflammatory cytokine levels in RA-FLS were also determined using Counting Assay Kit-8 (CCK-8), flow cytometry, and enzyme-linked immunosorbent assay (ELISA) respectively. Luciferase reporter assay was carried out to identify the target genes of miR-29a. We observed that expression of miR-29a was markedly downregulated in serum, synovial tissues and FLS of RA patients. miR-29a overexpression in RA-FLS significantly inhibited proliferation, promoted apoptosis, and suppressed expression of inflammatory cytokines. Signal transducer and activator of transcription 3 (STAT3) was identified to be a direct target of miR-29a in RA-FLS. miR-29a overexpression suppressed the expression of STAT3, as well as phosphorylated STAT3(p-STAT3) and its downstream targets protein (Cyclin D1 and Bcl-2). In addition, the levels of miR-29a were inversely correlated with that of STAT3 in synovial tissues. Rescue experiments showed that overexpression of STAT3 effectively reversed the effect of miR-29a on proliferation and apoptosis in RA-FLS. These data indicate that miR-29a inhibits proliferation and induces apoptosis in RA-FLS by targeting STAT3, suggesting that promoting miR-29a expression may yield therapeutic benefits in the treatment of RA.
Collapse
Affiliation(s)
- Jinxiang Liu
- Department of Pediatric Rheumatology and Allergy, the First Affiliated Bethune Hospital, Jilin University, Changchun 130021, PR China
| | - Dan Fei
- Ultrasonographic Department, the China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, PR China
| | - Jie Xing
- Ultrasonographic Department, the China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, PR China
| | - Juan Du
- Department of Rheumatology and Immunology, the China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, PR China.
| |
Collapse
|
53
|
Shanmugam MK, Arfuso F, Kumar AP, Wang L, Goh BC, Ahn KS, Bishayee A, Sethi G. Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacol Res 2017; 129:357-364. [PMID: 29162539 DOI: 10.1016/j.phrs.2017.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Thymoquinone (TQ), isolated almost fifty years ago, is the main bioactive constituent of black seed essential oil extracted from the seed of Nigella sativa. TQ has been shown to have promising effects against a variety of inflammatory diseases and cancer. Cancer development is a multistep process where normal cells acquire qualities that enable the cells to proliferate continuously and migrate to distant sites in the human body. Drugs that interfere with this process are considered potential anti-cancer therapeutics, which may ultimately result in their clinical usage. TQ is once such compound which has been reported to modulate several major signaling pathways and key oncogenic molecules that play a prominent role in cancer initiation, progression, invasion, metastasis, and angiogenesis. Various studies have reported that TQ can enhance the anti-cancer potential when co-administered with several chemotherapeutic agents while reducing their toxic side effects. In addition, TQ has been shown to inhibit the growth of breast, prostate, pancreatic, colon, lung, and hematological malignancies in different mouse models of cancer. This review focuses on TQ's chemical and pharmacological properties, its diverse molecular targets and also provides clear evidence on its promising potential under preclinical and clinical settings.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6009, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117600, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6009, Australia; National University Cancer Institute, National University Health System, 117600, Singapore; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117600, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Health System, 119228, Singapore
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, South Korea, South Korea
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6009, Australia.
| |
Collapse
|
54
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|
55
|
Xie X, Yang M, Ding Y, Yu L, Chen J. Formyl peptide receptor 2 expression predicts poor prognosis and promotes invasion and metastasis in epithelial ovarian cancer. Oncol Rep 2017; 38:3297-3308. [PMID: 29039544 PMCID: PMC5783575 DOI: 10.3892/or.2017.6034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/31/2017] [Indexed: 12/29/2022] Open
Abstract
Formyl peptide receptor 2 (FPR2) has been identified as a member of the G protein-coupled chemoattractant receptor (GPCR) family and has been implicated as playing a role in both inflammation and cancer development. Epithelial ovarian cancer (EOC) has been suggested to be correlated with both infectious and non-infectious inflammation. To date, the role of FPR2 in EOC remains poorly understood and controversial. In the present study, we aimed to investigate the potential of FPR2 in regulating EOC. We performed immunohistochemistry and RT-qPCR to analyzed expression of FPR2 in EOC tissues and the correlation between FPR2 and EOC clinicopathological characteristics as well as prognosis were also analyzed. To test the role of FPR2 in EOC cell migration, we established FPR2-knockdown SKOV3 cells and performed wound-healing, Transwell and angiogenesis assays to detect the metastatic potential of these EOC cells. Our studies found that FPR2 was overexpressed in EOC tissues and was positively correlated with EOC clinicopathological characteristics including the International Federation of Gynecology and Obstetrics (FIGO) stage, histological grade and ovarian cancer type. Survival analyses suggested that FPR2 overexpression indicated the poorer prognosis of EOC patients and FPR2 may act as an independent risk factor for EOC prognosis. FPR2 knockdown decreased the migration potential of the ovarian cancer cells. Moreover, serum amyloid A (SAA) may stimulate the migration of SKOV3 cells through FPR2. The present study suggested that FPR2 promoted the invasion and metastasis of EOC and it could be a prognostic marker for EOC.
Collapse
Affiliation(s)
- Xiaohui Xie
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling Yu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jianlin Chen
- Department of Obstetrics and Gynecology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
56
|
Combination curcumin and (-)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway. Oncogenesis 2017; 6:e384. [PMID: 28967875 PMCID: PMC5668882 DOI: 10.1038/oncsis.2017.84] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor microenvironment has a crucial role in cancer development and progression, whereas the mechanism of how it regulates angiogenesis is unclear. In this study, we simulated the colorectal carcinoma microenvironment by conditioned medium (CM) of colorectal carcinoma cell lines (SW620, HT-29, HCT116) supernatant or colorectal carcinoma tissue homogenate supernatant to induce normal endothelial cells (NECs). We found that colorectal carcinoma CM promoted tumor angiogenesis by coercing NECs toward tumor endothelial cells (TECs) with the activation of the JAK/STAT3 signaling pathway. Antibody array analysis showed HT-29 supernatant contained numerous angiogenesis-related proteins, especially IL-8. Interestingly, the production of IL-8 in NECs induced by HT-29 CM was also increased. We also verified the crucial role of IL-8 in promoting the CM-induced angiogenesis, as IL-8 repression by neutralizing antibody abolished the transition of NECs toward TECs. Curcumin and (-)-epigallocatechin-3-gallate (EGCG) are broadly investigated in cancer chemoprevention. However, poor bioavailability hurdles their application alone, and the mechanism of their anti-angiogenesis still need to be illuminated. Here, we found that curcumin combination with EGCG attenuated the tumor CM-induced transition of NECs toward TECs by inhibiting JAK/STAT3 signaling pathway. Furthermore, the combination of curcumin and EGCG markedly reduced tumor growth and angiogenesis in the colorectal carcinoma PDX mouse model, and the combined anti-angiogenic effect was better than that of curcumin or EGCG alone. Taken together, our findings provide a new mechanism of tumor angiogenesis, and the combination of curcumin and EGCG represents a potential anti-angiogenic therapeutic method for colorectal carcinoma.
Collapse
|
57
|
Jin Y, Yoon YJ, Jeon YJ, Choi J, Lee YJ, Lee J, Choi S, Nash O, Han DC, Kwon BM. Geranylnaringenin (CG902) inhibits constitutive and inducible STAT3 activation through the activation of SHP-2 tyrosine phosphatase. Biochem Pharmacol 2017; 142:46-57. [DOI: 10.1016/j.bcp.2017.06.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
|
58
|
Balanis N, Carlin CR. Stress-induced EGF receptor signaling through STAT3 and tumor progression in triple-negative breast cancer. Mol Cell Endocrinol 2017; 451:24-30. [PMID: 28088463 PMCID: PMC5469704 DOI: 10.1016/j.mce.2017.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/12/2023]
Abstract
Elevated STAT3 activity is a hallmark of many epithelial carcinomas particularly in breast cancers where it is known to contribute to tumor progression through a variety of context-dependent biological responses. However, its role downstream of stress-exposed EGF receptors (EGFR) that are transactivated in endosomes independent of exogenous ligand has not been studied. This review discusses how STAT3 signaling induced by therapeutic stress in EGFR-driven triple-negative breast cancers (TNBC) might override normal epithelial homeostatic mechanisms and provide a survival advantage for tumor cells before they leave the primary tumor and spread to distant sites. Despite continued improvements in breast cancer treatment strategies, TNBC is still associated with poor prognosis and high risk of distant recurrence and death. Understanding EGFR-STAT3 signaling mechanisms regulating the earliest steps of tumor progression is a key to discovery of new targeted therapies against TNBC.
Collapse
Affiliation(s)
- Nikolas Balanis
- Departments of Physiology and Biophysics, USA; Molecular Biology and Microbiology, USA
| | - Cathleen R Carlin
- Departments of Physiology and Biophysics, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
59
|
Wang A, Zhang F, Xu H, Xu M, Cao Y, Wang C, Xu Y, Su M, Zhang M, Zhuge Y. TWEAK/Fn14 promotes pro-inflammatory cytokine secretion in hepatic stellate cells via NF-κB/STAT3 pathways. Mol Immunol 2017; 87:67-75. [PMID: 28411440 DOI: 10.1016/j.molimm.2017.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/04/2017] [Accepted: 04/04/2017] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) have been associated with liver disease. Hepatic stellate cells (HSCs) play a critical role in the hepatic wound-healing response after liver injury, but there is little information available on the role of the TWEAK/Fn14 pathway in human HSCs. In this study, we explored the role of TWEAK/Fn14 in activated human HSCs. The LX-2 cells were treated with TWEAK, and the expression of pro-inflammatory cytokines was assayed by enzyme-linked immunosorbent assay (ELISA) and real-time PCR (RT-PCR). Western blotting and RT-PCR were performed to evaluate the expression of Fn14 after TWEAK stimulation. Total and phosphorylated of inhibitor-κB (I-κB), nuclear factor kappa B (NF-κB), Janus kinase 2 (JAK2), and signal transducers and activators of transcription 3 (STAT3) were examined by western blotting after TWEAK stimulation and small interfering RNA (siRNA) transfection. The result showed that TWEAK upregulated the expression of Fn14 and pro-inflammatory factors interleukin-8 (IL-8), interleukin-6 (IL-6), regulated upon activation normal T cell expressed and secreted (RANTES), and monocyte chemotactic protein-1 (MCP-1). In LX-2 cells, the pro-inflammatory cytokine secretion was closely related to the activation of the NF-κB and STAT3 pathways. Furthermore, our research showed that STAT3 and NF-κB could interact with each other, which resulted in a significant increase of pro-inflammatory cytokine secretion. The activation of NF-κB and STAT3 signalling-dependent pro-inflammatory cytokine expression may be responsible for such a novel principle and new therapeutic targets in chronic liver disease.
Collapse
Affiliation(s)
- Aixiu Wang
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Department of Gastroenterology, Affiliated Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Xu
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mingcui Xu
- Department of Gastroenterology, Affiliated Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Cao
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chen Wang
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuanyuan Xu
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Min Su
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ming Zhang
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
60
|
Wen HL, Yang G, Dong QR. Ellipticine inhibits the proliferation and induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via the STAT3 pathway. Immunopharmacol Immunotoxicol 2017; 39:219-224. [PMID: 28555524 DOI: 10.1080/08923973.2017.1327963] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) is an alkaloid isolated from Apocyanaceae plants. This study was designed to investigate the effects of ellipticine on the proliferation and apoptosis of fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA). METHODS RA-FLSs were exposed to different concentrations of ellipticine (i.e., 0.5, 1, 2, 4 and 8 μM) for 24-72h and measured for viability, proliferation and apoptosis. The involvement of signal transducer and activators of transcription 3 (STAT3) signaling in the action of ellipticine was determined by Western blot analysis, luciferase reporter assay and rescue experiments. RESULTS Ellipticine treatment significantly inhibited the viability and proliferation of RA-FLSs in a concentration-dependent manner. In contrast, ellipticine exposure did not alter the viability of normal human FLSs. Moreover, ellipticine triggered significant apoptosis and increased caspase-3 activity in RA-FLSs. Mechanistically, ellipticine reduced the phosphorylation of STAT3 and downregulated the expression of Mcl-1, cyclin D1 and Bcl-2. Luciferase reporter assay demonstrated that ellipticine treatment led to a significant inhibition of STAT3-mediated transcriptional activity in RA-FLSs. Overexpression of constitutively active STAT3 reversed the suppressive effects of ellipticine on RA-FLSs, which was accompanied by restoration of Mcl-1, cyclin D1 and Bcl-2. DISCUSSION AND CONCLUSIONS Ellipticine shows anti-proliferative and pro-apoptotic effects on RA-FLSs through inhibition of the STAT3 pathway and may have therapeutic potential in RA.
Collapse
Affiliation(s)
- Hui-Long Wen
- a Department of Orthopedics , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Guang Yang
- a Department of Orthopedics , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Qi-Rong Dong
- a Department of Orthopedics , The Second Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
61
|
Zhang Y, Kong W, Jiang J. Prevention and treatment of cancer targeting chronic inflammation: research progress, potential agents, clinical studies and mechanisms. SCIENCE CHINA-LIFE SCIENCES 2017. [PMID: 28639101 DOI: 10.1007/s11427-017-9047-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Numerous experimental and clinical studies indicate that chronic inflammation is closely related to the initiation, progression, and spread of cancer, in which proinflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), and transcription factors, such as nuclear factor-κB (NF-κB), and signal transducer and activator of transcription 3 (STAT3), play pivotal roles. Stimulated by proinflammatory cytokines, NF-κB and STAT3 can modulate the expression of target genes, most of which are oncogenic ones, and promote the survival, proliferation, invasion, and metastasis of cancer cells. Now it is generally accepted that inflammation-related molecules and pathways are useful targets for the prevention and treatment of cancer. In this review, we summarize the relationship between chronic inflammation and cancer and describe some potentially useful agents including aspirin, meformin, statins, and some natural products (green tea catechins, andrographolide, curcumin) for their cancer prevention and treatment activities targeting chronic inflammation. The results of typical clinical studies are included, and the influences of these agents on the proinflammatory cytokines and inflammation-related pathways are discussed. Data from the present review support that agents targeting chronic inflammation may have a broad application prospect for the prevention and treatment of cancer in the future.
Collapse
Affiliation(s)
- Yong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Weijia Kong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Jiandong Jiang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
62
|
Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int Immunopharmacol 2017; 49:21-29. [PMID: 28550731 DOI: 10.1016/j.intimp.2017.05.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
Although xanthotoxin has been reported to possess skin-protective and anti-oxidative properties, its anti-inflammatory capacity has not been studied to date. Therefore, we investigated this role as well as the molecular mechanisms of xanthotoxin in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Xanthotoxin inhibited production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) by the LPS-induced macrophages in a concentration-dependent manner. It also suppressed the LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression at the protein levels and iNOS, COX-2, TNF-α, and IL-6 at the mRNA levels. At a molecular level, the effects were related to xanthotoxin-mediated attenuation of the LPS-induced transcriptional and DNA-binding activity of activator protein-1 (AP-1). This attenuation was associated with decreased phosphorylation of c-Fos, but not c-Jun. Xanthotoxin also displayed a suppressive effect on the transcriptional and DNA-binding activity of nuclear transcription factor kappa-B (NF-κB) by inhibiting p65 nuclear translocation. In addition, xanthotoxin significantly reduced the phosphorylation at signal transducers and activators of transcription 1 (STAT1, Ser 727 and Tyr 701) and STAT3 (Tyr 705), as well as Janus kinase (JAK) 1 and 2 in LPS-induced RAW 264.7 macrophages. Finally, xanthotoxin suppressed the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK). Taken together, these results indicate that xanthotoxin decreases NO, PGE2, TNF-α, and IL-6 production by downregulation of the NF-κB, AP-1, and JAK/STAT signaling pathways in LPS-induced RAW 264.7 macrophages.
Collapse
|